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The Transport Layer

Responsible for delivering data

across networks with the desired Application
reliability or quality _Transport
Network
Link
Physical
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Transport Service

Services Provided to the Upper Layer »
Transport Service Primitives »
Berkeley Sockets »

Socket Example: Internet File Server »
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Services Provided to the Upper Layers (1)

Transport layer adds reliability to the network layer

« Offers connectionless (e.g., UDP) and connection-
oriented (e.g, TCP) service to applications

Host 1 Host 2
Applicatlon Application
18Y8r  rangport | Intsrface layar
Tﬂ address |, T I I
Transport ,.ﬂ. .| Transport
entity T Transport eniity
protece| l
Netweork = s
acddress Transportmetwork
Network layer Interface Networl layer
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Services Provided to the Upper Layers (2)

Transport layer sends segments in packets (in frames)

Frame Packet Segment
header header header
’f // ///
‘f

Segment payload

L

Packet payload

'

A

y

Frame payload
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Transport Service Primitives (1)

Primitives that applications might call to transport data
for a simple connection-oriented service:

« Client calls CONNECT, SEND, RECEIVE, DISCONNECT
« Server calls LISTEN, RECEIVE, SEND, DISCONNECT

Primitive Segment: sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA packet arrives
DISCONNECT | DISCONNECTION REQ. | This side wants to release the connection
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Transport Service Primitives (2)

State diagram for a simple connection-oriented service

Connection request

Connect primitive

r__T'_F:I.'_JJ’:i_r_eEfu_v_e_d _____ IDLE executed
1
1
| )
PASSIVE ACTIVE
ESTABLISHMENT ESTABLISHMENT
PENDING PENDING

Connect primitive

PASSIVE
DISCONNECT
PENDING

PLLEL L

------

primitive executed

executed

.......... = ESTABLISHED

Connection accepted
TPDU received

T

1

. . 1
Disconnection !
1

1

Disconnect
request TPDU primitive
received ) executed ACTIVE
e mmmm e DISCONNECT
PENDING
----------- IDLE J
Disconnect - Disconnection request

TPDU received

Solid lines (right) show
client state sequence

Dashed lines (left) show
server state sequence

Transitions in italics are
due to segment arrivals.
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Berkeley Sockets

Very widely used primitives started with TCP on UNIX
* Notion of “sockets” as transport endpoints
* Like simple set plus SOCKET, BIND, and ACCEPT

Primitive Meaning
SOCKET Create a new communication end point
BIND Associate a local address with a socket
LISTEN Announce willingness to accept connections; give queue size
ACCEPT Passively establish an incoming connection

CONNECT | Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection
CLOSE Release the connection
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Socket Example — Internet File Server (1)

Client code

h = gethostbyname(argv[1]); address
if (') fatal("gethostbyname failed");

s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

if (s <0) fatal("socket");

memset(&channel, 0, sizeof(channel));

channel.sin_family= AF_INET;
memcpy(&channel.sin_addr.s_addr, h->h_addr, h->h_length);
channel.sin_port= htons(SERVER_PORT);

if (argc 1= 3) fatal("Usage: client server-name file-name"); } Get server’s |P
} Make a socket

¢ = connect(s, (struct sockaddr *) &channel, sizeof(channel)); Try to connect
if (c < 0) fatal("connect failed");
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Socket Example — Internet File Server (2)

Client code (cont.)

write(s, argv|[2], strlen(argv[2])+1); Wfit:)data (equivalent to
sen
while (1) { - | |
bytes = read(s, buf, BUF_SIZE); Loop reading (equivalent to
if (bytes <= 0) ,exit(’O)' B " receive) until no more dataj;
: 7 it implicitly calls close
write(1, buf, bytes); 4 =
}
}
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Socket Example — Internet File Server (3)

