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Design Issues

• Store-and-forward packet switching »
• Connectionless service – datagrams »
• Connection-oriented service – virtual circuits »
• Comparison of virtual-circuits and datagrams »
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Store-and-Forward Packet Switching

Hosts send packets into the network; packets are p ; p
forwarded by routers

ISP’s equipment
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Connectionless Service – Datagrams
Packet is forwarded using destination address inside it
• Different packets may take different pathsp y p

ISP’s equipment

A’s table (initially)   A’s table (later)  C’s Table   E’s Table( y) ( )
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Dest. Line



Connection-Oriented – Virtual Circuits
Packet is forwarded along a virtual circuit using tag inside it
• Virtual circuit (VC) is set up ahead of time( ) p

ISP’s equipment

A’s table                             C’s Table                          E’s Table
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In: Line  Tag Line  Tag: Out



Comparison of Virtual-Circuits & Datagrams
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Routing Algorithms (1)

• Optimality principle »
Sh t t th l ith• Shortest path algorithm »

• Flooding »
• Distance vector routing »sta ce ecto out g
• Link state routing »
• Hierarchical routing »
• Broadcast routing »
• Multicast routing »
• Anycast routing »Anycast routing »
• Routing for mobile hosts »
• Routing in ad hoc networks »

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011



Routing Algorithms (2)
Routing is the process of discovering network paths
• Model the network as a graph of nodes and linksg p
• Decide what to optimize (e.g., fairness vs efficiency)
• Update routes for changes in topology (e.g., failures)

Forwarding is the sending of packets along a path
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The Optimality Principle

Each portion of a best path is also a best path; the 
union of them to a router is a tree called the sink treeunion of them to a router is a tree called the sink tree
• Best means fewest hops in the example

B

Si k t f b t th t t B
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Network Sink tree of best paths to router B



Shortest Path Algorithm (1)

Dijkstra’s algorithm computes a sink tree on the graph:
• Each link is assigned a non negative weight/distance• Each link is assigned a non-negative weight/distance
• Shortest path is the one with lowest total weight
• Using weights of 1 gives paths with fewest hopsUsing weights of 1 gives paths with fewest hops

Algorithm:Algorithm:
• Start with sink, set distance at other nodes to infinity
• Relax distance to other nodes
• Pick the lowest distance node, add it to sink tree
• Repeat until all nodes are in the sink tree
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Shortest Path Algorithm (2)

A network and first five steps in computing the shortest
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A network and first five steps in computing the shortest 
paths from A to D. Pink arrows show the sink tree so far.



Shortest Path Algorithm (3)
. . .

Start with the sink, 
all other nodes are 
unreachable

Relaxation step. p
Lower distance to 
nodes linked to 
newest member of 
the sink tree

. . .
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Shortest Path Algorithm (4)

. . .

Find the lowest 
distance, add it to 
the sink tree, and 
repeat until done
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Flooding

A simple method to send a packet to all network nodesp p

Each node floods a new packet received on an 
incoming link by sending it out all of the other linksg y g

Nodes need to keep track of flooded packets to stop the 
flood; even using a hop limit can blow up exponentially
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Distance Vector Routing (1)

Distance vector is a distributed routing algorithmg g
• Shortest path computation is split across nodes

Algorithm:
• Each node knows distance of links to its neighbors• Each node knows distance of links to its neighbors
• Each node advertises vector of lowest known 

distances to all neighborsg
• Each node uses received vectors to update its own
• Repeat periodically
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Distance Vector Routing (2)

Network

Vectors received at J from

New vector 
for J
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Neighbors A, I, H and K



The Count-to-Infinity Problem

Failures can cause DV to “count to infinity” while y
seeking a path to an unreachable node

X

Good news of a path 
to A spreads quickly

Bad news of no path to A
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is learned slowly



Link State Routing (1)

