COE 200, Term 042
 Fundamentals of Computer Engineering

 HW\# 6

 HW\# 6}
Q.1. Show that the NAND and NOR operations are not associative.
Q.2. Given the function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(2,3,6,10,11)$ with a set of don't cares at $\sum(1,5,9$, $12,13,14,15$), obtain a simplified expression and two alternative 2-level implementations for the function in the following forms
(i) SOP
(ii) POS
(iii) AOI
(iv) OAI
Q.3. Algebraically, prove the following
(i) $\mathrm{X} \oplus 1=\mathrm{X}$,
(ii) $\mathrm{X} \oplus 0=\mathrm{X}$
(iii) $(\mathrm{X}+\mathrm{Y}) \odot(\mathrm{X}+\mathrm{Z})=\mathrm{X}+(\mathrm{Y} \odot \mathrm{Z})$
(iv) $\quad \mathrm{X} \odot \mathrm{Y} \odot(\mathrm{X}+\mathrm{Y})=\mathrm{X} \mathrm{Y}$

Q 4 For each of the following circuits, find the expression of the output function then put it in a SOP form.

a.

b.

c.

e.

g.

Q5) Convert the following to:
(a) NAND-only implementation
(b) NOR-only implementation