Server code

memset(&channel, 0, sizeof(channel));
channel.sin_family = AF_INET;
channel.sin_addr.s_addr = htonl(INADDR_ANY);
channel.sin_port = htons(SERVER_PORT);

s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); } Make a socket
if (s < 0) fatal("socket failed");
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *) &on, sizeof(on));

b = bind(s, (struct sockaddr *) &channel, sizeof(channel)); Assian add
f (b < 0) fatal("bind failed") J Assion adress

| = listen(s, QUEUE_SIZE); !Drepa_re for
if (I < 0) fatal("listen failed"); } Incoming
connections
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Socket Example — Internet File Server (4)

Server code

while (1) {
sa = accepf(s, 0, 0);
if (sa < Q) fatal("accept failed");

read(sa, buf, BUF_SIZE): |+ Read (receive) request
and treat as file name

Block waiting for the
} next connection

/[* Get and return the file. */
fd = open(buf, O_RDONLY);
if (fd < 0) fatal("open failed");

while (1) {
bytes = read(fd, buf, BUF_SIZE);
if (bytes <= Q) break;

write(sa, buf, bytes); } Write (send) all file data
}
close(fd);
close(sa); }- Done, so close this connection
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Elements of Transport Protocols

* Addressing »

* Connection establishment »

e Connection release »

* Error control and flow control »
* Multiplexing »

* Crash recovery »
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Addressing

* Transport layer adds
TSAPs

» Multiple clients and
servers can run on a
host with a single
network (IP) address

* TSAPs are ports for
TCP/UDP
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Connection Establishment (1)

Key problem is to ensure reliability even though packets
may be lost, corrupted, delayed, and duplicated

 Don't treat an old or duplicate packet as new
 (Use ARQ and checksums for loss/corruption)

Approach:

 Don’t reuse sequence numbers within twice the MSL
(Maximum Segment Lifetime) of 2T=240 secs

« Three-way handshake for establishing connection
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Sequence numbers

Connection Establishment (2)

Use a sequence number space large enough that it will
not wrap, even when sending at full rate

« Clock (high bits) advances & keeps state over crash

2K_1
T
f———|
120 E
L
£
—
=
80 Q
gg — Restart after E
crash with 70 4
)
I | | | |

0

0 30 60 90 120 150 180
Time

Need seq. number not to
wrap within T seconds

| T

Actual sequence

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
numbers used I

Time
Need seq. number not to
climb too slowly for too long
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Connection Establishment (3)

Three-way handshake used Host 1 Host 2
for initial packet

e Since no state from
previous connection

 Both hosts contribute
fresh seq. numbers

« CR = Connect Request

-— Time
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Connection Establishment (4)

Three-way handshake
protects against odd cases:

a) Duplicate CR. Spurious
ACK does not connect

b) Duplicate CR and DATA.

Same plus DATA will be
rejected (wrong ACK).

Host 1

Old duplicate
CR

:

(Seq = x)

oK |
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Connection Release (1)

Key problem is to ensure Host 1 Host 2

reliability while releasing c\ﬂh

Asymmetric release (when ACK
one side breaks connection)

is abrupt and may lose data ¢ W
=

DATA
DR ;i“=—=-x

No data are
delivered after
a disconnect
request
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Connection Release (2)

Symmetric release (both sides agree to release) can't
be handled solely by the transport layer

« Two-army problem shows pitfall of agreement

Blue
B army
#1
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Connection Release (3)

Normal release sequence,
initiated by transport user on
Host 1

 DR=Disconnect Request

 Both DRs are ACKed by
the other side

Host 1

Send DR
+ start timer

Release
connection

Send ACK | ——_

—_— ______DR

— —
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Host 2

Send DR

_—| + start timer

Release
connection




Connection Release (4)

Error cases are handled with timer and retransmission

Host 1

Send DR |—

+ start timer

Release
connection

Send ACK

DR
DR_—
"ﬁCK NV

Jios

Host 2

Send DR

| + start timer

(Timeout)
release
connection

Host 1

Final ACK lost,
Host 2 times out

Send DR —

+ start timer

( Timeout)

send DR |

+ start timer

Release
connection

Send ACK |

Host 2
_Dr
'E"* Send DR &
WL _j.f" start timer
= LostZ =
ZANY
DR
T, | Send DR &
DEf - start timer
_--fr---
AC
=—=K Release
connection

