
Improving Security and Capacity for Arabic Text
Steganography Using 'Kashida' Extensions

Fahd Al-Haidari Adnan Gutub Khalid Al-Kahsah Jameel Hamodi

Collage of Computer Sciences & Engineering
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
fahdhyd@kfupm.edu.sa, gutub@kfupm.edu.sa

Abstract— Steganography is a method of hiding data within a cover
media so that other individuals fail to realize their existence. In this
paper, a new approach for steganography in Arabic texts is
proposed. The main idea is that each Arabic word may have some
characters which can be extended by 'Kashida'. The ranks
'locations' of such characters and the inserted Kashida, construct a
coding method to represent a block of secret bits. Different
scenarios have been proposed based on the maximum number of
Kashida possible to be inserted per word. The approach was
compared to some existing Arabic text steganography approaches
in terms of capacity and security. It is shown that this proposed
approach outperforms the others with interesting promising
results.

Keywords: Arabic text, Cryptography, Feature coding, Information
security, Steganography, Text watermarking.

I. INTRODUCTION

With the tremendous development of Internet, large bulk of
text data are transmitted and exchanged daily. The security
subjects of such transmitted information on the internet have
became more attracted, among these topics, nowadays the text
steganography is a hotspot in the research area of information
security [1, 2, 3, 4, 5]. Steganography is the process of hiding
data inside other cover data in such a way that no one apart from
the intended recipient knows its existence. It replaces unneeded
bits in image, sound, and text files with secret data [12].
Applications of steganography include covert communications;
watermarking and fingerprinting that seem to hold promise for
copyright protection and tracing source of illegal copies [7].

There are three main issues to be considered when studying
steganographic systems: capacity, security and robustness [3].
The capacity refers to the ability of a cover media to store secret
date, and it can be measured by the amount of secret data (bytes)
that can be hidden in a byte of a cover media. The security refers
to the ability of an eavesdropper to figure, or suspect the hidden
information easily. The robustness refers to the ability of
protecting the unseen data from corruption especially when
transmitted through the internet.

Text steganography is considered tricky [2] as it solely deals
with text, which has less redundant information and is clear in its
structure. These two features dramatically affect both the
capacity and security [1].

Many stego approaches have been proposed to hide secret
data in cover text. Most of them hide data by making minimal
modifications to the painting of the characters or spaces. In [3],
they proposed using the Kashida after a pointed letter to hide a
secret bit of ‘1’ and un-pointed letter to hide a secret bit of ‘0’.
This approach introduced a new idea in the text steganography
also for other languages using the Kashida as an extension
symbol similar to Arabic as text formatting character. However,
it has drawbacks in terms of capacity and security. The authors
in [4] named feature coding, open spaces, word shifting and line
shifting, as examples for these stego approaches. Although, such
methods offered high capacity and more security, they suffered
from low robustness, because their font is entirely computer
dependent. In [5], authors proposed a new approach using
multiple diacritics to hide data within Arabic text assuming
several scenarios.

In this paper, we address these limitations found in [3] and
introduce a modified approach using Kashida to hide information
in Arabic text. We, in Section 2, introduce the background
information about standard Arabic language and its related work.
In Section 3, our proposed approach is introduced in details. The
analysis and discussion are reported in Section 4 followed by the
conclusion in section 5.

II. BACKGROUND

Arabic language has some unique features different than
other languages including English. Arabic character has different
shape depending on its position within the word. In addition, it
has some pointed (doted) letters, with one, two, or three dots on
top or bottom of some characters. Also, Arabic characters have
some extra shape located top or bottom the shape of the character
called "Diacritics" representing the vowel sounds. Furthermore,
Arabic has an extra character called ‘Kashida’ used for text
formatting that extends some characters with no change in the
meaning. Strangely, with all these features, not much research

work is found available to utilize such capabilities for data
security purposes [11,1], which made our interest to this work.

