COE 200, Term 042
 Fundamentals of Computer Engineering

HW\# 2

Q.1. Obtain the 1`s and 2's complement of the following binary numbers: 01100,00001 , 00000 Q.2. Find the 10 `s complement of $(935)_{11}$.
Q.3. Show how the decimal integers +120 and -120 would be represented in signed magnitude, 1 's complement, and 2 's complement notation using 8 bits and 10 bits, respectively.
Q.4. Specify the range of positive integers and negative integers (in decimal) for an \boldsymbol{n}-digit integer of base r :

i) Using (r-1)'s complements
 ii) Using r's complements

Q.5. Perform the following arithmetic operations using both r's and (r-1)'s complements and using the specified number of digits. Convert the result to sign-magnitude representation. Also, specify when an overflow condition has occurred:
(i) $\quad(821)_{10}+(785)_{10} \quad$ using 3-digits
(ii) $\quad(821)_{10}+(785)_{10} \quad$ using 4-digits
(iii) $\quad(-\mathrm{A} 2 \mathrm{~B})_{16}+(-56 \mathrm{C})_{16} \quad$ using 4-digits
(iv) $\quad(56 \mathrm{C})_{16}-(\mathrm{A} 2 \mathrm{~B})_{16} \quad$ using 4-digits
(v) $\quad(10010)_{2}-(11011)_{2} \quad$ using 8 -bits
(vi) $\quad(11101)_{2}+(10110)_{2} \quad$ using 6-bits
(vii) $\quad(11010)_{2}-(1101)_{2} \quad$ using 6-bits
(viii) $\quad(11010)_{2}-(10000)_{2} \quad$ using 6-bits
(ix) $\quad(10010)_{2}-(10011)_{2} \quad$ using 6-bits
Q.6. A microcontroller uses 8-bit registers. Give the following in both binary and decimal:
(i) The maximum unsigned integer number that can be stored.
(ii) The smallest (negative) number and the largest (positive) number that can be stored using the sign-magnitude notation.
(iii) The smallest (negative) number and the largest (positive) number that can be stored using the 2 's complement notation.
Q.7. Give the BCD representation of the number 569.