Link state is an alternative to distance vector
• More computation but simpler dynamics
• Widely used in the Internet (OSPF, ISIS)

Algorithm:
• Each node floods information about its neighbors in g

LSPs (Link State Packets); all nodes learn the full 
network graph
Each node runs Dijkstra’s algorithm to compute the• Each node runs Dijkstra’s algorithm to compute the 
path to take for each destination
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Link State Routing (2) – LSPs

LSP (Link State Packet) for a node lists neighbors and ( ) g
weights of links to reach them

Network LSP for each node
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Link State Routing (3) – Reliable Flooding

Seq. number and age are used for reliable flooding
S• New LSPs are acknowledged on the lines they are 

received and sent on all other lines 
• Example shows the LSP database at router BExample shows the LSP database at router B
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Hierarchical Routing
Hierarchical routing reduces the work of route computation 
but may result in slightly longer paths than flat routing

Best choice to 
reach nodes in 5 
except for 5C
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Broadcast Routing
Broadcast sends a packet to all nodes
• RPF (Reverse Path Forwarding): send broadcast ( g)

received on the link to the source out all remaining links
• Alternatively, can build and use sink trees at all nodes

Network Sink tree for I is RPF from I is larger than
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Network Sink tree for I is 
efficient broadcast

RPF from I is larger than 
sink tree



Multicast Routing (1) – Dense Case
Multicast sends to a subset of the nodes called a group
• Uses a different tree for each group and source

S

N t k ith 1 & 2 S i t f SNetwork with groups 1 & 2 Spanning tree from source S

SS
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Multicast tree from S to group 1 Multicast tree from S to group 2



Multicast Routing (2) – Sparse Case
CBT (Core-Based Tree) uses a single tree to multicast
• Tree is the sink tree from core node to group membersg p
• Multicast heads to the core until it reaches the CBT

p 1.p 1.

Sink tree from core to group 1 Multicast is send to the core then 
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down when it reaches the sink tree



Anycast Routing

Anycast sends a packet to one (nearest) group member
• Falls out of regular routing with a node in many places 

Anycast routes to group 1 Apparent topology of 
sink tree to “node” 1
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Routing for Mobile Hosts
Mobile hosts can be reached via a home agent
• Fixed home agent tunnels packets to reach the mobile g p

host; reply can optimize path for subsequent packets
• No changes to routers or fixed hosts
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Routing in Ad Hoc Networks

The network topology changes as wireless nodes move
f O ( )• Routes are often made on demand, e.g., AODV (below) 

A’s broadcast 
reaches B & D

B’s and D’s 
broadcast 

C’s, F’s and G’s 
broadcast 

A’s starts to 
find route to I
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reach C, F & G reach H & I



Congestion Control (1)

H dli ti i th ibilit f thHandling congestion is the responsibility of the 
Network and Transport layers working together

− We look at the Network portion herep

• Traffic-aware routing »
• Admission control »
• Traffic throttling »

L d h ddi• Load shedding »
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Congestion Control (2)

Congestion results when too much traffic is offered; 
performance degrades due to loss/retransmissions
• Goodput (=useful packets) trails offered load
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Congestion Control (3) – Approaches 

Network must do its best with the offered load
• Different approaches at different timescales
• Nodes should also reduce offered load (Transport)
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Traffic-Aware Routing

Choose routes depending on traffic, not just topology
• E g use EI for West to East traffic if CF is loaded• E.g., use EI for West-to-East traffic if CF is loaded
• But take care to avoid oscillations 

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011



Admission Control

Admission control allows a new traffic load only if the 
network has sufficient capacity, e.g., with virtual circuitsp y, g ,
• Can combine with looking for an uncongested route

Network with some Uncongested portion and 
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congested nodes route AB around congestion



Traffic Throttling

Congested routers signal hosts to slow down trafficg g
• ECN (Explicit Congestion Notification) marks 

packets and receiver returns signal to sender
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Load Shedding (1)