Host 1

Lost DR causes
retransmissions

Send DR |

+ start timer
|

[ B N R K J

( Timeout)
send DR
+ start timer

(N Timeouts)
release
connection

Host 2

Send DR &
start timer

]
(Timeout)

release
connection

Extreme: Many lost
DRs cause both
hosts to timeout
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Error Control and Flow Control (1)

Foundation for error control is a sliding window (from
Link layer) with checksums and retransmissions

Flow control manages buffering at sender/receiver

* |ssue is that data goes to/from the network and
applications at different times

« Window tells sender available buffering at receiver
 Makes a variable-size sliding window
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Error Control and Flow Control (2)

Different buffer strategies trade efficiency / complexity

a) Chained fixed-

size buffers .
- b) Chained variable- \
size buffers Unused
space

\

A

}TF’DU 1

=

~ TPDU 2

}-TPDUS

> TPDU 4

c) One large circular buffer
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Error Control and Flow Control (3)

Flow control example: A’s data is limited by B's buffer

A

Message

< request 8 buffers>
<ack =15, buf = 4>

<seq =0,
<seq =1,
<seq = 2,
<ack =1,
<seq = 3,
<seq = 4,
<seq = 2,
<ack = 4,
<ack = 4,
<ack = 4,
<seq = 5,
<seq = 6,
<ack = 6,
<ack = 6,

data = m0>
data =m1i>
data = m2>
buf = 3>
data = m3>
data = m4>
data = m2>
buf = 0>
buf= 1>
buf = 2>
data = m3>
data = mé>
buf = 0>
buf = 4>

B

B’s Buffer

| 718[9]10]

Comments

A wants & buffers

B grants messages 0-3 only

A has 3 buffers left now

A has 2 buffers left now

Message lost but A thinks it has 1 left
B acknowledges 0 and 1, permits 2-4
A has 1 buffer left

A has 0 buffers left, and must stop

A times out and retransmits
Everything acknowledged, but A still blocked
A may now send 5

B found a new buffer somewhere

A has 1 buffer left

A is now blocked again

A is still blocked

Potential deadlock
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Multiplexing

Kinds of transport / network sharing that can occur:
* Multiplexing: connections share a network address
* Inverse multiplexing: addresses share a connection

Transport address

Layer /\ '/ .
etwor
4 é : i > ~ address
1
-
A\ 1 ¢
. | ! 3 '
T
- Router lines
1
To router !

Multiplexing Inverse Multiplexing
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Crash Recovery

Application needs to help recovering from a crash
« Transport can fail since A(ck) / W(rite) not atomic

Strategy used by recelving host

Flrst ACK., then write

Flrst wrlte, then ACK

Strategy used by

sending host AC(W) AWC C(AW) CWA)  WAC WC(A)
mlways refransmit QK DUP QK QK PUPR DUR
Never retransmit LOST CK LOST LOST QK oK
Retransmit In 0 QK RPUP LOST LOST PUP QK
Retransmlt In 31 LOST QK QK QK QK DUR

OK = Protocol funetions correctly
DUF = Protocol generates a duplicate message
LOST = Protocol loses @ message
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Congestion Control

Two layers are responsible for congestion control:
— Transport layer, controls the offered load [here]
— Network layer, experiences congestion [previous]

 Desirable bandwidth allocation »
* Regulating the sending rate »
e Wireless issues »
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Goodput (packets/sec)

Desirable Bandwidth Allocation (1)

Efficient use of bandwidth gives high goodput, low delay

A A
Capacit
e 2 D Onset of
\ Desired E congestion
esire 9
response 3 \
!\Cc}ngestion B
collapse S
e .
Offered load (packets/sec) Offered load (packets/sec)
Goodput rises more slowly than Delay begins to rise sharply

load when congestion sets in when congestion sets in
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Desirable Bandwidth Allocation (2)