 In [1], the doted letters is used to hide bits. They slightly
shifted the dots up more than normal to represent the hidden bit
‘1’ and kept the pointed character normal (without this extra shift
up) if they hide ‘0’. In this method, capacity can be very high as
each pointed characters can hide a bit of either ‘0’ or ‘1’. On the
other hand, robustness is weak. For example, retyping or
scanning the text looses the hidden information. Also, this
approach depends on using same fixed font, where using
different font produce unknown letters.

In [3], the authors modified the approach in [1] by proposing
to hide information in Arabic text utilizing the extension letter
‘Kashida’. They proposed using ‘Kashida’ before or after
pointed letters to hold the secret bit ‘1’ and Kashida before or
after un-pointed letters to hold ‘0’. This approach solved the
problem of the negative robustness form the previous work as it
is font independent. It utilized Kashida which doesn’t have any
affect in the Arabic text content. However, the number of hidden
bits reduced since their condition restricted the amount of
inserted hidden bits ‘1’ and ‘0’ by the pointed and un-pointed
letters respectively. Furthermore; security of such approach is
less since a word may have many inserted Kashidas representing
secret bits and reflecting existence of hidden information in the
text cover media.

Diacritics - or Harakat – are proposed to be used for Arabic
text steganography in [4]. The diacritics are used to represent the
hidden information. Here, the diacritic 'Fatha' is used to hide the
secret bit ‘1’ and the remaining diacritics represent bit ‘0’. This
approach achieved high capacity and can be implemented easily.
Another approach use diacritics in a multiple way [5]. They
proposed generating a number of extra (duplicated) diacritic
equal to the binary number representing the message as one block
which is found unobservable. Another similar idea is to divide
the message into small blocks ‘ones and zeros’ as a binary
number. Then, generate number of extra diacritics equal to this
binary number representing that block. Using diacritics may
achieve high capacity in general; however, nowadays sending
messages with diacritics raise suspicions, which reduce stego
security. Also, investigating the diacritics standardization found
that it is font dependent. Different Arabic fonts are having
different diacritic encodings affecting robustness negatively. This
review made our focus of this work to generate an Arabic stego
method concentrate on Kashida as described in the following.

III. PROPOSED APPROACH

The main idea of our proposed approach is that a word in a
cover text, that have some possible extendable characters, can
represent some values within the range [0, X-1] by inserting at
most a specific number of Kashidas. The number of such values
can be given by the following equation:

∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

k

m

m

n
X

0

, (1)

where n is the number of possible extendable letters, k is the
maximum number of Kashidas allowed to be used per word.
Equation (1) implies that a block of bits in secret data can be
hidden in such word. The block size can be given by the
following equation:

∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

k

m

m

n
sizeblock

0
2log_ , (2)

 For some values, the block size given in (2) will be
incremented by 1 according to the value of such block. For
example, consider a word with 3 possible extendable letters, and
an applied approach uses at most two Kashidas per word. In such
case, Equation (1) gives 7 possible represented values (0, 1...6).
Whereas, Equation (2) gives a block size of 2 bits which
represents 4 values (0, 1...3). Thus, the block size is adjusted to 3,
when the value of such block is 4, 5 or 6.

 Algorithm 1 and Algorithm 2 show the detailed proposed
algorithm for hiding and extracting secret bits, respectively. The
algorithms were implemented in C# .net environment.

Algorithm 1 Hiding secret bits

Input: message, cover text
Output: stego text
initialize k with maximum Kashidas used per word.

while data left to embed do
 get next word from cover text

 n the number of possible extendable letters.
 if n > 0 then

s calculate the block size based on n and k.
get the value of the next s-bit message block.
determine the positions that represent the value.

 insert Kashida into the word at positions.
 insert the word into stego text.
 end if

end while

Algorithm 2 Extracting secret bits

Input: stego text
Output: message
initialize k with maximum Kashidas used per word.

while word left to process do
 get next word from stego text

 n the number of possible extendable letters.
 if n > 0 then

s calculate the block size based on n and k.
determine the positions of existed Kashidas.
get the value represented by positions

 get the s-bits block representing the value.
 insert the s-bits block into message.
end if

end while

IV. IMPLEMENTATION & ANALYSIS

In this research, we evaluated three scenarios of our proposed
approach, i.e. using at most 1, 2, or 3 Kashidas per word, with
different cover text media sizes: 70627, 131233, 235125 and
525271 bytes. Files and information were hidden in the cover
text documents by the use of the described algorithm,
implemented in c# language. The implemented extractor program
outputs the extracted data to a binary file. By comparing the
output and input files, we observed that both files are identical.

