Q.1. What is the minimum number of bits required to represent both these signed numbers in binary: +37.5 and -11.625 ?
Q.2. Assume that a 13-bit register is used to store signed binary numbers with 5-bits for the fraction part of the number. What is the range of signed numbers that can be stored in this register if:
(i) Signed Magnitude representation is used
(ii) 1 's complement representation is used
(iii) 2's complement representation is used
Q.3. Fill the following table assuming that the above register is used. For the Hexadecimal representation, just convert the 2's complement representation to Hexadecimal:

Representation	+73.5635	-73.5635	+55.4365	-55.4365
Signed Magnitude				
1's Complement				
2's Complement				
Hexadecimal				

Q.4. Perform the following operation using the specified representation. Also indicate weather the result is positive, negative or overflow:
(i) $\quad(+73.5635)-(+55.4365) \quad$ Using 1's Complement
(ii) $(-55.4365)+(-73.5635) \quad$ Using 2 's Complement

