Lecture Contents

1.
Fixed Assignment Access for Voice-Oriented Networks

- Voice-Oriented networks ~ cellular telephony or PCS
- Fixed allocation of resource (frequency, time, code, etc)
- Three basic access techniques:
 - Frequency Division Multiple Access (FDMA)
 - Time Division Multiple Access (TDMA)
 - Code Division Multiple Access (CDMA)
- The choice of technology impacts:
 - Capacity
 - QoS

Background and References

- Background:
- References:
 - Chapter 4 [Pahlavan]
 - Chapter 3 [Garg]
Uplink/Down Link Duplexing

- Mechanism to differentiate between uplink and downlink transmissions
- Two basic techniques are used:
 - Frequency Division Duplexing (FDD)
 - Time Division Duplexing (TDD)
- FDD
 - Usually large coverage areas
- TDD
 - Share one RF circuitry
 - Accurate open-loop power control (refer to IS-95)
 - Usually low-power local communications
- More will be provided later on the pros and cons of each of these technologies

FDMA

- All user may transmit simultaneously – each using a distinct carrier ➔ channel
- Basics: Frequency Division Multiplexing (FDM)
- Design Issues:
 - Adjacent channel interference (refer to backup slides – voiceband signals)
 - RF spectrum mask
 - Near-far problem – a concern especially on reverse link
 - Carriers belonging to one set are not adjacent
 - Guard bands – reduces spectral efficiency
FDMA – cont’d

- A user is assigned a carrier f_i for each direction (uplink and downlink).
- A user may employ continuous transmission.
- Data (user’s info) is modulated using the assigned carrier.
- Analog circuitry (VCO) is required to keep track of frequency shifts.

Example: AMPS

- A user is assigned an uplink and a downlink channels that are 45 MHz apart.

<table>
<thead>
<tr>
<th></th>
<th>A''</th>
<th>A</th>
<th>B</th>
<th>A''</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>824</td>
<td>825</td>
<td>835</td>
<td>845</td>
<td>846.5</td>
</tr>
<tr>
<td>downlink</td>
<td>869</td>
<td>870</td>
<td>880</td>
<td>890</td>
<td>891.5</td>
</tr>
</tbody>
</table>

Original FCC designation:
- A band for independent carriers
- B for traditional wireline (regional Bell Operating Companies) carriers
- A'', B', and A'' were added later.
Signal Mask – GSM Example

- GSM
 - Carrier spacing = 200 kHz

Near-Far Problem

MSi at distance 10 meters from BS
MSj at distance 1 km from BS

Since received power strength falls 40 dB/decade \(\Rightarrow \) received power from MSi is 80 dB higher than that from MSj

Due multipath – RSS may fluctuate 10s of dB \(\Rightarrow \) difference in received power at BS may be > 100 dB

For j: If out-of-band transmission of (i) is say 40 dB below transmitted power, it may swamp jth signal by 60 dB!!
Time-Division Multiple Access

- A number of users share the same frequency band by taking assigned turns in using the channel.
- BS controller assigns slots - slot released upon the completion of call.
- **Advantages:**
 - Flexibility – can provide different access rates at no cost.
- **Disadvantages:**
 - Requires accurate synchronization with BS and rest of users.
 - Guard times.

TDMA

- All the band is used by the user during his slot.
 - Fixed assignment – predetermined order.
 - Slot waster if there is no info for transmission.

Diagram showing frequency allocation for different users over time.
Example: GSM

- The user is assigned one uplink slot and one downlink slot

25 MHz - uplink

25 MHz - downlink

carrier 1 200 kHz
carrier 2 200 kHz
carrier 123 200 kHz
carrier 125 200 kHz

Downlink carriers

270.833 kb/s frame (4.615 ms)

GSM time frame

Example: GSM – Speech coding

Voice payload: 13 kb/s

0.577 ms time slot – 156 bits

speech coder

speech frame @ 13 kb/s

CRC

½ conv coder (k=5)

456 bits @ 22.8 kb/s

456 = 8 \times 57

378 coded bits

78 bits

456 bits per 20 msec (22.8 kb/s)
Example: GSM – Speech coding

- 20 msec speech - analog
- 260 bits
- 20 msec speech - analog
- 260 bits

- 456 bits
- 456 = 8 X 57 bits

- Bit interleaving
- diagonal block interleaving

- 8 normal traffic bursts
- physical Layer frames

Example: GSM - References

- http://www.it.iitb.ac.in/~it644/lectures/gsm_files/frame.htm
Capacity of FDMA and TDMA

- Review Cellular concepts slides
 - Total BW / BW per user
 - No of channels per cell = frequency reuse factor

