Q.1. Design a circuit that counts the number of $\mathbf{1 s}$ in an input stream (i.e. it has a single input \mathbf{X}). Every time the number of received 1 s reaches 4 the circuit produces a $\mathbf{1}$ at its output \mathbf{Y} and starts counting again. Otherwise the output \mathbf{Y} remains at 0 . The following streams of X and Y illustrates the operation of this circuit:

```
X: \(01001101110001101011001 \ldots\) Y: 000000010000001000000010 ...
```


Use positive edge-triggered FFs (one JK-FF and the rest are D-FF) and specify weather your circuit is a Mealy model or Moore?

Complete the timing diagram below assuming the circuit starts from an initial state where no $\mathbf{1}$ has been received before.

Q.2. Implement the following Flip-Flops using D-Flip Flops:
(1) Set-Dominant SR-FF (when $S=R=1, Q=1$)
(2) JK-FF
(3) T-FF
Q.3. A sequential circuit has two D flip-flops A and B , two inputs X and Y , and one output Z . The flip-flop input equations and output function are as follows:
$D_{A}=B X+A Y^{`}$
$\mathrm{D}_{\mathrm{B}}=\mathrm{A}^{\prime} \mathrm{X}+\mathrm{B}^{\prime} \mathrm{Y}$
$\mathbf{Z}=\mathbf{X A B}$
(i) Show the logic implementation of this circuit.
(ii) Obtain the state diagram for this circuit.
(iii) Is this is a Mealy machine or a Moore Machine? Explain why