When all else fails, network 
1 4will drop packets (shed load)

Can be done end-to-end or 
li k b li k

1 4

link-by-link

Link-by-link (right) produces 
id li f

2 5

rapid relief
3
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Load Shedding (2)

End-to-end (right) takes
1

End to end (right) takes 
longer to have an effect, 
but can better target the 
cause of congestion

2

5

cause of congestion

3

6

3

7

44
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Quality of Service

• Application requirements »
• Traffic shaping »
• Packet scheduling »
• Admission control »

I t t d i• Integrated services »
• Differentiated services »
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Application Requirements (1)

Different applications care about different properties
• We want all applications to get what they need

.
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“High” means a demanding requirement, e.g., low delay



Application Requirements (2)

N t k id i ith diff t ki d f Q SNetwork provides service with different kinds of QoS
(Quality of Service) to meet application requirements 

Network Service Application
Constant bit rate Telephony
R l ti i bl bit t Vid f iReal-time variable bit rate Videoconferencing
Non-real-time variable bit rate Streaming a movie
Available bit rate File transfer

Example of QoS categories from ATM networks
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Traffic Shaping (1)

Traffic shaping regulates the 
average rate and burstinessg
of data entering the network
• Lets us make guarantees

Shape 
traffic 
here
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Traffic Shaping (2)

Token/Leaky bucket limits both the average rate (R)  
and short term burst (B) of trafficand short-term burst (B) of traffic
• For token, bucket size is B, water enters at rate R 

and is removed to send; opposite for leaky.

to send

t d

Leaky bucket Token bucket

to send
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Leaky bucket
(need not full to send)

Token bucket
(need some water to send)



Traffic Shaping (3)

Host traffic
R=200 Mbps 

Shaped by

p
B=16000 KB

Shaped by 
R=200 Mbps 
B=9600 KB

Shaped by 
R=200 Mbps 
B=0 KBB 0 KB

Smaller bucket size delays traffic and reduces burstiness
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Smaller bucket size delays traffic and reduces burstiness



Packet Scheduling (1)

Packet scheduling divides router/link resources among g g
traffic flows with alternatives to FIFO (First In First Out)

111

22

333

Example of round-robin queuing
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Packet Scheduling (2)

Fair Queueing approximates bit-level fairness with 
different packet sizes; weights change target levelsdifferent packet sizes; weights change target levels
• Result is WFQ (Weighted Fair Queueing)

Packets may be sent Finish virtual times determine 
Fi = max(Ai, Fi-1) + Li/W
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out of arrival order transmission order



Admission Control (1)

Admission control takes a traffic flow specification and p
decides whether the network can carry it
• Sets up packet scheduling to meet QoS

Example flow specification

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011



Admission Control (2)

Construction to guarantee bandwidth B and delay D:g y
• Shape traffic source to a (R, B) token bucket
• Run WFQ with weight W / all weights > R/capacity
• Holds for all traffic patterns, all topologies
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Integrated Services (1)

Design with QoS for each flow; handles multicast traffic.g Q ;

Admission with RSVP (Resource reSerVation Protocol):
• Receiver sends a request back to the senderReceiver sends a request back to the sender
• Each router along the way reserves resources
• Routers merge multiple requests for same flowg p q
• Entire path is set up, or reservation not made
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Integrated Services (2)

Merge

R3 reserves flow 
from S1

R3 reserves flow 
from S2

R5 reserves flow from S1; 
merged with R3 at H
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Differentiated Services (1)

Design with classes of QoS; customers buy what they want
E dit d l i t i f t l l• Expedited class is sent in preference to regular class

• Less expedited traffic but better quality for applications
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Differentiated Services (2)

Implementation of DiffServ:p
• Customers mark desired class on packet
• ISP shapes traffic to ensure markings are paid for
• Routers use WFQ to give different service levels
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Internetworking

Internetworking joins multiple, different networks  
into a single larger network

