
Efficient Modular Squaring Algorithms for Hardware
Implementation in GF(p)

Lo’ai Tawalbeh, Saed Swedan, Adnan Gutub*

Computer Engineering Department

Jordan University of Science and Technology, Irbid, Jordan
* King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Email{tawalbeh@just.edu.jo, saed_swedan2000@yahoo.com, gutub@kfupm.edu.sa}

Abstract. Some of the most popular public key encryption algorithms use
exponentiation as their core operation which can be mostly broken into several
modular squaring operations. In this paper, we present GF(p) modular squaring
algorithms and efficiently implement them on hardware. We present different
algorithms, two for squaring and one for reduction combined with the squaring to
provide a general modular squaring algorithm. The algorithms are implemented
through datapaths that uses redundant Carry-Save Adders making the computation
time independent form the operands precision. The proposed algorithms are
compared with each other as well as with the existing modular squaring algorithms.
The experimental results are obtained by synthesizing the hardware designs for
FPGA Virtex5 chip (xc5vlx50 – ff1153 technology) which showed interesting
results making our ideas very attractive.

1 Introduction

Currently, sharing and securing data has become a basic and essential need, which

gives higher demand for faster and more secure encryption algorithms. There are two
main branches in cryptography; the first is Symmetric Key Cryptography, where the
same key, which must remain secret, is used for encryption and decryption. The second is
Public Key Cryptography (PKC), where two keys are used. One is called Public Key,
which is publicly shared, and is used to encrypt data, the other is called Private Key,
which is kept private, and is used to decrypt data. PKC is the most widely used type of
cryptography for authentication and digital signatures [3, 4], and depends heavily on
modular arithmetic including addition, multiplication, and exponentiation [1, 2].

Author Posting. (c) 'Copyright Holder', 2009.
This is the author's version of the work. It is posted here by permission of 'Copyright Holder' for
personal use, not for redistribution.
The definitive version was published in Information Security Journal: A Global Perspective,
Volume 18 Issue 3, 2009.
doi:10.1080/19393550902926053 (http://dx.doi.org/10.1080/19393550902926053)

2

Among modular arithmetic operations, modular exponentiation is the main

operation used in many PKC algorithms, such as El-Gamal cryptosystem [1], Diffie-
Hellman key exchange algorithm [2], RSA [3], and the Digital Signature Standard [4].
Since modular exponentiation can be broken-down into successive modular squaring and
multiplication operations, the performance of PKC algorithms can be enhanced by using
fast and efficient modular squaring algorithms [7, 10, 11, 12].

A. Karatsuba and Y. Ofman [5], were one of the first to show that multiplication
can be done in time less than O(n2), where n is the number of digits in the operands. They
introduced a recursive algorithm that divides the integer into two parts and continues to
be divided recursively, up to a certain limit.

P. G. Comba [6], presented a multiplication algorithm that has improvement over
the classical method of multiplication by employing smart programming optimizations.
Although the algorithm is mathematically identical to the classical method, it has an
advantage of computing partial products directly to reduce the number of required
memory writes.

G. Joseph [7], compared the classical multiplication method with the Karatsuba
algorithm, the Comba algorithm, and a hybrid between the two algorithms. He found that
the Karatsuba algorithm outperforms both the classical method and the Comba algorithm,
but the best result came from combining both Karatsuba's and Comba's algorithms up to a
certain breakpoint.

C. K. Koc [8], presented the standard squaring algorithm. C. Wu, D. Lou, and T.
Chang [10], have shown that Yang-Hseih-Laih's squaring algorithm [9] has an error-
indexing bug, and presented an algorithm to fix it.

In this work, we will present the hardware architecture simulation results for
several algorithms and their implementation. We will compare their performance with
each other and with already known other algorithms in this field. The proposed
algorithms are compared against four algorithms: the Standard Squaring Algorithm, the
Wu-Lou-Chang Squaring Algorithm [10], the Barrett modular reduction algorithm [11],
and finally, the Montgomery modular multiplication algorithm [12]. The experimental
results were obtained by synthesizing the hardware designs using FPGA Virtex5 chip
(xc5vlx50 – ff1153 technology), for different operand sizes (in bits): 8, 16, 32, 64, 128,
256, 512, and 1024. Then, the obtained results are compared with other algorithms results
using the same operands sizes.

2 Proposed Algorithms

We present three algorithms; two for modular squaring and one for modular reduction.
The squaring algorithms will be denoted as PA1 and PA2 (Proposed Algorithms 1 and 2).
The Proposed Modular Reduction algorithm will be denoted as PMR. PA1 and PA2 use
an idea that was inspired while researching Carry-Save Adders (CSA).

