Number Systems Arithmetic

Objectives

$>$ In this lesson, we will study basic arithmetic operations in various number systems with a particular stress on the binary system.

Approach

$>$ Arithmetic in the Binary number system (addition, subtraction and multiplication).
$>$ Arithmetic in other number systems
Binary Addition

$$
\begin{aligned}
& \mathbf{0}+\mathbf{0}=\mathbf{0} \\
& 1+0=1 \\
& 0+1=1 \\
& 1+\mathbf{1 = 2} \longleftarrow \left\lvert\, \begin{array}{l}
2 \text { is not an allowed } \\
\text { digit in binary }
\end{array}\right. \\
& 1+1=(10)_{2} \\
& (3)_{10}+(7)_{10}=(\text { ten })_{10} \\
& (3)_{10}+(7)_{10}=(10)_{10}
\end{aligned}
$$

Example

Show the result of adding:

$$
(27)_{10}+(43)_{10}
$$

Carry	1		
$\mathbf{1}^{\text {st }}$ Number	2	7	
$2^{\text {nd }}$ Number	4	3	+
Result	7	0	

Position $i+1 \quad i$
weight $\quad \mathrm{r}^{(i+l)} \quad w=\mathrm{r}^{i}$
Digit $1 \quad \mathbf{D}_{l}$

Digit 2		$\mathbf{D}_{2}+$
Result	$\mathbf{D}_{\text {Carry }}$	$\mathbf{D}_{\text {Sum }}$

Position	1	$i=0$
weight	$w=10^{1}=10$	$w=10^{0}=1$

Digit 15

$>$ Likewise, in case of the binary system, if the weight of the sum bit is 2^{i}, then the weight of the carry bit is 2^{i+1}.
$>$ Thus, adding $1+1$ in the binary system results in a Sum bit of 0 and a carry bit of 1 .
$>$ The shown table summarizes the Sum and Carry results for binary addition

Binary Addition Table

	Carry	Sum
Weight	2^{1}	2^{0}
0 + 0	0	0
0+1	0	1
1+0	0	1
$1+1$	4	${ }_{4}$
	$1 \times 2{ }^{1}$	$\equiv 0 \times 2{ }^{0}$

Binary Subtraction

$$
\begin{aligned}
& 1-0=1 \\
& 1-1=0 \\
& 0-0=0 \\
& 0-1=?
\end{aligned}
$$

Position	1	0	
weight	10	1	
(1t Number	$\mathbf{7}$	$\mathbf{5}$	
$\mathbf{2}^{\text {nd }}$ Number		$\mathbf{8}$	-
Result	$\mathbf{?}$	$\mathbf{?}$	

Position	1	0		
weight	10	1		
$1^{\text {st }}$ Number	6	7	$\mathbf{5}$	15
$2^{\text {nd }}$ Number		$\mathbf{8}$	-	
Result	$\mathbf{6}$	$\mathbf{7}$		

$$
\mathbf{(5})_{10}-(\mathbf{8})_{10}=(7)_{10} \text { Borrow } 1
$$

For Binary subtraction

$$
0-1 \text { = } 1 \text { Borrow } 1
$$

$>$ In general, the result of subtracting two digits each of weight w is two digits. One is the "Difference" digit and the other is the "Borrow" digit.
$>$ The difference digit has the same weight w as the operand digits.
> The borrow digit is considered negative and has the weight of the next higher digit (wr).

	Borrow	Difference
Weight	-2^{1}	$+2^{0}$
0-0	0	0
1-1	0	0
1-0	0	1
0-1	1	1
	$\equiv 1 \times\left(-2^{1}\right)$	$\equiv+1 \times 2{ }^{0}$

Q. What is $\mathbf{1 - 1} \mathbf{- 1}=$?
A. The answer is $\mathbf{1}$ borrow 1.

Explanation: We perform the operation in 2 steps:

- $1-1=0$
- We then subtract $\mathbf{1}$ from the above result, i.e. $\mathbf{0}-\mathbf{1}$ which is $\mathbf{1}$ borrow 1.
Q. What is $\mathbf{0}-\mathbf{1 - 1}=$?
A. The answer is 0 borrow 1.

Explanation: We perform the operation in 2 steps:

- 0-1 = 1 borrow 1
- We then subtract $\mathbf{1}$ from the above result, which yields $\mathbf{0}$ borrow 1.

Binary Multiplication (example)

Arith. With Bases Other Than 10

Example: Base $5 \rightarrow$ Digit Set $=\{\mathbf{0}, \mathbf{1 , 2 , 3 , 4}\}$

$$
\begin{aligned}
(2)_{5}+(3)_{5} & =(5)_{10} \\
& =(?)_{5} \\
& =(10)_{5}
\end{aligned}
$$

Addition Table

+	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	0				
$\mathbf{1}$	1	2			$=5=0 \times 5^{0}+1 \times 5^{1}$
$\mathbf{2}$	2	3	4		
$\mathbf{3}$	3	4	10	11	$=6=1 \times 5^{0}+1 \times 5^{1}$
$\mathbf{4}$	4	10	11	12	13

Multiplication Table

$*$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	0				
$\mathbf{1}$	0	1			$=6=1 \times 5^{0}+1 \times 5^{1}$ $\mathbf{2}$ 0^{0}
$\mathbf{3}$	0	4			
$\mathbf{4}$	0	4	11	14	22

