COE 200, Term 042
 Fundamentals of Computer Engineering

HW\# 10

Memory Elements Design \& Operation

Q.1. Draw the logic diagram of a clocked D-Latch using NOR gates only.
Q.2. Show the design of the following flip-flops using SR latches and external gates:
(i) A negative-edge triggered D-FF.
(ii) A negative edge-triggered JK-FF.
(iii) A positive-edge triggered T-FF.
Q.3. A set-dominant flip-flop has set and reset inputs. It differs from a conventional SR flipflop in that, when both S and R are equal to 1 , the flip-flop is set.
(i) Obtain the characteristic table of the set-dominant flip-flop.
(ii) Derive the excitation table for the set-dominant flip-flop.
(iii) Design a positive-edge triggered set-dominant flip-flop using D-FF.
(iv) Design a positive-edge triggered set-dominant flip-flop using JK-FF.

Synchronous Sequential Circuit Design

Q.4. It is required to design a sequential circuit that receives a serial input X, and produces a serial output Z , equivalent to $3^{*} \mathrm{X}$, i.e., $\mathrm{Z}=3 * \mathrm{X}$. The state diagram for this circuit is shown below:

(i) Implement the sequential circuit using D-FFs and the smallest number of gates possible assuming the state assignment: $\mathrm{S} 0=00, \mathrm{~S} 1=01$, and $\mathrm{S} 2=10$.
(ii) Implement the sequential circuit using D-FFs and the smallest number of gates possible assuming the state assignment: $\mathrm{S} 0=11, \mathrm{~S} 1=01$, and $\mathrm{S} 2=10$.
(iii) Implement the sequential circuit using JK-FFs and the smallest number of gates possible assuming the state assignment: $\mathrm{S} 0=00, \mathrm{~S} 1=01$, and $\mathrm{S} 2=10$.
Q.5. You are to design a serial adder (Add3) that computes the sum of three separate serial input streams rather than the usual two. The adder has three primary inputs $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$, and a single primary output Z . Draw the state diagram, construct the state table, and use D flip-flops and show the detailed design of the Add3.
Q.6. A sequential circuit MON is to be designed to monitor the condition of a patient in a hospital bed. The input to MON is a binary number n that ranges in value from 1 to 7 and indicates the patient's condition. The expected value of n is sent to MON automatically every five seconds. If n goes below 2 or above 4 on two or more occasions, the machine should activate an alarm at a nurse's station. The nurse responds by administering medication to the patient and resetting the monitor. Using JK flip-flops and NOR gates only, carry out the logic design of MON. Obtain a state table, a state assignment, and a complete logic diagram.

Synchronous Sequential Circuit Analysis

Q.7. A sequential circuit uses 2 flip-flops. The first (A) is a D-FF while the second (B) is a JK-FF. The circuit has 2 inputs X and Y , and one output Z . The circuit is specified by the following input equations:
$\mathrm{D}_{\mathrm{A}}=\mathrm{X}^{\prime} \mathrm{Y}+\mathrm{XA} \quad \mathrm{J}_{\mathrm{B}}=\mathrm{X}^{\prime} \mathrm{B}+\mathrm{XA}^{\prime} \quad \mathrm{K}_{\mathrm{B}}=\mathrm{X}^{\prime} \mathrm{A}+\mathrm{X} \mathrm{B} \quad \mathrm{Z}=\mathrm{B}$
(i) Draw the logic diagram of the circuit.
(ii) Derive the state table.

Additional Design Problem

Q.8. Design a sequential circuit with two flip-flops A and B and two inputs E and X. If $\mathrm{E}=0$, the circuit remains in the same state, regardless of the value of X . When $\mathrm{E}=1$ and $\mathrm{X}=1$, the circuit goes through the state transitions from 00 to 01 to 10 to 11 , back to 00 , and then repeats. When $\mathrm{E}=1$ and $\mathrm{X}=0$, the circuit goes through the state transitions from 00 to 11 to 10 to 01 , back to 00 , and then repeats. Design the circuit using the following types of FFs:
(i) Positive-edge-triggered D-FF.
(ii) Positive-edge-triggered JK-FF.
(iii) Positive-edge-triggered T-FF.