As in CSAs, we divided the squaring result into two results, i.e., sum and carry.
Both sum and carry can be calculated with a delay of one full adder. The sum can be
calculated in one step (wiring in case of radix-2, or LUT in case for radix-4 and radix-8),

3

and the rest of the algorithm’s function is to calculate the carry. Instead of starting with
an empty vector for the result, we start with the value of the sum. To get the final result,
the sum and carry are added. Additionally, all intermediate additions are calculated using
CSAs.

3 The PA1 Squaring Algorithm

PA1 is a modification of the Wu-Lou-Chang squaring algorithm [10]. Wu-Lou-Chang
algorithm follows the traditional pencil-and-paper method of squaring. It is to be noted
that Wu-Lou-Chang algorithm replaced the term 2*xi*xj with xi*xj to ensure that the
intermediate calculations do not exceed two digits. Also, to improve the performance, it
retrieved the value of xi*xj from a Look-Up Table (LUT). The reader is referred to [10]
for more details of the Wu-Lou-Chang algorithm.
We modified this algorithm by making the starting index of the inner loop start at i+1
instead of 0. We also are exchanging "(uv)b = xi * xj" with "(tuv)b = 2 * xi * xj", which
reduce the number of iterations from "n2" to "(n2-n) / 2". The modified algorithm (PA1) is
shown in Figure 1.

Figure 1: The PA1 Squaring Algorithm

PA1 also uses the sum-carry technique discussed earlier. Although this is a simple
modification, we found it reducing the number of iterations by half assuming values for

4

“xi * xj” are pre-computed; the proposed algorithm has been implemented in radix-2,
radix-4, and radix-8.

 For radix-2: xi * xj = xi and xj
 For radix-4 and radix-8, we need to pre-compute 16 and 64 values,

respectively.

4 The PA2 Squaring Algorithm

The PA2 algorithm is based on an equation in [13]. They present an idea and derive

a recursive equation. Figure 2 shows the derivation of the equation.

Figure 2: Equation derivation for our squaring algorithm 2

The relationship between consecutive C(i) can be expressed by the following

equation:

When we expand the recursive equation (for a 4-bit operand in radix-2, for

example), we will get the following:

If we divide this equation into two parts, we will get the sum and carry parts

discussed earlier.

The final form for sum and carry can be calculated as follows:

The general formulas for the sum and carry are shown in Figure 3. Our PA2

Squaring Algorithm is shown in Figure 4.

Figure 3: General sum and carry equations.

5

In the carry equation in Figure 3, b2(i-1)*C/bi can’t be reduced because C/bi is an

integer division operation not a floating division operation, which means that, to get the
correct result, we must divide first, then multiply. The next example shows the difference
between dividing then multiplying and multiplying then dividing.

1. If we have C = (001111)2 = (15)10, and we wanted to calculate 8 * C / 4. The
correct way to calculate it for our algorithm is:

 C / 4 = 000011
 8 *(C / 4) = (011000)2 = 24

2. If we replace it with 2 * C, or if we multiply first then divide we will get a
wrong result.

 2 * C = (011110)2 = (30)10
 Or 8*C = 1111000, (8*C) / 4 = (011110)2 = (30)10

To calculate {b * b2(i-1) * C / bi} efficiently, the following operation is used:

 Suppose R = C
 To calculate R that will be used in current iteration:
 We set Digit r2i = 0. this represents {b2(i-1) * C / bi}
 R = R << k. this represents R * b, where k = log2b.

When we calculate xi*2*R, the value of R is shifted to the left by one bit, then

CSAs are used instead of a multiplier to perform the multiplication operation. For
example, to calculate 3*2*R:

 First we shift R to the left by one bit: R = R << 1. This represents
2*R.

 To calculate 3*R, we add R + 2R, meaning that we add R with a
shifted copy R (i.e. 3*R = R + 2R = R + (R << 1)).

 All the additions are done using CSAs.

Figure 4: The PA2 Squaring Algorithm.

Let’s give an example of this algorithm by using it to calculate 2312 in radix-4. So

we have X = (3213)4, n=4 (i.e. X has 4 digits), b=4.

6

Note that (32)4 = (21)4, (22)4 = (10)4, (12)4 = (01)4

1. Q = (21100121)4
2. R = X = (00003213)4
3. i=0:

1. r0 = (0)4 => R = (00003210)4
2. Q = Q + 3*2*R = (21100121)4 + (00111120)4 = (21211301)4
3. R = R << 2 => R = (00032100)4

4. i=1:
1. r2 = (0)4 => R = (00032000)4
2. Q = Q + 1*2*R = (21211301)4 + (00130000)4 = (22001301)4
3. R = R << 2 => R = (00320000)4

5. i=2:
1. r4 = (0)4 => R = (00300000)4
2. Q = Q + 2*2*R = (22001301)4 + (03000000)4 = (31001301)4
3. R = R << 2 => R = (00000000)4
(31001301)4= (32132)4= (2312)10= (53361)10

5 The PMR Modular Reduction Algorithm

To calculate the modulus of X on P, with P and X in the form:

 , where n ≤ k.