But we already know that frequency reuse factor, K, and SIR are related by

$$SIR = S \frac{\alpha}{6} = (S/6) (3K)^{\alpha/2}, \text{ or}$$

$$K = \frac{1}{3} \left[\frac{6}{S \times SIR} \right]^{2/\alpha}$$

where S is the number of sectors at the BS

Capacity of FDMA and TDMA - Example

- Consider an FDMA or TDMA with the following parameters:
 - Total BW = 1.25 MHz,
 - Path-loss exponent, $\alpha = 4$,
 - SIR$_{\text{min}}$ = 18 dB (or 63),
 - No of antenna sectors, $S = 3$
 - BW per user = 10 kHz (~IS-54)

$$K = \frac{1}{3} \left[\frac{6}{S \times SIR} \right]^{2/\alpha} \approx 4$$

Therefore,

$$\frac{(1.25 \times 10^6)}{(10 \times 10^3)}$$

No of channels (users) per cell = 4

= 31
Direct-Spread Code-Division Multiple Access (DS-CDMA)

- Spread Spectrum (SS): a technique in which a signal is of original bandwidth W is transmitted over a bandwidth equal to $G \times W$ where $G \gg 1$
 - G is referred to as the spreading gain
- DS-CDMA: A bit stream of rate R b/s (bit duration, $T_b = 1/R$ sec) occupies a bandwidth of $W \approx R$ Hz
 - The bandwidth is roughly inversely proportional to the duration of the smallest signal element (bit), i.e. $W \approx 1/T_b = R$
 - If the signal is multiplied by a code: where every bit is multiplied by a sequence of G chips each of duration T_c, then the new signal have a bandwidth $\approx 1/T_c = G/T_b = G \times W$

Frequency hopping (FH) is another form of spread-spectrum technology – review chapter 3 [Pahlavan]

Code-Division Multiple Access (CDMA)

- DS-CDMA Transmitter (simplified)

- G is typically > 10
 - For IS-95 $G = 9.6$ kbs/1.25 MHz $= 128$

Diagram:

```
  FEC coder
      |         | Rs
  Tc |         | R
      |         | S_c(t)
  BW_1 ~ 1/Tc

  unique user spreading code
    G chips

  BW_2 ~ 1/T_c \times G \times BW_1
```
Code-Division Multiple Access (CDMA)

- **DS-CDMA Receiver (simplified):**
 - Typically, the signal is passed through a LPF and then sampled - the samples are then used by the FEC decoder
 - An alternative receiver structure: Replace the correlator by a filter matched to the specific user code

Diagram:

- R_t (input signal)
- T_c (chip duration)
- G (spreading factor)
- $S_i(0)$ (initial phase)
- R (received signal)
- $S_{i}(t)$ (signal transmitted by the i^{th} user)
- $C_i(t)$ (spreading code for the i^{th} user)

How Does CDMA work?

- **Input:**
 - Assume we have N users transmitting simultaneously
 - Let the bit stream of the i^{th} user by $R_i(t)$
 - Let the code assigned to the i^{th} user by $C_i(t)$
 - Codes are ORTHOGONAL, i.e.

 $C_i(t) \times C_j(t) = 1$ if $i = j$

 $= 0$ if $i <> j$

- **Operation:**
 - Each user uses its code to spread its signal – the signal transmitted by the i^{th} user is $S_i(t) = R_i(t)C_i(t)$
 - The signal received (say by the base station) is the sum of all transmitted signals (ignore multi-path copies for the time being),

 $S(t) = \sum S_i(t) = \sum R_i(t)C_i(t)$
How Does CDMA work? – cont’d

- **Demodulation (De-spreading):**
 - Receiver dedicates a path structure per user – multiplies the received signal with the k\(^{th}\) user code

 \[C_k(t) \times S(t) = C_k(t) \times \sum S_i(t) = C_k(t) \times \sum R_i(t)C_i(t) = R_k(t) \]

 i.e. only the k\(^{th}\) signal is retrieved from the k\(^{th}\) receiver path

Simplified basestation receiver

Codes are only orthogonal if
- Perfect synchronization is achieved
- No multipath exists

Code Division Multiple Access

- User transmits all the time (not in a particular slot) and using all the frequency bandwidth
- User is assigned a distinct code

- A frequency reuse factor of one is potentially possible with CDMA
Signal Quality for DS-CDMA

- Let there be N users in the cell
- The SIR at the receiver before the correlator is roughly equal to $1/(N-1)$ — assuming each is transmitting P_i Watts such that $P_i \times \text{Channel Attenuation}_i$ is equal for all users
- The SIR at the receiver after the correlator or matched filter is roughly equal to $G/(N-1)$

