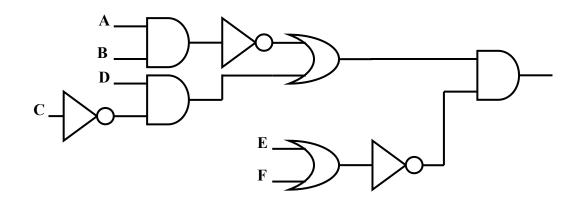
Q.1. Using Boolean Algebraic techniques, simplify the following Boolean expressions:


i)
$$\overline{X} + XYZ + X\overline{Y}Z + X\overline{Y}\overline{Z}$$

ii)
$$\overline{(A+\overline{B}+C)}(\overline{AB}+\overline{C}\overline{D})\overline{ACD}$$

- Q.2. Using Given the function F(A, B, C, D) = (A + B C)(D + A') + B' D'
 - (i) Determine the minterms of the function F and express it as an algebraic sum of minterms.
 - (ii) Determine the maxterms of the function F and express it as an algebraic product of maxterms.
- Q.3. Boolean Shown is the **K-Map** of some Boolean function **F(A, B, C, D)** along with the don't care conditions.
 - a. Obtain a <u>minimal</u> sum-of-products expression of the function and show the logic implementation using NAND gates.
 - b. Obtain a <u>minimal</u> product-of- sums expression of the function and show the logic implementation using NOR gates.
 - c. Are the 2 expressions obtained in (a) and (b) the same? Explain

CI AB	00	01	11	10
00	1	0	X	1
01	X	0	1	1
11	0	0	X	X
10	1	0	0	1

- **Q.4.** Consider the multiple-level circuit given below:
 - (i) Implement the circuit using minimum number of 2-input NAND gates and INVERTERs.
 - (ii) Implement the circuit using minimum number of 2-input NOR gates and INVERTERs.