The result of R=X mod P, can be calculated as the following:

But because xi * 2i < P, for 0 ≤ i < k, we have:

So the final form for the reduction will be:

We require a pre-calculation of k values, which is denoted to as PreMod, as the

following:

When we want to reduce an integer X modulo P, we start by taking the value of

the first k bits of X (i.e. X(0 to k-1)) and we add to it the pre-calculated values with
indices i if xi = 1, where k ≤ i < 2k. When we add n k-bit values, we will have a number
of additional carry bits equal to:

We end up with an extra r bits in the result, so, the algorithm is applied again to

the result. This operation is repeated until r ≤ 2. If we end up with r = 2, then there will

7

be three values to add; X(0 to k-1), xk*PreMod(k), and xk+1*PreMod(k+1). In other
words:

If we add any 3 k-bit numbers, bits k and k+1 will never be 1 at the same time (i.e.
bits k and k+1 will be (10)2,(01)2, or (00)2). To show why this happens, let’s take the
worst case of adding 3 8-bit numbers where all the bits have a value of 1:

S = (11111111)2 + (11111111)2 + (11111111)2
 = (1011111101)2
 From the example we can see that bits 8 and 9 are (10)2. So, the result of the

addition of any 3 k-bit numbers will have bits k and k+1 equal to (10)2, (01)2, or (00)2.
This means that when we get r=2, at the worst case, we will only have to add two

k-bit numbers; the first one will be 0 ≤ X(0 to k-1) < 2P, and the second will be either
xk*PreMod(k) or xk+1*PreMod(k+1) which are less than P. So the result of this addition
will be 0 ≤ sum < 3P, which means that we may need to subtract P from the sum a
maximum of 2 times.

If r = 1, then we have the same case as with r = 2. And if r = 0, then we just
check if the sum is larger than P, if so, we subtract P to get the final result.

To reduce an integer with a length n, with a prime modulo of length k, where
k < n < 2k, we need to apply the algorithm twice if 2 ≤ k ≤ 7, three times if 8 ≤ k ≤ 127,
and four times if 128 ≤ k ≤ 2127-1. Figure 5 shows the PMR modular reduction algorithm.

Figure 5: The PMR modular reduction algorithm

8

To give an example of this algorithm at work, we will calculate 17156 mod 131,
this is shown in Figure 6.

Figure 6: Modular reduction algorithm with M = 131, X = 17156

6 Results

The hardware design of the proposed and original algorithms was coded using

VHDL. The tool used for simulation and functional correctness is ModelSim Xilinx
Edition III v6.2g. The synthesis tool used to get the experimental results was Xilinx ISE
9.2i. The target technology was set to Virtex5 (xc5vlx50 – ff1153 technology). All
algorithms were synthesized on a PC machine with Core 2 Duo E4300 processor 2.7 GHz
and 2 GB of RAM.

The proposed squaring algorithms, the Standard Squaring Algorithm, and the Wu-
Lou-Chang are implemented in radix-2, radix-4, and radix-8 bases. The Montgomery
multiplication algorithm, Barrett’s reduction algorithm, and our proposed modular
reduction algorithm have been implemented in radix-2 only. All the algorithms have been
implemented with input lengths 8, 16, 32, 64, 128, 256, 512, and 1024. The Standard
Squaring Algorithm will be denoted to as SA1, and Wu-Lou-Chang’s Squaring
Algorithm will be denoted to as SA2.

Figure 7 shows the time result obtained from comparing the total time of PMR with
Barrett’s reduction algorithm.

9

Figure 7: Time results for PMR vs. Barrett’s reduction algorithm.

We can see from the previous figure that the PMR modular reduction algorithm

has a better time curve than Barrett’s Reduction. This makes it a more suitable option for
hardware implementation.

Figures 8, 9, and 10 shows the time results obtained from the different possible
combinations between the squaring algorithms and the reduction algorithms in radix-2,
radix-4, and radix-8, respectively. The combinations that we will cover are: PA1 + PMR,
PA1 + Barrett, PA2 + PMR, PA2 + Barrett, SA1 + PMR, SA1 + Barrett, SA2 + PMR,
and SA2 + Barrett. The radix-2 results of those combinations will be compared with
Montgomery’s Multiplication algorithm results.

