Lecture Contents

1.
Main References

- J. Williams, “The IEEE802.11b Security Problem, Part 1,” IT Professional, November-December 2001, pp. 91-95 (and the references therein)

Wireless Media

- RF is a shared media
 - Wireless communication is more susceptible to eaves dropping
- No privacy
- The presence of the communication request does not uniquely identify the originator

- Need for Privacy and Authentication
None Cryptographic Means

- Number Assigned Module (NAM) and Electronic Serial Number (ESN)
 - Used for authentication
- Using the > 900 MHz band
 - Outside the range of typical scanners
- Which is more secure FDMA, TDMA, or CDMA?
- None cryptographic methods usually do not provide the proper solution

Levels of Privacy

- Level 0: None – with no privacy enabled
 - Anyone with digital scanner can monitor calls
 - A "lack of privacy" indicator should be provided – a public trust issue
- Level 1: Equivalent to Wireline
 - Most people assume wireline calls are secure – eavesdropping can be detected – not as in wireless
 - Used for routine every day calls
 - Would take a year or so to break encryption – would require same effort to break every call
- Level 2: Commercially Secure
 - For proprietary info
 - Would take 10~25 yrs to break encryption – would require same effort to break every call
- Level 3: Military/Government Secure
 - None breakable?

http://www.philzimmermann.com/
Privacy Requirements

- Privacy of Call Setup Information
 - Calling #, calling card #, type of service, etc.
- Privacy of Speech
 - Must be encoded and none interceptable
- Privacy of Data
 - Must be encoded and none interceptable
- Privacy of User Location
 - Location should not be disclosed – encrypting user id
 - Remember HLR and VLR have this info – must not be subject to attacks

Privacy Requirements – cont’d

- Privacy of User ID
 - User ID may be encrypted
 - Prevents analysis of calling patterns for this ID – VERY IMPORTANT
- Privacy of Calling Patterns
 - No info sent from mobile should allow traffic analysis
 - This info: calling #, frequency of use, caller identity
- Financial Transactions
 - Visa card # or bank transactions over the air!!
 - Securing the DTMF
Privacy Requirements

Theft Resistance Requirements

- Cryptographic design should make the reuse of stolen personal terminal difficult
 - Even if registered to a new legitimate account
- Clone Resistant Design
 - Mobile unique info must not be compromised
 - Over the air – eaves dropping
 - From the network – secure databases
 - From network interconnect – info passed between systems for security checking of roaming mobiles must have enough info to authenticate the mobile and not enough info to clone it!!
 - From users cloning their own mobiles
Theft Resistance Requirements – cont’d

- Installation Fraud
 - Cryptographic system must be designed to that installation cloning is reduced or eliminated
- Repair Fraud
- Unique User ID
 - Identify the correct person using the mobile for billing purposes
- Unique mobile ID
 - Different than user ID
 - Smart card or PCMCIA card containing all security info

Radio System Requirements

- Multipath Fading
 - Immune to sever burst errors
- Thermal Noise/Interference
 - The modulation scheme and the cryptographic system must be designed so that interference with shared users of the spectrum does not compromise the security of the system
- Jamming
 - Should work in the face of jamming – does not break
- Support for Handovers
Other Requirements

• Lifetime of ~20 years:
 • An algorithm that is secure today may be breakable in 5 to 10 years

• Physical Requirements:
 • Mass production
 • Exported and Imported
 • Minimal impact on handset size, weight, power consumption, etc.
 • Low-cost Level 1 implementation

Other Requirements – cont’d

• Law Enforcement Requirements
 • With the right court order, the law enforcement should be able to tap into the wireless calls
 • Over the air:
 • No encryption – easy
 • Breakable encryption
 • Strong encryption – problematic – need to obtain key
 • Wiretap at switch:
 • Preferred method – easiest
Network Security - Services

- (Def): Specific measures employing security mechanisms that combat security attacks on a network
- Include:
 - Confidentiality or Privacy: resistance to interception
 - Message Authentication: integrity of message and a guarantee that the sender is who he/she claims to be – Attacks: message modification or impersonation of sender
 - Nonrepudiation: service against denial by either party of creating or acknowledging a message – similar to digital signatures based on public key encryption – Attacks: fabrication
 - Access Control: only authorized entities can access – Attacks Masquerading
 - Availability: access to resources is not prevented by malicious entities (remember www.aljazeera.net!!) – Attacks: denial of service

Privacy

- Encryption
 - one way of providing most of the previously listed services
 - SHOULD be computationally secure – non breakable ideally
- Terms:
 - Message – plaintext or cleartext
 - Encoded version – ciphertext
 - Key – k
- Time and Cost to break the scheme should be significant relative to protected value
 - Should assume interceptor has access to plaintext-ciphertext pairs
Conventional Encryption Model

