

- **Q.1.** Convert the following logic diagram to:
 - (a) NAND Only implementation
 - (b) NOR Only implementation

- **Q.2.** Implement the following functions, assuming the inputs are only available in true format and using the specified conditions:
 - (i) $F = \overline{(XY + Z)(Y' + XZ)}$ Using minimum number of logic levels and using NANDs only
 - (ii) Repeat (i) above using minimum number of NAND gates
 - (iii) $F = \overline{(XY + ZY')} X'Z'$ Using minimum number of logic levels and using NORs only
 - (iv) Repeat (iii) above using minimum number of NOR gates
- **Q.3.** A combinational circuit has <u>4 inputs</u> (X, Y, W and Z) and one output. The output is 1 if the majority of inputs are equal to 1 and it is 0 otherwise. Show the implementation of this circuit using:
 - (i) An 8-to-1 Multiplexer,
 - (ii) Minimum number of 3-to-8 decoders,
 - (iii) Minimum number of 2-input NAND gates.
- Q.4. It is required to design a circuit that has two 4-bit inputs $A=A_3A_2A_1A_0$ and $B=B_3B_2B_1B_0$ and one 5-bit output $C=C_4C_3C_2C_1C_0$. The circuit implements the following four functions based on the values of the two selection inputs, S1 and S0.

S1 S0	Function
0 0	C=A - B
0 1	C=A+B
1 0	C=-A
1 1	C=2A

Implement the circuit using any components you like (including MSI components).