• How networks differ »
• How networks can be connected »
• Tunneling »
• Internetwork routing »
• Packet fragmentation »
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How Networks Differ

Differences can be large; complicates internetworkingg ; p g
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How Networks Can Be Connected

Internetworking based on a common network layer – IP

Packet mapped 
to a VC here

Common protocol (IP) 
carried all the way
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Tunneling (1)

Connects two networks through a middle one
• Packets are encapsulates over the middle
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Tunneling (2)

Tunneling analogy: g gy
• tunnel is a link; packet can only enter/exit at ends
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Packet Fragmentation (1)
Networks have different packet size limits for many reasons
• Large packets sent with fragmentation & reassemblyg p g y

G1 fragments G2 reassembles

T t k t f t d / bl d i h t k

G3 fragments G4 reassembles

Transparent – packets fragmented / reassembled in each network

G1 fragments
… destination 
will reassemble
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Non-transparent  – fragments are reassembled at destination



Packet Fragmentation (2)
Example of IP-style fragmentation:

Packet Start EndPacket
number

Start
offset

End
bit

Original packet:
(10 data bytes)

Fragmented:
(to 8 data bytes)

Re fragmented:Re-fragmented:
(to 5 bytes)
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Packet Fragmentation (3)

Path MTU Discovery avoids network fragmentationy g
• Routers return MTU (Max. Transmission Unit) to 

source and discard large packets

Try 1200 Try 900  y
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Network Layer in the Internet (1)

• IP Version 4 »• IP Version 4 »
• IP Addresses »
• IP Version 6 »
• Internet Control Protocols »
• Label Switching and MPLS »
• OSPF—An Interior Gateway Routing Protocol »
• BGP—The Exterior Gateway Routing Protocol »
• Internet Multicasting »
• Mobile IP »
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Network Layer in the Internet (2)

IP has been shaped by guiding principles:p y g g p p
− Make sure it works
− Keep it simple

Make clear choices− Make clear choices
− Exploit modularity
− Expect heterogeneity
− Avoid static options and parameters
− Look for good design (not perfect)
− Strict sending, tolerant receivingg, g
− Think about scalability
− Consider performance and cost
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Network Layer in the Internet (3)
Internet is an interconnected collection of many networks 
that is held together by the IP protocol
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IP Version 4 Protocol (1)

IPv4 (Internet Protocol) header is carried on all packets 
and has fields for the key parts of the protocol:and has fields for the key parts of the protocol: 
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IP Addresses (1) – Prefixes 

Addresses are allocated in blocks called prefixes
• Prefix is determined by the network portion
• Has 2L addresses aligned on 2L boundary
• Written address/length, e.g., 18.0.31.0/24
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IP Addresses (2) – Subnets 

Subnetting splits up IP prefix to help with management
• Looks like a single prefix outside the network

ISP gives networkISP gives network
a single prefix
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Network divides it into subnets internally



IP Addresses (3) – Aggregation 

Aggregation joins multiple IP prefixes into a single  
larger prefix to reduce routing table size

ISP advertises
a single prefix
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ISP customers have different prefixes



IP Addresses (4) – Longest Matching Prefix

Packets are forwarded to the entry with the longest y g
matching prefix or smallest address block
• Complicates forwarding but adds flexibility

Main prefix goes 
this way

Except for 
this part!
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IP Addresses (5) – Classful Addresing

Old addresses came in blocks of fixed size (A, B, C)
C i i t f dd b t l k fl ibilit• Carries size as part of address, but lacks flexibility

• Called classful (vs. classless) addressing
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IP Addresses (6) – NAT

NAT (Network Address Translation) box maps one 
external IP address to many internal IP addressesexternal IP address to many internal IP addresses
• Uses TCP/UDP port to tell connections apart
• Violates layering; very common in homes, etc.
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IP Version 6 (1)