- The de-spreading procedure involves:
 1. Concentrating of the desired power in the bandwidth of interest
 2. Diluting the power of the interferers — this is referred to as interference suppression
- SIR after correlator = $G/(N-1)$
- Because of this property CDMA-based networks can tolerate more (~10-20% of G) interference compared to FDMA or TDMA based networks

Signal Quality for DS-CDMA – cont’d

- The analysis and conclusions in previous slide are true only if the underlined assumption is true
 - Therefore CDMA system require a mechanism to ensure that the received signal power from different users at the receiver is not more than what is required for proper modulation and decoding of the signal
 - Near-far problem again!
 - This mechanism is called power-control
- CDMA required an excellent power control mechanism to utilize its interference suppression advantage
Uplink Interference Calculation

- Consider the link quality of one mobile of interest
- Interference received by the BS at the cell of interest,
 \[I_{\text{total}} = I_{\text{intra}} + I_{\text{inter}} \]

where \(I_{\text{intra}} \): interference power from users within the cell of interest (remember all users are transmitting all the time on the same band),

\(I_{\text{inter}} \): interference power from user outside the cell of interest

Typically, \(I_{\text{inter}} \) is a fraction of \(I_{\text{intra}} \), therefore \(I_{\text{total}} \) can be written as

\[I_{\text{total}} = I_{\text{intra}} (1 + I_{\text{inter}} / I_{\text{intra}}), \text{ or } \]

\[I_{\text{total}} = I_{\text{intra}} \times F \]

Typical values for \(F \) range from 1.2 to 1.6 or higher depending on the propagation model, power control, etc.

\(I_{\text{intra}} \) is assumed to be \((N-1) \times P \) where \(N \) is the number of users in the cell of interest and \(P \) is the received power from each user at BS (note the perfect power control assumption)

Hence,

\[I_{\text{total}} = F \times (N-1) \times P \]

If the BS is employing sectorized antennas, then the amount of received interference is inversely proportional to the number of sectors, \(S \); This translates to

\[I_{\text{total}} = F \times (N-1) \times P / S \]

Furthermore, if interfering calls are only active \(v \) fraction of the time, then the actual total received interference is given by

\[I_{\text{total}} = v \times F \times (N-1) \times P / S \]

For voice users, \(v \sim 0.4 \)
Signal Quality for DS-CDMA – cont’d

- Consider a cellular CDMA network – N users per cell
- Received SIR for i-th user is given by \(\frac{P_i}{\text{Total interference}} = \frac{1}{v \times F \times (N - 1)/S} \)

where
- \(N \) = total number of users per cell
- \(F \) = ratio of \((P_{\text{total}}/ \sum P_i) + 1 \) – typically 1.2~1.6
- \(v \) = activity factor on the interfering links – about 40% for voice
- \(S \) = number of antenna sectors at the BS

Writing this in terms of \(\frac{E_b}{N_0} \),

\[
\frac{E_b}{N_0} = \frac{\text{System BW} \times S}{\text{RX Filter} \times (N - 1)} \quad \frac{S}{V \times F} \frac{G}{X} \frac{1}{(E_b/N_0)}
\]

Or

\[
N = 1 + S \times \frac{G}{v \times X \times (E_b/N_0) \times F}
\]

\(N \) is the maximum number of users per cell, if \(E_b/N_0 \) is the minimum required quality for properly received signal.

Example: IS-95 Capacity

- Parameters for IS-95:
 - System BW = 1.25 MHz
 - User bit rate = 9.6 kb/s
 - Spreading gain, \(G = \frac{(1.25 \times 10^6)}{9.6 \times 10^3} = 128 \)
 - \(S \) = number of sectors = 3
 - \(V \) = voice activity factor = 0.4
 - \((E_b/N_0)_{\text{min}} \) = minimum required signal to interference-plus-noise ratio per bit = 7 dB or \(10^{7/10} = 5.01 \)
 - \(F \) = ratio of total interference to inter-cell interference = 1.6

Therefore number of users per cell, \(N \),

\[
N = 1 + S \times \frac{G}{v \times X \times (E_b/N_0)_{\text{min}}} = 120
\]

Compare this to about 31 user for an equivalent FDMA or TDMA as in previous example \(\approx 120/31 \approx 4 \) times
A GSM system with sectored antennas (K = 5) is to replace AMPS (K = 7) with same cell sites.

a) Determine the number of voice channels per cell for the AMPS

b) Determine the number of voice channels per cell site for the GSM

c) Repeat (b) if a W-CDMA system with BW = 12.5 MHz for each direction is to be used. Assume a signal-to-noise requirement of 4 (or 6 dB) and include effects of antenna sectorization (2.75)\(^{(1)}\), voice activity, and intercell interference