We studied the three scenarios in terms of capacity and
security. The capacity can be evaluated by the capacity ratio and
useable characters ratio. The capacity ratio is computed by
dividing the amount of hidden bytes over the size of covet text
media in bytes as in [1]. To compute the usable characters ratio,
we count the number of usable characters per approach,
independent from the scenario or the secret message to be
embedded. We use p for the ratio of characters capable of baring
a secret bit of a given level, and q for the ratio of characters
capable of baring the opposite level. In the case of our approach,
an extendable character may hide a secret bit of ‘0’ or ‘1’. Thus,
such characters may contribute to p and q, i.e. p equals q.

V. COMPARISON & REMARKS

We compare the capacity of our approach to the dots
approach of [1], Kashida approach of [2, 3], and to the diacritics
approach of [4, 5].

Table 1 shows the capacity ratio of our proposed approach for

Table 1 Capacity ratio of our proposed approach

Approach Cover
Size

Capacity (%) Average
capacity (%)

70627 2.45

131233 2.465

235125 2.4526

One

Kashida

525271 2.4854

2.46325

70627 3.285

131233 3.2916

235125 3.2612

Two

Kashidas

525271 3.37537

3.303293

70627 3.73139

131233 3.71447

235125 3.7165

Three

Kashidas

525271 3.78624

3.73715

different scenarios, using one, two, and three Kashidas. The
results show that capacity ratio increases when the number of
Kashida per word increases. The scenario of using three Kashidas
outperforms all other scenarios in our approach. In addition, the
results show that our proposed approach using two or three
Kashidas outperform the other existing approaches in the
literature in terms of capacity, their reported results are shown in
Table 2.

Table 2 Reported Capacity Ratio in Literature

Approach Cover
Size

Capacity (%) Average
capacity (%)

13619.2 1.172

6983.68 1.467

6799.36 1.275
Dots [1]

3604.48 1.529

1.37

365181 1.215

378589 1.172

799577 1.266
Kashida [3]

15112 1.244

1.22

318,632 3.25

1,34,865 3.256

717,135 3.318
Diacritics [5]

318,216 3.254

3.27

Table 3 shows the usable characters ratio of our approach.

The results show that our proposed approach outperforms the
other approaches in terms of usable characters ratio. Our
proposed approach shows a ratio of about 3.9, where as, the
others show a ratio of about 3.6 as it is shown in Table 4.

Table 3 Usable Characters Ratio of Our Approach

File size (bytes) p q (p+q)/2
70627 39.18 39.18 0.3918

131233 39 39 0.39

235125 38.64 38.64 0.3864

525271 39.2355 39.2355 0.392355

Table 4 Reported Usable Characters Ratio in Literature

Approach p q r (p+r+q)/2

Dots 0.2764 0.4313 0.0300 0.3689

Kashida-Before 0.2757 0.4296 0.0298 0.3676

Diacritics 0.3633 0.3633 0 0.3633

Figure 1 shows an example to clarify such situation,
considering a word of 6 possible extension Kashidas and the
secret bits as “001010”. According to the existing Kashida
approach in [3], 6 extension Kashidas will be inserted in this
word. However, our proposed approach improves this issue by
restricting the inserted Kashidas to be at most specific number
per word. Using two Kashidas per word, shows adequate
capacity ratio and implies more security compared to others.