Major upgrade in the 1990s due to impending address 
exhaustion, with various other goals:, g

− Support billions of hosts
− Reduce routing table size
− Simplify protocol− Simplify protocol
− Better security
− Attention to type of service
− Aid multicasting
− Roaming host without changing address
− Allow future protocol evolutionp
− Permit coexistence of old, new protocols, …

Deployment has been slow & painful, but may pick up 
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y y
pace now that addresses are all but exhausted



IP Version 6 (2 )

IPv6 protocol header has much longer addresses (128 
vs 32 bits) and is simpler (by using extension headers)vs. 32 bits) and is simpler (by using extension headers)
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IP Version 6 (3)

IPv6 extension headers handles other functionality y
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Internet Control Protocols (1)

IP works with the help of several control protocols:p p
• ICMP is a companion to IP that returns error info

− Required, and used in many ways, e.g., for traceroute

• ARP finds Ethernet address of a local IP address
− Glue that is needed to send any IP packets
− Host queries an address and the owner repliesHost queries an address and the owner replies 

• DHCP assigns a local IP address to a host
− Gets host started by automatically configuring it
− Host sends request to server, which grants a lease
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Internet Control Protocols (2)

Main ICMP (Internet Control Message Protocol) types:( g ) yp
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Internet Control Protocols (3)
ARP (Address Resolution Protocol) lets nodes find target 
Ethernet addresses [pink] from their IP addresses
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Label Switching and MPLS (1)

MPLS (Multi-Protocol Label Switching) sends packets ( g) p
along established paths; ISPs can use for QoS
• Path indicated with label below the IP layer
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Label Switching and MPLS (2)

Label added based on IP address on entering an MPLS g
network (e.g., ISP) and removed when leaving it
• Forwarding only uses label inside MPLS network
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OSPF— Interior Routing Protocol (1)
OSPF computes routes for a single network (e.g., ISP)
• Models network as a graph of weighted edges

Network:

Graph:

Broadcast LAN 
modeled as a well-

3
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modeled as a well-
connected node



OSPF— Interior Routing Protocol (2)

OSPF divides one large network (Autonomous System) g ( y )
into areas connected to a backbone area
• Helps to scale; summaries go over area borders
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OSPF— Interior Routing Protocol (3)

OSPF (Open Shortest Path First) is link-state routing:( p ) g
• Uses messages below to reliably flood topology
• Then runs Dijkstra to compute routes
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BGP— Exterior Routing Protocol (1)

BGP (Border Gateway Protocol) computes routes ( y ) p
across interconnected, autonomous networks
• Key role is to respect networks’ policy constraints

Example policy constraints:
− No commercial traffic for educational network

N I i P− Never put Iraq on route starting at Pentagon
− Choose cheaper network
− Choose better performing network
− Don’t go from Apple to Google to Apple
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BGP— Exterior Routing Protocol (2)
Common policy distinction is transit vs. peering:
• Transit carries traffic for pay; peers for mutual benefitp y; p
• AS1 carries AS2↔AS4 (Transit) but not AS3 (Peer)
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BGP— Exterior Routing Protocol (3)
BGP propagates messages along policy-compliant routes
• Message has prefix, AS path (to detect loops) and next-g p , p ( p )

hop IP (to send over the local network)
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Internet Multicasting

Groups have a reserved IP address range (class D)p g ( )
• Membership in a group handled by IGMP (Internet 

Group Management Protocol) that runs at routers

Routes computed by protocols such as PIM:
• Dense mode uses RPF with pruning
• Sparse mode uses core-based trees

IP multicasting is not widely used except within a single g y g
network, e.g., datacenter, cable TV network. 

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011



Mobile IP
Mobile hosts can be reached at fixed IP via a home agent
• Home agent tunnels packets to reach the mobile host; g p ;

reply can optimize path for subsequent packets
• No changes to routers or fixed hosts
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EndEnd

Chapter 5
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