Fair use gives bandwidth to all flows (no starvation)
« Max-min fairness gives equal shares of bottleneck

P P— 2/3 2/3
ER 1 1/3
B 1/3
- 1/3
C:\(— N § =2 1/3
5 R4 1/3 “ﬁ; 1/3

Bottleneck link
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B andwidih allocation

Desirable Bandwidth Allocation (3)

We want bandwidth levels to converge quickly when
traffic patterns change

1

0.5

A Flow 1 slows quickly Flow 1 speeds up
« when Flow 2 starts quickly when Flow 2
stops \
Flow 1
=
Flow 2 stops
Ty I/ P
' Flow 2 starts '
¢ Flow 3 starts f
e
—— S -
4 9

Time (secs)
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Regulating the Sending Rate (1)

\ Transmission
rate adjustment

Sender may need to slow
down for different reasons:

 Flow control, when the
receiver is not fast
enough [right]

« Congestion, when the
network is not fast
enough [over]

Transmission
network

/

Small-capacity

receiver ﬁ

A fast network feeding a low-capacity receiver
—> flow control is needed
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Regulating the Sending Rate (2)

SS

Our focus is dealing with
this problem — congestion

Internal
congestion

Large-capacity
receiver

A slow network feeding a high-capacity receiver
—> congestion control is needed
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Regulating the Sending Rate (3)

Different congestion signals the network may use to tell
the transport endpoint to slow down (or speed up)

Protocol Signal Explicit? | Precise?
XCP Rate to use Yes Yes
TCP with ECN | Congestion warning Yes No
FAST TCP End-to-end delay No Yes
CuBIC TCP Packet loss No No
TCP Packet loss No No
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Regulating the Sending Rate (3)

If two flows increase/decrease their bandwidth in the
same way when the network signals free/busy they will
not converge to a fair allocation

A + /- constant
Additive increase
100% |~ and decrease ;
N // '1\

~
“{ .7 Fairness line
Y ///
N 7 Optimal point
-

+/— percentage
Multiplicative increase
e A
s ’:/_. and decrease

7 N '/— Efficiency line
hY
' N

LN -

0 100%
User 1’s bandwidth

User 2's bandwidth
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Regulating the Sending Rate (4)

The AIMD (Additive Increase Multiplicative Decrease)
control law does converge to a fair and efficient point!

e TCP uses AIMD for this reason

A
_C Start
§ ,-*’f \ | |
= Fairness line
-O -“ ’.f
c b4 -
©
0
n(,) ,
Q) - """\ . .
% ’ Optimal point
Efficiency line
'*:r*:l"' 5\‘\‘
5:#.-' .,‘h\ ‘—J

4 x .
User 1’s bandwidth
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Wireless Issues

Wireless links lose packets due to transmission errors
« Do not want to confuse this loss with congestion
* Or connection will run slowly over wireless links!

Strategy:
 Wireless links use ARQ, which masks errors

Transport with end-to-end congestion control (loss = congestion)

|

Y

'/Wired link [ I (Wireless link

LOC I

Receiver

-._I
|

Link layer retransmission
(loss = transmission error)
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Internet Protocols — UDP

 |ntroduction to UDP »
e Remote Procedure Call »
 Real-Time Transport »
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Introduction to UDP (1)

UDP (User Datagram Protocol) is a shim over IP
 Header has ports (TSAPs), length and checksum.