Solution:

a) For AMPS (ignoring control channels):
\[N = \frac{12.5 \text{ MHz}}{(7 \times 30 \text{ kHz})} = 59 \text{ channels} \]

b) For GSM
\[N = \frac{12.5 \text{ MHz} \times 8 \text{ slots}}{(4 \times 200 \text{ kHz})} = 125 \text{ channels} \]

c) For W-CDMA
\[N = 1 + \frac{(12.5\text{MHz}/9.6\text{kb/s}) \times 2.6}{(0.4 \times 1.6 \times 4)} = ? \]
Qualcomm IS-95 Systems

- Operates in the same frequency band as AMPS
- Uses FDD with 25 MHz for each direction
- User Identification:
 - Forward link: 64 Walsh codes (orthogonal codes) are used
 - Reverse link: long PN code with different time shifts
- Different modulation techniques on downlink and uplink
 - O-QPSK
 - QPSK
- Downlink pilot signals are transmitted to assist mobiles acquire and track the correct frequency and phase
- Strong coding is used (especially on reverse link)
- Required Eb/No for correct operation 5~7 dB
- Power control is essential

Qualcomm IS-95 Systems

Parameters for IS-95B System

<table>
<thead>
<tr>
<th>Modulation</th>
<th>QPSK/O-QPSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip rate</td>
<td>1.288 Mc/s</td>
</tr>
<tr>
<td>Channel rate</td>
<td>1.2, 2.4, 4.8, 9.6 kb/s (RS-1)</td>
</tr>
<tr>
<td></td>
<td>1.8, 3.6, 7.2, 14.4 kb/s (RS-2)</td>
</tr>
<tr>
<td>Filtered BW</td>
<td>1.25 MHz</td>
</tr>
<tr>
<td>Coding</td>
<td>1/2 (1/3) convolutional code for downlink (downlink)</td>
</tr>
<tr>
<td></td>
<td>Viterbi decoding for both</td>
</tr>
<tr>
<td>Interleaving</td>
<td>With 20 ms spans</td>
</tr>
<tr>
<td>Power control</td>
<td>Open-loop, closed-loop (800 b/s) control</td>
</tr>
<tr>
<td>Vocoder</td>
<td>Variable rate ~ 1- 8 kb/s</td>
</tr>
<tr>
<td>Receiver</td>
<td>RAKE – take advantage of multipath</td>
</tr>
</tbody>
</table>
Qualcomm IS-95 Systems

Forward traffic channel structure (Rate Set 1)

- Power Control Functionality:
 - Open loop:
 - upon powering up, MS measures received power from BS and adjusts its transmit power → not optimal – why?
 - The pilot signal is used as a reference
 - Closed loop:
 - A feedback mechanism is implemented between the BS and the MS to control the transmit level at the MS
 - IS-95 uses 800 commands per second to perform this function
- Softhandoff:
 - MS communicates with more than one BS
 - Downlink: Signals arriving from multiple BS (carrying same info) are received by the RAKE receiver and combined as one signal
 - Uplink: MS’s signal received by more than one BS – combined by the network (BSC or MSC)
Qualcomm IS-95 System – cont’d

- Original receiver design – tap delays were fixed – nowadays tap delays are variable (tracking functionality)
- Delays short enough to resolve distinct paths (usually one or half chip duration)
- Goal: to capture all major paths
- Multiple signal paths are combined:
 - Selectively,
 - Equal-gain, or
 - Maximal ratio \Rightarrow the optimal method
- IS-95 calls for a 3 moving fingers

Space Division Multiple Access

- Control the radiated energy for each user
- Users are served using “spot beam” antennas
- Spot beams may use same frequency (as in TDMA or CDMA) or different frequencies (as in FDMA)
- Sectorized antenna – is one primitive form of SDMA – review capacity expansion technique slides
- Adaptive antenna array:
 - Steer multiple beams (one for each user)
 - Best suited for TDMA or CDMA systems
- Difficult for reverse link:
 - Requires coordination of power levels
 - Huge power required to form beams - not available
Space Division Multiple Access – cont’d

- More practical, at least to date, at the BS
- The limiting case:
 - Infinitesimal beam width and infinitely fast tracking ability \(\Rightarrow\) zero interference
 - All users communicate to BS on one channel
 - Able to combine multipath signals for one user and obtain a better signal
 - Not feasible since it require infinite number of elements
- Gains can be achieved using reasonably sized antenna beams

Comparison Between FDMA, TDMA and CDMA

- Read section 4.2.4 in book - Important
Performance of Fixed-Assignment Access Methods

- FDMA/TDMA provide a hard capacity limit (number of channels)
 - FDMA – maximum number of carriers per cell
 - TDMA – maximum number of slots per frame x number of carriers per cell
- CDMA-based also has a hard capacity limit dictated by the number of Walsh codes for example, but usually practical capacity is lower
 - Soft-capacity figure: Near the capacity boundary, the addition of one extra user degrades the link quality for all
 - Call admission control mechanism attempt to limit maximum number of ongoing calls before link quality degrades for all
- If you operate a maximum no of channels, then call blocking and call delay are the two important measures!

