William Stallings Data and Computer Communications

Chapter 4
Transmission Media

Overview

- **#** Guided wire
- **₩**Unguided wireless
- #Characteristics and quality determined by medium and signal
- **♯**For guided, the medium is more important
- **#**For unguided, the bandwidth produced by the antenna is more important
- ★Key concerns are data rate and distance

Slides originally by W. Stallings

Design Factors

- **#** Bandwidth
- **★**Transmission impairments
 - Attenuation
- **#**Interference
- **¥** Number of receivers

Slides originally by W. Stallings

Guided Transmission Media

- **★ Twisted Pair**
- ★ Coaxial cable
- ₩ Optical fiber

Table 4.1 Point-to-Point Transmission Characteristics of Guided Media [GLOV98]

	Frequency Range	Typical Attenuation	Typical Delay	Repeater Spacing
Twisted pair (with loading)	0 to 3.5 kHz	0.2 dB/km @ 1 kHz	50 μs/km	2 km
Twisted pairs (multi-pair cables)	0 to 1 MHz	3 dB/km @ 1 kHz	5 μs/km	2 km
Coaxial cable	0 to 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 to 9 km
Optical fiber	180 to 370 THz	0.2 to 0.5 dB/km	5 μs/km	40 km

 $THz = TeraHerz = 10^{12}\;Hz$

Twisted Pair

- -Separately insulated
- -Twisted together
- —Often "bundled" into cables
- Usually installed in building during construction

- (a) Twisted pair
- -Usually more than one pair bundled together
- -Nearby pairs have different twist length to reduce crosstalk
- -Twist length 5 cm to 15cm
- -Wire thickness 0.4 to 0.9 mm

Slides originally by W. Stallings

7

Twisted Pair - Applications

- **₩** Most common medium
- ★ Telephone network
 - □ Between house and local exchange or end-office (subscriber loop)
- **₩**Within buildings
 - ☐To private branch exchange (PBX)
- #For local area networks (LAN)
 - □10Mbps or 100Mbps (for high rates limited number of devices and distance)

Slides originally by W. Stallings

Twisted Pair - Pros and Cons

- ★ Cheap
- ★ Low data rate
- ★ Short range: repeaters required every few hundred meters

Slides originally by W. Stallings

a

Twisted Pair - Transmission Characteristics

- ★ Analog
 - △ Amplifiers every 5km to 6km
- # Digital

 - □ repeater every 2km or 3km (<u>This may be wrong, few hundred meters is the answer</u>)
- ★ Limited distance: highest attenuation relative to other guided media
- ★ Limited bandwidth (1MHz)
- ★ Limited data rate (100MHz)
- ★ Susceptible to interference and noise

Slides originally by W. Stallings

UTP Categories (Recognized by EIA-568)

- Cat 3
 - □up to 16MHz

 - ☐ Twist length of 7.5 cm to 10 cm
- Cat 4
 - □up to 20 MHz
- Cat 5
 - □up to 100MHz
 - □Commonly pre-installed in new office buildings

Cat 3 and Cat 5 are ones mostly used for

- Differ in number of twists

LAN applications:

☐ Twist length 0.6 cm to 0.85 cm

EIA = Electronic Industries Association Stallings

13

UTP Categories

CAT 5 Cable

Slides originally by W. Stallings

RJ-45 Connector

Multiport Repeaters (Hubs)

RJ-45 Front

Slides originally by W. Stallings

15

Near End Crosstalk

- ★Coupling of signal from one pair to another
- ******Coupling takes place when transmit signal entering the link couples back to receiving pair
- **X**i.e. near transmitted signal is picked up by near receiving pair

Slides originally by W. Stallings

STP vs. UTP

Table 4.2 Comparison of Shielded and Unshielded Twisted Pair

	Attenuation (dB per 100 m)			Near-end Crosstalk (dB)		
Frequency (MHz)	Category 3 UTP	Category 5 UTP	150-ohm STP	Category 3 UTP	Category 5 UTP	150-ohm STP
1	2.6	2.0	1.1	41	62	58
4	5.6	4.1	2.2	32	53	58
16	13.1	8.2	4.4	23	44	50.4
25	_	10.4	6.2	_	41	47.5
100	_	22.0	12.3	_	32	38.5
300	_	_	21.4	_	_	31.3