A

Source port Destination port

UDP length UDP checksum
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Introduction to UDP (2)

Checksum covers UDP segment and IP pseudoheader
* Fields that change in the network are zeroed out
 Provides an end-to-end delivery check

Source address

Destination address

00000O0O0O Protocol = 17 UDP length
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RPC (Remote Procedure Call)

RPC connects applications over the network with the
familiar abstraction of procedure calls

« Stubs package parameters/results into a message
 UDP with retransmissions is a low-latency transport

Client CPU Server CPU
] Client Server,
TN stub stub TN
Client 1 |Server
2 <
Operating system Y + Operating system

| a )

Network
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User
space

0Ss
Kernel

Real-Time Transport (1)

RTP (Real-time Transport Protocol) provides support for
sending real-time media over UDP

Often implemented as part of the application

Multimedia application

Ethernet

header

IP UDP RTP
header header header

Socket interface

UDP

¥
m RTP payload

IP

Ethernet

-—— UDP payload ——

[

IP payload -

A

Ethernet payload >
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Real-Time Transport (2)

RTP header contains fields to describe the type of
media and synchronize it across multiple streams

« RTCP sister protocol helps with management tasks

- 32 bits -

Ver. |P X CC M Payload type Sequence number

Timestamp

Synchronization source identifier
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Real-Time Transport (3)

Buffer at receiver is used to delay packets and absorb
jitter so that streaming media is played out smoothly

- Packet 8’s network delay is
Packet depats souce |1| |21 [3][4[5]/6]|7 too large for buffer to help

Constant rate / X
21
Packet arrives at buffer 1 2 3|14

:

Variable rate N R A B B |

Packet removed from buffer - Time in buffer = 4 E
Constant rate ||

- Gap in phyback
| | | | | | | | | | | | | | | |

0 5 10 15 20
Time (sec)

[0 ] [
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Real-Time Transport (3)

High jitter, or more variation in delay, requires a larger
playout buffer to avoid playout misses

* Propagation delay does not affect buffer size

%) @
© 0]
$ o
: &
B Buffer 5
S S
O 3]
4] 4]
= ngh |Itter i n
I o
b ~ I
Minimum Delay —» Delay
delay
(duse to
gpeed of

light)
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Internet Protocols — TCP

The TCP service model »

The TCP segment header »

TCP connection establishment »
TCP connection state modeling »
TCP sliding window »

TCP timer management »

TCP congestion control »
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The TCP Service Model (1)

TCP provides applications with a reliable byte stream
between processes; it is the workhorse of the Internet

« Popular servers run on well-known ports

Port | Protocol Use
20, 21 FTP File transfer
22 | SSH Remote login, replacement for Telnet

25 | SMTP Email
80 | HTTP World Wide Web
110 | POP-3 Remote email access
143 | IMAP Remote email access
443 | HTTPS Secure Web (HTTP over SSL/TLS)
943 | RTSP Media player control
631 IPP Printer sharing
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The TCP Service Model (2)

Applications using TCP see only the byte stream [right]
and not the segments [left] sent as separate IP packets

IP header \ / TCP header

7 7 7
A B C D A B C D
g /] 4 ¢
Four segments, each with 512 bytes 2048 bytes of data
of data and carried in an IP packet delivered to application

in a single READ call
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The TCP Segment Header

TCP header includes addressing (ports), sliding window
(seq. / ack. number), flow control (window), error control
(checksum) and more.

- 32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP CIElU|A|P|R|S|F
header WICIR|C| S| S|Y]|I Window size
length RIE|IG|K|H| T|N|[N

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

L

R
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TCP Connection Establishment

TCP sets up connections with the three-way handshake
 Release is symmetric, also as described before

Host 1 Host 2 Host 1 Host 2
TMM mrw; X
SN lw
-—
- 1) —x ¥ 1)
;g gy, AKX ACK 22—

Normal case Simultaneous connect
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TCP Connection State Modeling (1)

The TCP connection finite state machine has more
states than our simple example from earlier.