Erlang-B and Erlang-C Models

- More details to be provided in COE560
- Model designed to predict blocking probability (Erlang-B) and average call delay (Erlang-C) for a given number of channels and traffic intensity
- Valid for voice and traffic models conforming to the basic assumption (usually not applicable to data)
- Assumptions, Terminology and Parameters:
 - Channels \(\leftrightarrow\) Servers: \(c\) servers
 - Users \(\leftrightarrow\) Calls
 - Calls arrive according to a Poisson process with rate \(\lambda\)
 - Inter-call arrival is an exponentially distributed r.v. with mean \(1/\lambda\)
 - Call duration is exponentially distributed r.v. with mean \(1/\mu\)
 - Traffic intensity, \(\rho = \lambda/\mu\)
Erlang-B (M/M/c/c) Model – Call Blocking

- As was shown earlier – review previous notes, the call blocking probability is given by
 \[B(c, \rho) = \frac{\rho^c}{\sum_{i=0}^{c-1} \frac{\rho^i}{i!}} \]

- \(\rho \) – is referred to as the offered load, while \(\rho X[1-B(c,\rho)] \) is referred to as the carried load
- Note in this model – calls arriving while there are \(c \) calls are blocked – no buffering is employed

Erlang-C (M/M/c) Model – Call Delay

- The probability that an arriving call having to wait is given by
 \[\Pr(d delay > 0) = \frac{\rho^c}{\rho^c + c! \left(1 - \frac{\rho}{c} \right) \sum_{k=0}^{\rho^c} \frac{\rho^k}{k!}} \]

- The average delay is given by
 \[D = \Pr(d delay > 0) \times \frac{1}{\mu(c - \rho)} \]

- The probability of the delay exceeding \(t \) time units is given by
 \[\Pr(d delay > t) = \Pr(d delay > 0) e^{-(N-\rho)t} \]
Examples

- An IS-136 cellular provider owns 50 cell sites and 19 traffic carriers per carrier per cell each with bandwidth of 30 kHz. Assuming each user makes three calls per hour and the average holding time per call is 5 minutes. Determine the total number of subscribers that the service provider can support with a blocking rate less than 2%
- Solution:
 \[c = 19 \times 3 = 57 \text{ per cell} \]
 \[B(57, \rho) = 0.02 \Rightarrow \rho = 45 \text{ Erlangs per cell} \]
 \[(\lambda/\mu)_\text{sub} = \frac{3}{60} \times 5 = 0.25 \text{ Erlangs per sub} \]
 Number of subs = total traffic / traffic per user
 \[= \frac{45}{0.25} \]
 \[= 180 \text{ per cell} \]
 Number of subs for all sites = 180 \times 50 = 8,000 subs

Note that
\[\rho_{\text{all subs}} = \frac{(\lambda/\mu)_{\text{all subs}}}{\mu} \]
whereas,
\[\rho_{\text{sub}} = \frac{(\lambda/\mu)_{\text{sub}}}{\mu} \]
\[\lambda_{\text{all subs}} = \text{no of subs} \times \lambda_{\text{sub}} \]

Random Access for Data Services

- Random access is suitable for bursty (intermittent variable – non constant) data applications
- Contention-based schemes
 - Originally for wireline LANS - CSMA/CD used for IEEE802.3 (Ethernet)
- Non-contention based schemes:
 - Reservation
 - Polling
- Performance measures
 - Throughput
 - Delay (packet)
Performance Measures

- Throughput
- Delay (packet)

![Ideal Load-Throughput Relation]

ALOHA-Based Wireless Random Access Techniques

- Pure ALOHA Protocol
 - Developed in 1971 by university of Hawaii
 - Multiple ground stations communicate to a central node
 - A station transmits when the data packet arrives
 - BS receives packet and decodes – if correct an ACK is sent back
 - if ACK is not received, station retransmits it packet after some random delay to avoid repeated collisions
 - Collision: when two packet transmissions overlap – note this model ignore errors due to the wireless link other than interference
Pure ALOHA

- For large number of station, the overall throughput (successful packet transmission per time unit) is given by
 \[S = G e^{-2G} \]
 where \(G \) is the offered in terms of attempted transmission per time unit