Slides originally by W. Stallings

17

Coaxial Cable

- -Outer conductor is braided shield
- -Inner conductor is solid metal
- —Separated by insulating material
- -Covered by padding
- -To allow operation over wider range of frequencies
- -Diameter of 1 to 2.5 cm
- -Because of shielding, much less susceptible to interference and crosstalk $$^{\rm Nlides\ originally\ by\ W.\ Stallings}$$

Coaxial Cable Applications

- ★ Most versatile medium
- **X**Television distribution
 - △Ariel to TV
 - △Cable TV
- **#**Long distance telephone transmission
 - □Can carry 10,000 voice calls simultaneously (using FDM)
 - □ Being replaced by fiber optic
- **#**Short distance computer systems links
- **¥Local** area networks

Slides originally by W. Stallings

Coaxial Cable - Transmission Characteristics

#Analog

- △Amplifiers every few km
- □Closer if higher frequency
- □Up to 500MHz

₩ Digital

- □ Repeater every 1km
- □Closer for higher data rates

Performance limited by attenuation, thermal noise, and intermodulation noise

Slides originally by W. Stallings

21

Coaxial Cable - Transmission Characteristics

10BASE2 50 Ohm Coax Cable

Optical Fiber - Benefits

- **#**Greater capacity
 - □ Data rates of hundreds of Gbps
- **★**Smaller size & weight
- **¥Lower attenuation**
- **¥** Electromagnetic isolation
- **∺**Greater repeater spacing
 - △10s of km at least

Slides originally by W. Stallings

25

Optical Fiber - Applications

- **★Long-haul trunks**
- ★ Metropolitan trunks
- ★Rural exchange trunks
- **¥**Subscriber loops
- **#LANs**

Slides originally by W. Stallings

Optical Fiber - Transmission Characteristics

- **#** Act as wave guide for 10¹⁴ to 10¹⁵ Hz
 - □ Portions of infrared and visible spectrum
- **∺**Light Emitting Diode (LED)
 - Cheaper
- - □ Greater data rate
- ₩ Wavelength Division Multiplexing

Slides originally by W. Stallings

27

LED - ILD: semiconductor

devices that emit a beam when voltage is applied

Optical Fiber Transmission Modes Input pulse (a) Step-index multimode (b) Graded-index multimode (c) Single mode One path for signal – superior signal quality Output pulse Output pulse Output pulse Output pulse Output pulse One path for signal – superior signal quality One path for signal – superior signal quality

Wireless Transmission

- **♯**Unguided media
- #Transmission and reception via antenna
- **⊞** Directional

 - ightharpoonup Careful alignment required
- **#** Omnidirectional

 - □Can be received by many antennae

Slides originally by W. Stallings

Frequencies

- #2GHz to 40GHz Microwave

 - Satellite
- **30MHz** to 1GHz Radio
 - Omnidirectional
- $#3 \times 10^{11}$ to 2 x 10^{14} Infrared
 - □Local point-to-point or point-to-multipoint in indoor applications

Slides originally by W. Stallings

31

Antenna

- **X** Definition: An electrical conductor or system of conductors used either for radiating electromagnetic energy or for collecting electromagnetic energy.
- ₩ General receiver/Transmitter structure
- * Receiver/transmit characteristics of an antenna are the same

Referred to as omni-directional antenna

General Receiver Structure

Demod

Slides originally by W. Stallings

Parabolic Reflective Antenna

#Used in terrestrial microwave and satellite applications

(b) Cross-section of parabolic antenna showing reflective property

Slides originally by W. Stallings

33

Antenna Gain

- lpha Definition: the power output, in a particular direction, compared to that produced in any direction by a perfect omni-directional antenna.
- # It is a measure of directionality.
- # Effective Area a concept related to the physical size and shape of antenna
- # Gain is given by

$$G = \frac{4 \text{ n Ae}}{\lambda^2}$$

Where G – antenna gain

Ae – effective antenna gain λ – carrier wavelength

- \Re For an ideal isotropic antenna − Ae = λ^2 /(4 π) → G = 1 or 0 dB
- \Re For a parabolic antenna with face area of A − Ae = 0.56A \Rightarrow G = 7A/ λ ²

Slides originally by W. Stallings

Antenna Gain - Example

#Problem: Consider a parabolic reflective antenna with a diameter of 2 m operating at 12 GHz, what is the effective area and the antenna gain?