State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED | The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to release
TIME WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011



TCP Connection State Modeling (2)

(Start)
CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED
1 CLOSE-
- : LISTEN- | | CLOSE~
Solid line is the normal SYNISYN + ACK
i (Step 2 /of the 3-way handshake) | LISTEN
path for a client. :
o e RSTK S SENDISYN
Dashed line is the normal RCVD | SYNISYN + ACK (Smultaneous open) L_ScNT
path for a server. 5
' (Data transfer state)
. ACKI- N SYN + ACKIACK _/
Light lines are unusual o] T EST""‘BL:SHED ™ (Step 3 of the 3-way handshake)
events. CLOSE/FIN J "11 FINIACK
- B 4 (Active close) Eﬁ;;;i;‘é‘*:dﬂﬁ-e:l .
Transitions are labeled , NACK ‘: ] ; 1
by the cause and action, wat1 "| cLosine s
separated by a slash. ACKL ACKL | CLoSERIN
, ) ;
FIN NN - ACKACK TIME LAST
WAIT 2 Aok L WAIT ACK
- - (Timeout) ' ' -
CLOSED |w--ccnnn- S L/

(Go back to start)
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TCP Sliding Window (1)

TCP adds flow control

to the sliding window
as before

« ACK + WIN is the
sender’s limit

Sender

Application
doesa 2K — =
write

Application
doesa 2K —=
write [

Sender s J
blocked

Sender may
send up to 2K —=
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Receiver Receivers
buffer
] 4K
— Empty
S
S oy N
o Y 2K
L TACK=2048 WIN=2048}——
I EE T
- e Full
N 3—:_:*' - Applicaton
T '@E&Ii_ﬁg?—%}“"' P reads 2K
— e
WIN = ==
_[pok=AR
T K
_______""'IT‘E__I:"-—-__
Lt SEQ T
—209% ] 1K |2k



TCP Sliding Window (2)

Need to add special cases to avoid unwanted behavior
 E.qg., silly window syndrome [below]

4 N

Receiver's buffer is full

Application reads 1 byte

Room for one more byte |

Window update segment sent
. = New byte arrives
1 Byte

Receiver's buffer is full

N y

Receiver application reads single bytes, so
sender always sends one byte segments
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TCP Timer Management

TCP estimates retransmit timer from segment RTTs
« Tracks both average and variance (for Internet case)
 Timeout is set to average plus 4 x variance

03— T 03 T T
i I I
N | |
1 | |
: | |
02 | 02| | |
= I = | [
e : 3 : :
8 i 8 I I
2 : £ | :
o I o I I
0.1+ | 01 | I
: | |
I | |
| | i
J U /\ |
0 | LN | | 0 | L1 L
0 10 20 30 40 50 0 10 20 30 40 50
Round-trip time (microseconds) Round-trip time (milliseconds)
LAN case — small, Internet case —
regular RTT large, varied RTT
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TCP Congestion Control (1)

TCP uses AIMD with loss signal to control congestion

 Implemented as a congestion window (cwnd) for the
number of segments that may be in the network

» Uses several mechanisms that work together

Name Mechanism Purpose
ACK clock | Congestion window (cwnd) | Smooth out packet bursts
Slow-start | Double cwnd each RTT Rapidly increase send rate to
reach roughly the right level
Additive Increase cwnd by 1 packet | Slowly increase send rate to
Increase each RTT probe at about the right level
Fast Resend lost packet after 3 Recover from a lost packet
retransmit | duplicate ACKs; send new without stopping ACK clock

/ recovery

packet for each new ACK
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TCP Congestion Control (2)

Congestion window controls the sending rate
Rate is cwnd / RTT; window can stop sender quickly

ACK clock (regular receipt of ACKs) paces traffic
and smoothes out sender bursts

1: Burst of packets 2: Burst_queues at router
sent on fast link Fast link B and drains onto slow link Slow link
e | S (bottleneck)

| e B SR ey
Sender

qo Qe Jg g RO
\ . Receiver
4: Acks preserve sllh 3: Receive acks packets
Ack clock at slow link rate

link timing at sender

ACKs pace new segments into
the network and smooth bursts
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TCP Congestion Control (3)

Slow start grows congestion window exponentially
 Doubles every RTT while keeping ACK clock going