- Secret-Key Algorithm

\[y = e_k(x) : \text{Ciphertext} \]
\[x = d_k(y) : \text{Plaintext} \]

Date Encryption Standard (DES)

- A symmetric key algorithm
 - Key used for encryption is the same as that used for decryption
- Two Principles:
 - Confusion \(\leftrightarrow \) scrambling of original data
 - Diffusion \(\leftrightarrow \) creating randomness – can not relate changes to plaintext to those of ciphertext
- Most secret-key algorithms are unbreakable except by brute-force
 - Key length of n bits \(\rightarrow \) at least \(2^{n-1} \) steps to break encryption
- Main advantage – fast; appropriate for fast data streams
 - Compared to public-key algorithms
Date Encryption Standard (DES) – cont’d

- Usually a key size of 128 bits is recommended

Public-key Algorithms

- Every pair of users have to have a key
 - A network of N users require the distribution of N(N-1)/2 keys!
 - Large and impractical for large N

- Key distribution schemes:
 - Needham-Schroeder
 - Kerberos

- Concept introduced by Diffie and Hellman in 1977
Public-key Algorithms – cont’d

• It is extremely easy to compute \(y = f(k_{pub}, x) \)
• Given \(k_{pub} \) and \(y \), it is computationally not feasible to determine \(x = f^{-1}(k_{pub}, y) \)
• With a knowledge of \(k_{prv} \) that is related to \(k_{pub} \), it is easy to determine \(x = f^{-1}(k_{prv}, y) \)

\[y = e_{k_{pub}}(x) : \text{Ciphertext} \]
\[x = d_{k_{prv}}(y) : \text{Plaintext} \]

Oscar knows \(k_{pub, bob} \)

Public-key Algorithms – cont’d

• \(f \approx \) belongs to a group of functions referred to as a trapdoor one-way function - e.g. factorization problem and discrete logarithm

• Since \(k_{pub} \) is available and the method is based on a mathematical structure \(\Rightarrow \) need to be 3 to 15 times larger than the secret-key counter parts

• Elliptic Mathematics (refer to: http://world.std.com/~dpj/elliptic.html) provides a mean to use smaller keys with same level of secuirty
Public-key Algorithms – Examples

- Rivest-Shamir-Adelman (RSA)
 - Employs integer factorization
 - Most popular
- Diffie-Hellman key-exchange
 - Based on discrete logarithm
 - Wireless networks
 - Used for key exchange for web transactions, e-commerce, IP security.
 - See appendix 6A for details
- Digital Signature Standard (DSS)
 - Based on discrete logarithms

Public-key Algorithms – Characteristics

- Computationally intensive
- Encryption rates quite small
- Rarely used for bulk data transfer
- Usually used to exchange a session key – to use a secret-key algorithm for later communications
 - Different session key each time!
Cost Equivalent Key Lengths (in Bits) of Various Encryption Schemes

<table>
<thead>
<tr>
<th>Secret-key Algorithm</th>
<th>Elliptic Curve</th>
<th>RSA</th>
<th>Time to Break</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>112</td>
<td>430</td>
<td>Less than 5 mins</td>
<td>Trivial</td>
</tr>
<tr>
<td>80</td>
<td>160</td>
<td>760</td>
<td>600 months</td>
<td>4 Gb</td>
</tr>
<tr>
<td>96</td>
<td>192</td>
<td>1,020</td>
<td>3 million years</td>
<td>170 Gb</td>
</tr>
<tr>
<td>128</td>
<td>256</td>
<td>1,620</td>
<td>10^{16} years</td>
<td>120 Tb</td>
</tr>
</tbody>
</table>

Block vs. Stream Ciphers

- **Block Ciphers** – DES and Advanced Encryption Standard (AES)
 - Encrypt blocks of data at a time
 - Requires buffering and padding
- **Stream Ciphers** – no need for buffering
 - More suitable for a jitter-sensitive service
 - Usually a simple XOR operation is used

Example:
- IEEE802.11 employs the encryption algorithm RC-4 to generate a pseudorandom key stream using a 40-bit master key and an initial vector (IV)
- Data is simply XORed with the key to create ciphertext
Message Authentication

- Involved:
 - Sender authentication
 - Message integrity

- This is accomplished using a message digest (MD) and a message authentication code (MAC)

Message Authentication Code (MAC)

- MAC creates a fixed-length sequence of bits that depend on the message and the secret key
 - Not a function of message size
 - It is computationally infeasible to generate the MAC without the original message and key
- Message is then delivered (with the MAC) to destination
- Receiver computes MAC again based on received message
- New MAC is equal to old MAC IFF message was not tampered with (remember secret key is a secret!)
Message Digest (MD)

- MD depends only on the message x
- A hash function, h, is used to create the MD, h(x)
- The MD is appended to the message x \(\Rightarrow x \ || \ h(x) \)
- The newly overall message \(x \ || \ h(x) \) is encrypted using the secret-key
- h(x) has to be sufficiently long
 - For a b bit h(x) \(\Rightarrow \) a fake message with same h(x) can be generated in \(2^b/2 \) trails

Message Authentication with Hash Functions

What is a hash function?
Refer to http://www.rsasecurity.com/rsalabs/faq/2-1-6.html
MD and HMAC C++ code

- **Message Digest (MD)** provides applications the functionality of a message digest algorithm, such as MD5 or SHA. Message digests are secure one-way hash functions that take arbitrary-sized data and output a fixed-length hash value.