#Solution:

```
face area, A = \pi r^2 \rightarrow \pi m^2
effective area, Ae = 0.56 A = 0.56 \pi m^2
wavelength, \lambda = c/f = 3x10^8/12x10^9 = 0.025 m
then Gain, G = 4 \pi Ae/\lambda^2 = 35,180, or
GdB = 10log10(35,180) = 45.46 dB
```

Slides originally by W. Stallings

35

Terrestrial Microwave

- # Line of sight
- ★ Long haul telecommunications (4-6 GHz and 11 GHz)
- # Higher frequencies give higher data rates

Transmission Characteristic

Pr/Pt = Gt Gr * $[\lambda /(4\pi d)]^2$

where: Pt – transmitted power level

Pr – received power level

Gr – receive antenna gain

Gt – transmit antenna gain

λ – carrier frequency wavelength

d - distance between transmitter and receiver

- # If Gt and Gr are not given assume Gt = Gr = 1.

Slides originally by W. Stallings

37

Satellite Microwave

- **¥**Satellite is relay station
- Satellite receives on one frequency, amplifies or repeats signal and transmits on another frequency
- ★ Requires geo-stationary orbit
 □ Height of 35,784km
- **#**Television
- **¥Long** distance telephone
- ★ Private business networks

Slides originally by W. Stallings

Broadcast Radio

- #Omnidirectional; 30 MHz ∼ 1 GHz
- **¥** FM radio
- **₩UHF** and VHF television
- **¥**Line of sight
- **¥**Suffers from multipath interference
 - □ Reflections

Slides originally by W. Stallings

41

Infrared

- ₩ Modulate noncoherent infrared light
- ★Line of sight (or reflection)
- **♯** Blocked by walls
- ₩e.g. TV remote control, IRD port

Slides originally by W. Stallings

Example

- #Problem: Assume an earth station is transmitting 250 Watts directed to an asynchronous satellite at the height of 35,863 km. If the carrier frequency is 4 GHz, calculate:
- a) the path loss assuming isotropic antennas
- b) the path loss assuming the antenna gain for satellite and ground station to be 44 dB and 48 dB, respectively.
- c) what is the power level received at the satellite?

Slides originally by W. Stallings

45

Example - cont'd

```
 ★ Solution:
Path Loss, L = Pt/Pr = 1/\{Gt Gr * [\lambda /(4\pi d)]^2\}
wavelength, \lambda = c/f = 3x108/4x109 = 0.075 \text{ m}
a) for isotropic antennas \rightarrow Gt = Gr = 1;
   L = 1/\{1x1x[0.075/(4x\pi x35853x10^3)]^2\}
      = 3.6087 \times 10^{19}
   L_{dB} = 10 x log_{10}(L) = 195.6 dB
b) for Gr = 44 \, dB (or 1044/10 = 25,119) and Gt = 48 \, dB (or 63,096)
   Therefore,
                                                                                  Another way for
     L = 1/\{25119x63096x x[0.075/(4x\pi x35853x10^3)]^2\}
                                                                                 b) LdB = L_{dB \text{ isotropic}} - Gt_{dB} - Gr_{dB}
= 195.6 - 44 - 48
       = 2.2769 \times 10^{10}
     L_{dB} = 10xlog10(L) = 103.6 dB
                                                                                           = 103.6 dB
c) Power received at satellite:
    L = Pt/Pr \rightarrow Pr = Pt/L = 250/2.2769x10^{10}
                       = 1.0980 \times 10^{-8} \text{ Watts}
    Pr_{dBW} = 10xlog10(Pr) = -79.6 dBW
                                                c) Pt = 250 Watts \rightarrow Pt<sub>dBW</sub> = 10xlog10(250) = 24 dBW
                                                    Pr_{dBW} = Pt_{dBW} - L_{dB} = 24 - 103.6 = -79.6 \text{ dBW}
                                      Slides originally by W. Stallings
                                                                                                           46
```

Required Reading

Stallings Chapter 4

■ Stallings Chapter 4

Slides originally by W. Stallings