TCP Sender TCP Receiver
cwnd=1 Data
Acknowledgment 7
cwnd=2 — 1 RTT, 1 packet

I\

Increment cwnd for

each new ACK - 1 RTT, 2 packets

cwnd=3
cwnd=4

I\

— 1 RTT, 4 packets

cwnd=5
cwnd=6
cwnd=7
cwnd=8

—

x— 1 RTT, 4 packets
(pipe is full)
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TCP Congestion Control (4)

o _ TCP Sender TCP Recsiver
Additive increase grows

cwnd slowly ACK ——
« Adds 1every RTT ewnd=2
« Keeps ACK clock

f""-__ Data

=,

-1 RTT, 1 packet

. A

=1 RTT, 2 packets

JL

- 1 BTT, 3 packels

o ~ 1 RTT, 4 packets

=~

o ;_ 1 RTT, 4 packets
3 (pipeis full)

-
bl ™
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Congestion window (KB or packets)

TCP Congestion Control (5)

Slow start followed by additive increase (TCP Tahoe)

40

35

30

25

20

15

10

Threshold is half of previous loss cwnd

» Additive
increase

-
####
-

Packet
loss

Threshold 20 KB

Loss causes timeout;
ACK clock has stopped

so slow-start again\

2 4 6 8 10 12 14 16 18 20 22 24

Transmission round (RTTs)
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TCP Congestion Control (6)

With fast recovery, we get the classic sawtooth (TCP Reno)
* Retransmit lost packet after 3 duplicate ACKs
 New packet for each dup. ACK until loss is repaired

4 Slow

401 4 start Additive
@ ! -— _.-=7 increase
£ 351 Packet
% 30 Thresh.—4= loss —
g Fast Multiplicative
< el recovery decrease
g
£ 2r Threshold:--------s=-
§ 15 \ Threshcrld}--,- -----------
@
e 10 The ACK clock doesn't stop,
O

SO no need to slow-start

0 4 8 12 16 20 24 28 32 36 40 44 48
Transmission round (RTTs)
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TCP Congestion Control (7)

SACK (Selective ACKs) extend ACKs with a vector to
describe received segments and hence losses

* Allows for more accurate retransmissions / recovery

( Retransmit 2 and 5!] fLOSt packets\‘
g 6> 5 D [ 2 [D

Sender | ] 4 (] {

ACK: 1 ACK: 1 ACK: 1 ACK: 1
SACK:3 SACK:3-4 SACK: 6, 3-4

No way for us to know that 2 and
5 were lost with only ACKs
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Performance Issues

Many strategies for getting good performance have
been learned over time

« Performance problems »

* Measuring network performance »
* Host design for fast networks »

« Fast segment processing »
 Header compression »

* Protocols for “long fat” networks »
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Performance Problems

Unexpected loads often interact with protocols to cause
performance problems

* Need to find the situations and improve the protocols

Examples:
« Broadcast storm: one broadcast triggers another

e Synchronization: a building of computers all contact
the DHCP server together after a power failure

« Tiny packets: some situations can cause TCP to
send many small packets instead of few large ones
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Measuring Network Performance

Measurement is the key to understanding performance
— but has its own pitfalls.

Example pitfalls:

« Caching: fetching Web pages will give surprisingly
fast results if they are unexpectedly cached

« Timing: clocks may over/underestimate fast events

* Interference: there may be competing workloads
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Host Design for Fast Networks

Poor host software can greatly slow down networks.