Figure 8: Time Results for the Modular Squaring Algorithms in Radix-2 using a

logarithmic scale

10

Figure 9: Time Results for the Modular Squaring Algorithms in Radix-4 using a

logarithmic scale

Figure 10: Time Results for the Modular Squaring Algorithms in Radix-8 using a

logarithmic scale

7. Conclusion

This work presented two new squaring algorithms, PA1 and PA2, and one

modular reduction algorithm, PMR, for GF(p). Modular squaring algorithms play an

11

important role in Public Key Cryptography (PKC). Some of the most popular public key
encryption algorithms such as El-Gamal cryptosystem, Diffie-Hellman key exchange
algorithm, RSA, and the Digital Signature Standard. Since modular exponentiation can be
broken-down into modular squaring and multiplication operations, the performance of
PKC algorithms can be enhanced by using a fast and efficient modular squaring
algorithm.

In this paper we implemented the proposed algorithms in hardware, and compared
their performance with each other and other already known algorithms. First, we
presented the algorithms that we compared our proposed algorithms against. Second,
we’ve presented the proposed algorithms and have shown their derivation. The hardware
architecture for the proposed algorithms was also presented.

The algorithms that we compared against consisted of two squaring algorithms,
one modular reduction algorithm, and one modular squaring algorithm. The squaring
algorithms were the Standard Squaring Algorithm and the Wu-Lou-Chang Squaring
Algorithm. The modular reduction algorithm was the Barrett Reduction Algorithm, and
the modular squaring algorithm was the Montgomery Multiplication Algorithm.

After that, we’ve shown the synthesis results for our algorithms for different bit
lengths; 8, 16, 32, 64, 128, 256, 512, and 1024 bits. Then the results were compared to
the synthesis results of the other algorithms using the same bit lengths. The experimental
results were obtained by synthesizing the hardware design for FPGA Virtex5 chip
(xc5vlx50 – ff1153 technology).

Montgomery’s Multiplication algorithm has been discussed and compared with
different combinations of squaring algorithms and modular reduction algorithms for
radix-2 implementations. Radix-2, 4, and 8 designs were implemented and compared in
terms of area and total execution time. The PA1 algorithm which is a modification on the
SA2 algorithm has shown good improvement, although it introduces a small increase in
area, it gives a good improvement in total execution time. We have shown that the PA2
algorithm, which is and implementation of an equation found in [5], in combination with
PMR has the best area and total execution time results, and gives a better performance
than Montgomery’s Multiplication algorithm in radix-2.

Our proposed modular reduction algorithm (PMR) was shown to have very low
area requirements compared to Barrett’s reduction algorithm. This is due to the fact that
Barrett’s algorithm requires two multipliers, where PMR only uses adders and CSAs.
Also, PMR has shown a better time performance than Barrett’s reduction algorithm. This
makes PMR a much better choice to be combined with Squaring algorithms to form
efficient modular squaring algorithms.

Acknowledgment

Authors would like to thank both Computer Engineering Departments in Jordan University of Science and
Technology, Irbid, Jordan, and King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi
Arabia, for supporting this research and the fruitful cooperation and collaboration between the universities
in the region.

12

References

1. ElGamal T. A public key cryptosystem and signature scheme based on discrete
logarithms. IEEE Trans. - Information Theory 1998; vol. IT-3(4):469-472.

2. Hellman ME, Diffie W. New directions on cryptography. IEEE transactions on

Information Theory 1976; 22: 644-654.

3. Adleman L, Rivest RL, Shamir A. A method for obtaining digital signature and

public-key cryptosystems. Comm. of the ACM 1978; 21(2): 120-126.

4. Digital signature standard. National Institute of Standards and Technology,

Washington; 2000.

5. Karatsuba A, Ofman Y. Multiplication of multi-digit numbers on automata.

Soviet Physics Doklady 1963; 7: 595-596.

6. Comba PG. Exponentiation cryptosystems on the IBM PC. J-IBM-SYS-J 1990;

29(4): 526-538.

7. George J. Design and Implementation of High-Speed Algorithms for Public Key

Cryptosystems MS. Thesis. South Africa: University of Pretoria; 2005.

8. KOÇ ÇK. High-Speed RSA Implementation. Technical Report TR 201. RSA

Laboratories; 1994 November.

9. Hseih PY, Laih CS. An Exception Handling Model and Its Application to the

Multiple-Precision Integer Library MS. Thesis; 2003.

10. Wu CL, Lou DC, Chang TJ. Fast modular squaring method for public key

cryptosystems. Annual Conference on TAiwan INTERNET (2006TANET).
Hualien, Taiwan. 2006 November; F51: 1-10.

11. Barrett P. Implementing the Rivest Shamir and Adleman Public Key Encryption

Algorithm on a Standard Digital Signal Processor. CRYPTO 1986: 311-323.

12. Montgomery PL. Modular multiplication without trial division. Mathematics of

Computation 1985; 44(170): 519-521.

13. Hong SM, Oh SY, Yoon H. New modular multiplication algorithms for fast

modular exponentiation. Lecture Notes in Computer Science 1996; 1070: 166-
177.