- **Message Authentication Code (MAC)** Since everyone can generate the message digest, it may not be suitable for some security related applications. Because of this, Anvil+ also supports HMAC (rfc2104), which is a mechanism for message authentication using a (secret) key. So you can use a key with a hash algorithm to produce hashes that can only be verified using the same key.

* Anvil is a crypto library that can create message hash codes or checksums from any data. It is posted on the webpage listed above.

Identification Schemes

- **Need:**
 - Access to an automatic teller machine
 - Logging on to a computer
 - Identifying a user of a cellular phone
 - Etc.

- **Identification = entity authentication**
 - A password or a pin compared to a securely stored hash value
 - Susceptible to replay attacks if transmitted over-the-air in an insecure manner

- **Challenge-Response identification or Strong identification**
 - Used in wireless networks
Identification Schemes – cont’d

- A nonce: a value employed no more than once for the same purpose
 - Eliminates *replay* attacks

Example:
1. Consider an IS-136 digital TDMA network
2. The network (BSS) generates a random # RANDU and sends it over the air to mobile
3. Mobile computes a value AUTHU using the encryption algorithm Cellular Authentication and Voice Encryption (CAVE)
4. AUTHU is sent to network and compared with a computed version at the network
5. If the two AUTHU match → the mobile is authenticated – using IS-41 terminology

Identification Schemes – cont’d

Example: Challenge-Response mechanism in IS-41
1. Consider an IS-136 digital TDMA network
2. The network (BSS) generates a random # RANDU and sends it over the air to mobile
3. Mobile computes a value AUTHU using the encryption algorithm Cellular Authentication and Voice Encryption (CAVE)
4. AUTHU is sent to network and compared with a computed version at the network
5. If the two AUTHU match → the mobile is authenticated – using IS-41 terminology
IEEE802.11 Security & Privacy

- Objectives:
 - To provide a wired equivalent privacy (WEP)
 - To protect against
 - Eavesdropping
 - Unauthorized access

1. http://www.cs.umd.edu/~waa/wireless.html and the references therein especially the following paper: "Your 802.11 network has no clothes."

MAC Frame Format

- General MAC frame format & Control Field
- WEP = 1 → data bits are encrypted (refer to chapter 11 of Pahlavan)
Authentication Schemes for IEEE802.11

- Three schemes:
 1. Open system authentication
 - Default – uses SSID as a password to gain access
 - NULL Authentication function – authenticates anyone requesting authentication
 - Not secure
 2. Shared key authentication (WEP based)
 - 40-bits key
 - Not very secure
 - Standard does not specify key management or where to get this key from!!
 - Optional
 3. Access Control List (MAC address filtering)
 - MAC address based
 - Not scalable – requires manual setting
- Not available for ad-hoc

Authentication Schemes for IEEE802.11

<table>
<thead>
<tr>
<th>Request: authentication algorithm ID</th>
<th>Authentication Mgt request frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response: results of request</td>
<td>Challenge text (128 B)</td>
</tr>
<tr>
<td></td>
<td>Encrypted challenge text</td>
</tr>
<tr>
<td></td>
<td>Authentication result</td>
</tr>
</tbody>
</table>

Terminal AP

Open System Authentication

Shared-key Authentication

Challenge text: The challenge text is generated by using the WEP pseudo-random number generator (PRNG) with the “shared secret” and a random initialization vector (IV).

Challenge response: encrypted with WEP using the “shared secret” along with a new IV.
Privacy in IEEE802.11

![Diagram of Privacy in IEEE802.11]

RC4 Encryption (Stream Cipher)

- **Reasonable** strong:
 - A brute force attack on this algorithm is difficult since every frame is sent with a different IV
 - IV restarts the pseudo random number generator (PRNG) for each frame

- **Self-Synchronizing**:
 - Even if some intermediate frames are lost, the WEP algorithm resynchronizes at each frame
Encryption Keys

- Window of four keys
 - Can be manually configured – up to four keys
 - Each is 40 bits (5 ascii or 10 hex digits)
 - For all network
- Key-mapping table
 - Each unique MAC address has separate keys – one per device
 - Need to be configured manually
 - Most secure