Rules of thumb for fast host software:

Host speed more important than network speed
Reduce packet count to reduce overhead

Minimize data touching

Minimize context switches

Avoiding congestion is better than recovering from it
Avoid timeouts
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Fast Segment Processing (1)

Speed up the common case with a fast path [pink]

« Handles packets with expected header; OK for
others to run slowly

Sending Receiving process H@
@P process Segment passed to the receiving process "

""-ﬁ Trap into the kernel to send segment h

. o>

@ | :,3 @ —— »tj
—

f,,| - }— X
]
\

Network
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Fast Segment Processing (2)

Header fields are often the same from one packet to the
next for a flow; copy/check them to speed up processing

Source port Destination port VER. | IHL TOS Total length
Sequence number Identification Fragment offset
Acknowledgement number TTL Protocol Header checksum
Len |Unused Window size Source address
Checksum Urgent pointer Destination address
TCP header fields that stay the IP header fields that are often the

same for a one-way flow (shaded) same for a one-way flow (shaded)
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Header Compression

Overhead can be very large for small packets
« 40 bytes of header for RTP/UDP/IP VolP packet
* Problematic for slow links, especially wireless

Header compression mitigates this problem
* Runs between Link and Network layer

« Omits fields that don’t change or change predictably
— 40 byte TCP/IP header - 3 bytes of information

« Gives simple high-layer headers and efficient links
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Protocols for “Long Fat” Networks (1)

Networks with high bandwidth ("Fat”) and high delay
(“Long”) can store much information inside the network

« Requires protocols with ample buffering and few
RTTs, rather than reducing the bits on the wire

T Tz AR I A N 3 Tz Ja
| | {7 g
| T | (Retel | TRl
l:L\ ) IIII_,:II_,_,.?\ f’\ ﬁ]l % P Y ) % oagements. ,_,,ff:;,,xf;?%
DE}_%—_F"H_::::-:’ — T \ oot
NI / \ p—— 5 \\Tff P
h_;\,r Pt _\1 H\-H' \\f N \,\/ T \,{ _q"f-\ﬂ']
Starting to send 1 Mbit 20ms after start 40ms after start

San Diego - Boston
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Protocols for “Long Fat” Networks (2)

You can buy more bandwidth but not lower delay
« Need to shift ends (e.g., into cloud) to lower further

1000 sec —
100 sec —
10 sec —
1sec|—

100 msec —

File transfer time

& & *—

A
10 msec —

Propagation delay

1 msec —

\
I I I I I I I I I

102 104 10° 108 107 108 10? 1010 101" 1012
Data rate (bps)

Minimum time to send and ACK a 1-Mbit file over a 4000-km line
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Delay Tolerant Networking

DTNs (Delay Tolerant Networks) store messages
iInside the network until they can be delivered

« DTN Architecture »
 Bundle Protocol »
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DTN Architecture (1)

Messages called bundles are stored at DTN nodes
while waiting for an intermittent link to become a contact

* Bundles might wait hours, not milliseconds in routers
 May be no working end-to-end path at any time

5-15-* —————————————— <
N *
"'L \\
Sent ' Contact \‘ N Intermittent link
bundle \' v (working link N\ (not working)
\.\ A
\ AN
DTN \ \
node /"Stﬂ rage \ Stored N
\, P bundle ‘. _
= J e T i D —— =
Source Destination
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DTN Architecture (2)

Example DTN connecting a satellite to a collection point

‘ Satellite
< _;;- =2 "

Intermittent link

+— Contact o (not working)
Bundle worklng link) - L
Y Storage at -
<> ¢ DTN nodes
"l-"'

/f(:r.ound
station g

Collection point
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Bundle Protocol (1)

The Bundle protocol uses TCP or other transports and
provides a DTN service to applications

Convergence layer

TCP/IP
Internet

Application

Convergence layer

Other
internet

. Upper
layers

DTN
.
layer

Lower
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Bits

Bundle Protocol (2)

Features of the bundle message format:
— Dest./source add high-level addresses (not port/IP)
— Custody transfer shifts delivery responsibility
— Dictionary provides compression for efficiency

-~
87 20

Primary block

Payload block

_——

variable

"ﬁ:'!._‘_‘

T
_—-

Ty,
T

Ver.

Flags| Dest. | Source | Report

Custodian

Creation | Lifetime

Dictionary|

7 7

Status | Class of
report service

General

—_——— e ——— — — a1

variable _ _

Length

Data
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End

Chapter 6
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