- Maximum throughput of 18% at \(G = 0.5 \) attempts per time unit
- Simple, inefficient
Slotted ALOHA

- Same as Pure ALOHA, except that the time access is slots, i.e. transmission can start at known (common clock signal) time instances
- A packet generated at the station during some time interval is buffered till the start of the next transmission window

![Slotted ALOHA Diagram]

Slotted ALOHA - Performance

- For large number of station, the overall throughput (successful packet transmission per time unit) is given by
 \[S = G e^{-G} \]
 where \(G \) is the offered in terms of attempted transmission per time unit

More efficient than pure ALOHA (max of 36% at \(G = 1 \) attempt per time unit)
Slotted ALOHA - Performance

For Slotted ALOHA,
\[S = G \times p \] where \(p \) is the likelihood of a transmission of an arbitrary packet is successful

For a large population of independent terminals generating packets at random time each with a small probability, the number of packets generated in \(T \) time slots follows a Poisson distribution, that is
\[(GT)^n \]
\[Pr\[n \text{ packets in } T \text{ time slots } \] = \frac{(GT)^n}{n!} \exp(-GT) \]

\[Pr \[\text{successful transmission} \] = Pr\[0 \text{ packets in 1 time slot} \] = \exp(-G) \]

Therefore, \(S = G \times \exp(-G) \)

For pure ALOHA,
\[Pr \[\text{successful transmission} \] = Pr\[0 \text{ packet in 2 successive time slots} \] = \exp(-2G) \]

Therefore \(S = G \times \exp(-2G) \)

Pure/Slotted ALOHA - Performance

- Maximum Throughput Figures

![Pure ALOHA / Slotted ALOHA Throughput Curves](image-url)
Reservation ALOHA (R-ALOHA)

- R-ALOHA = Slotted ALOHA + TDMA
- Time axis is divided into contention slots + contention-free slots
- MS sends short requests to contend for the upcoming contention-free intervals
- If reservation is successful, MS send its info (usually a much long packet) during the correspond contention-free interval
- Originally: Altair 18-19 GHz – early 1990s

![Diagram of Reservation ALOHA](image)

Dynamic Slotted ALOHA - Mobitex

- A version of R-ALOHA
- A mobile can transmit only during certain “free” cycles consisting of equal length slots initiated by the BS after the transmission of “FREE” frame

![Diagram of Dynamic Slotted ALOHA](image)
Packet Reservation Multiple Access (PRMA)

- A scheme to integrate voice (periodic) and low-bit data (non-periodic)
- Once a user acquires a slot it is reserved until it is explicitly released (a NULL packet) – no need for repeated asseveration – efficient for long/continuous bursts
- Protocol can utilize the discontinuous nature of speech – voice activity detector (VAD)

Reservation in GPRS

- A single 200 kHz carrier – 8 times slots
- Time slot carries
 - 9.6 kb/s (standard),
 - 14.4 kb/s (enhanced), or
 - 21.4 kb/s (for no error coding)
- A maximum bit rate of 8 X 21.4 = 171.4 kb/s
- MAC (Uplink):
 - MS sends reservation request to BS
 - BS sends notification indicating the allocation for an uplink channel
 - MS can transmit data
- MAC (Downlink):
 - BS sends notification to MS indicating allocation on downlink
 - MS monitors that downlink channel for receiving data
CSMA-Based Wireless Random Access Techniques

- Carrier-Sense Multiple Access (CSMA) or Listen Before Talk (LBT) schemes
- Unlike ALOHA-based protocol, users “sense” the channel to determine whether it is free or not
- Reduce chances of collision

Non-persistent CSMA

- Station does not sense channel continuously while it is busy
- If (channel == busy) then wait random time before sensing again
- LABEL: If (channel == idle) {
 transmit packet
}
 else {
 wait random time (backoff)
 when backoff expires Goto LABEL
 }

dfd
p-persistent CSMA

- Time is divided into slots
- Slot = maximum propagation delay
- If station has info to send

```cpp
if (channel == idle) {
    tx info with probability p
    with probability q = 1-p postpone action till next slot
} else {
    continue sensing channel till it becomes free
    start procedure again
}
```
- Algorithm is repeated for next slot

1-persistent CSMA

- A special case of p-persistent
- Info is transmitted as soon as the channel is sensed to be idle
- If an ACK is not received within a specified time:
 - Station waits a random time period
 - Resumes listening to channel to resend info
CSMA Protocols - Summary

Non-persistent:
- Transmit if idle
- If busy, wait random time and repeat process
- If collision, backoff

Constant or variable delay

Channel Busy

p-persistent:
- Transmit as soon as channel goes idle with prob. p
- Otherwise, delay one time slot and repeat process
- If collision, backoff