Secret bits 001010

A word in the cover text سنمتعهم

Output of proposed method سـنمتعـهم

Output of the method in [3] سـنـمـتـعـهـم

Figure 1 clarifying the improvement in the security

VI. CONCLUSION

The paper proposed a novel algorithm for text steganography
in Arabic language. The technique can also be applied to similar
language texts such as Urdu and Persian as some Semitic
languages. The main idea is to use the locations of possible
extendable characters within a given word in the cover text media
to hide secret data bits. The secret data is represented within a
word by inserting Kashidas after some extendable characters in
the word.

We implemented different scenarios of this approach. We
experimentally evaluated and compared the capacity of our work
with the existing Arabic text steganography approaches in
literature. It was shown that our proposed method is superior and
provides better capacity than all others. Also, our proposed
approach showed promise of more security compared to all the
existing Kashida approaches as it restricts the number of
Kashidas used per word adding more confusion. It is believed
that this research will open new directions for promising
techniques towards Arabic text steganography.

ACKNOWLEDGMENT
Authors would like to thank King Fahd University of Petroleum
& Minerals (KFUPM), Dhahran, Saudi Arabia, for supporting
this research work.

REFERENCES

 [1] M. Hassan Shirali-Shahreza, Mohammad Shirali-Shahreza, “A
New Approach to Persian/Arabic Text Steganography,” 5th
IEEE/ACIS International Conference on Computer and
Information Science, (ICIS-COMSAR 06), pp. 310- 315, July
2006.

 [2] Adnan Gutub, Lahouari Ghouti, Alaaeldin Amin, Talal
Alkharobi, and Mohammad K. Ibrahim, “Utilizing Extension
Character ‘Kashida’ With Pointed Letters For Arabic Text Digital
Watermarking”, International Conference on Security and
Cryptography - SECRYPT, Barcelona, Spain, July 28 - 31, 2007.

 [3] Adnan Gutub and Manal Fattani, “A Novel Arabic Text
Steganography Method Using Letter Points and Extensions”,
WASET International Conference on Computer, Information and
Systems Science and Engineering (ICCISSE), Vienna, Austria,
May 25-27, 2007.

 [4] Mohammed Aabed, Sameh Awaideh, Abdul-Rahman Elshafei,
and Adnan Gutub, “Arabic Diacritics Based Steganography”,
IEEE International Conference on Signal Processing and
Communications (ICSPC 2007), Pages: 756-759, Dubai, UAE,
24-27 November 2007

 [5] Adnan Gutub, Yousef Elarian, Sameh Awaideh, and Aleem Alvi,
"Arabic Text Steganography Using Multiple Diacritics", WoSPA
2008 – 5th IEEE International Workshop on Signal Processing
and its Applications, University of Sharjah, Sharjah, U.A.E. 18 –
20 MARCH 2008.

 [6] Al-Sulaiti, Latifa; Atwell, Eric., “The design of a corpus of
contemporary Arabic”, International Journal of Corpus
Linguistics, vol. 11, pp. 135-171. 2006.

 [7] J.C. Judge, "Steganography: Past, Present, Future", SANS white
paper, http://www.sans.org/rr/papers/ , November 30, 2001.

 [8] K. Bennett, “Linguistic Steganography: Survey, Analysis, and
Robustness Concerns for Hiding Information in Text”, Purdue
University, CERIAS Tech. Report 2004-13, 2004.

 [9] D. Vitaliev, “Digital Security and Privacy for Human Rights
Defenders,” The International Foundation for Human Right
Defenders, pp. 77-81, Feb. 2007.

 [10] P. Wayner., “Disappearing Cryptography: Information Hiding:
Steganography and Watermarking”, Morgan Kaufmann, 2nd
edition edition, 2002.

 [11] Mahmoud, S.A.; Mahmoud, A.S., "Arabic Character Recognition
using Modified Fourier Spectrum (MFS)," Geometric Modeling
and Imaging--New Trends, 2006 , vol., no., pp. 155-159, 05-06
July 2006.

 [12] Mohammad Tanvir Parvez and Adnan Gutub, “RGB Intensity
Based Variable-Bits Image Steganography”, APSCC 2008 –
Proceedings of 3rd IEEE Asia-Pacific Services Computing
Conference, Yilan, Taiwan, 9-12 December 2008.