1-persistent:
- Transmit as soon as channel goes idle
- If collision, backoff

Throughput of CSMA Protocols

- Unslotted Nonpersistent CSMA
 \[S = \frac{Ge^{-aG}}{G(1+2a)+e^{-aG}} \]

- Slotted Nonpersistent CSMA
 \[S = \frac{aGe^{-aG}}{1-e^{-aG} + a} \]

- Unslotted 1-Persistent CSMA
 \[S = \frac{G[1+G+aG(1+G+aG/2)]e^{-G(1+2a)}}{G(1+2a)-(1-e^{-aG})+(1+aG)e^{-G[1+a]}} \]

- Slotted 1-Persistent CSMA
 \[S = \frac{G[1+a-e^{-aG}]e^{-G[1+a]}}{(1+a)(1-e^{-aG})+ae^{-G[1+a]}} \]
Throughput Figures for CSMA Protocols – cont’d

• For $a = 0.01$

• How does the performance look like for $a \sim 1$? What about $a >> 1$?

• Check the answer in figure 4.19

Delay Figure for CSMA Protocols

• Delay Figure
Hidden Terminal Problem

- Two terminals communicating in with one access point (AP)
 - Out of the coverage of each other → can not sense whether the channel is idle or busy
 - Degrades CSMA performance because of increased collisions

Capture Effect

- Collision between packets does not necessarily mean both packets are corrupted – the one arriving at with the highest Eb/No may survive
- The AP detects the packet from the closest station
 - This increases throughput – higher than predicted – why?
- Capture can improve throughput and reduce delay for slotted ALOHA and non-persistent CSMA – See example in book by Pahlavan
Example 1:

• A centralized network providing a maximum of 10 Mbps and services a large set of user terminal with pure ALOHA protocol

a) What is the maximum throughput for network?
b) What is the offered traffic in the medium and how is it composed?

Solution:
a) $S_{max} = 18\% \rightarrow \text{Network throughput} = 0.18 \times 10 = 1.8 \text{ Mbps}$
b) At $S = S_{max}$, $G = 0.5$,

$\Rightarrow \text{Offered load} = 0.5 \times 10 = 5 \text{ Mbps}$

$1.8 \text{ Mbps of delivered packets}$

$+ \quad 3.2 \text{ Mbps of collided packets}$

Example 2:

a) Determine the transfer time of a 20 kB file with a mobile data network with a transmission rate of 10 kb/s?
b) Repeat for an 802.11 WLAN operating at 2 Mb/s
c) What is the length of the file that the WLAN of part (b) can carry in the time that mobile data service of (a) carries its 20 kB file?
Example 2: cont’d

a) This file limit is used by ARDIS and Mobitex
Time = 20 (kB) \times 8 (b/B) / 10 kb/s = 16.38 seconds

b) An IEEE 802.11 network operating at 2 Mb/s would transfer the file in 20 \times 1024 \times 8 / 2e6 = 81.9 msec

c) In 16.38 seconds, the IEEE 802.11 WLAN would transfer = 16.38 \times 2e6 / 1024 / 1024 = 3.9 MB file

CSMA with Collision Detection (CSMA/CD)

- Used for wired LANs
- Adopted in the IEEE802.3 (Ethernet) standard
- Can support up to Giga bits per second
- The MAC protocol
 1) Wait until the channel is idle
 2) Transmit and listen while transmitting
 3) If collision, stop packet, transmit a jam signal, and then wait for a random delay
 4) Goto (1)
- Protocol gives up transmission after 16 attempts

Note: no feedback mechanism for CSMA/CD is required
Binary Exponential Back-off

- For a terminal that have collided \(n (n=1, \ldots,15) \) successive times:
 - Choose a random number \(K \) from set \(\{0, 1, 2, \ldots, 2^{m-1}\} \), where \(m = \min(10,n) \) – uniform distribution
 - Wait for \(K \) time slots
 - E.g. after first collision – terminal waits either 0 or 1 time slot
 - after 2\(^{nd}\) collision – terminal waits either 0, 1, 2, or 3 time slots, and so on
- The probability of repeated collisions is reduced significantly
- E.g. What is the probability that two terminals will collide the 4\(^{th}\) time if they have collided 3 consecutive times?
 - Soln: \(\text{Prob}[\text{both choose the same random number for the 4}\(^{th}\) time] = 8 \times \frac{1}{8} \times \frac{1}{8} = \frac{1}{8} \)

CDMA/CD – Performance

- Time slot = 2 \(\times \) Tprop
- The time which guarantees that all terminals know (receives the jamming signal) of the collision
- By 3 \(\times \) Tprop – the channel is clear

- Efficiency of CSMA/CD \(\approx \frac{1}{1+3a} \) – where \(a = \frac{Tprop}{Tframe} \)
 - \(\text{Prob}[\text{1 terminal transmits}] = \beta = Np(1-p)^{N-1} \)
 - This probability is maximized if \(p = 1/N \)
 - For large \(N \) \(\Rightarrow \text{Prob}[\text{1 terminal transmits}] = \beta \approx 0.4 \)
 - Let \(A \) be number of time slots waisted till a successful tx goes through, therefore \(A = \beta x 0 + (1- \beta)x(1+A) \)
 - \(A = 1.5 \)
 - Therefore Efficiency = \(Tframe/(Tframe + 1.5 \times 2^a \times \text{Tprop}) \), or \(= \frac{1}{1+3a} \)
 - Actual performance is closer to \(= \frac{1}{1+5a} \)
CDMA for Wireless Links

- Collision detection is not possible – Why?
- Collision avoidance is used ➔ CSMA/CA
- Employed by IEEE802.11
 - IFS: Intra-frame spacing – intervals between CWs
 - CW: contention window: contention and tx of packets
 - Backoff counter

Prioritization can be achieved by assigning different IFS intervals.

Combing Method

- Another alternative for collision avoidance
- Example:
Request-to-Send and Clear-to-Send

- A third alternative for collision avoidance
- Employed by IEEE802.11
- No contention

Delay Analysis for ALOHA

- For a given packet transmission, the overall delay, D, is given by
 \[D_p = T_p + T_{prop} + T_{proc} + T_{ack} + T_{prop} \]
 or
 \[D_p \approx T_p + 2T_{prop} \]
where
- \(T_p \) = time to transmit a packet
- \(T_{prop} \) = propagation time
- \(T_{ack} \) = time to transmit ACK/NACK
- \(T_{proc} \) = processing time at the receiver

Let the probability of successful transmission = \(P_s \)
Then Probability of needing \(n \) successive transmissions to one packet is given by
\[\text{Prob}[\text{n transmission per packet }] = (1-\text{Ps})^{n-1}\text{Ps} \quad n=1,2, \ldots \]
The average number of transmissions needed to deliver one packet, \(N_{avg} \), is given by
\[N_{avg} = \sum n \times \text{Prob}[\text{n transmission per packet }] \quad \text{for } n=1,2,3, \ldots \]
\[= 1/\text{Ps} \]
Overall average delay per packet is given by
\[\text{Delay} = N_{avg} \times D_p = T_p (1+2a)/Ps \]

Remember (refer to previous ALOHA slides)
For pure ALOHA: \(P_s = \exp(-2G) \)
For slotted ALOHA: \(P_s = \exp(-G) \)
Delay Analysis for ALOHA

- For pure ALOHA:
 - At $S = S_{\text{max}} = 18\%$
 - $G = 0.5$, and
 - $D = (1+2a) \exp(1) = 2.7*(1+2a)$

- For slotted ALOHA:
 - At $S = S_{\text{max}} = 36\%$
 - $G = 1$, and
 - $D = (1+2a) \exp(1) = 2.7*(1+2a)$

Integration of Data in Voice Networks

- CDPD: Mobile data over AMPS
 - Overlaid packet data service supporting data rates up to 19.2 kb/s
 - Unused AMPS channels are into random access channels
 - Air-interface and physical layer for CDPD and AMPS are different

- GPRS: Mobile data over GSM
 - Can support up to 170 kb/s
 - Same physical layer as GSM
 - Traffic over GPRS is routed to the packet switched network rather than PSTN
Integration of Data in Voice Networks – Capacity Issues

- General approach: dedicate \(n \) (\(n=0, 1, .., c \)) channels out of \(c \) for data use
 - Data traffic can also use the other \(c-n \) voice channels when channels are idle
 - Refer to analysis in the book
 - Average active period where a channel is available for data
 - Mean length of blackout period
- For TDMA
 - Movable Boundary TDMA scheme with silence detection

Integration of Voice in Data Networks

- Voice is a synchronous traffic
 - Delay intolerable – voice packets with delay greater than \(T_{\text{threshold}} \) are useless
 - Delay jitter
 - Receiver my buffer packets to compensate for jitter
Definition of Delay Jitter

- **End-to-End Delay** = Minimum Network Delay + Delay Jitter – note packets are transmitted at a constant rate

![Diagram of delay jitter](image)

Integration of Voice in Data Networks - Example

![Diagram of voice integration](image)
Integration of Voice in Data Networks

(a) Throughput of data versus number of voice users for variety of thresholds for acceptable delay in voice packets
(b) Data packet time delay versus number of voice users