William Stallings Data and Computer Communications

Chapter 1 Introduction

A Communications Model

- Source
 - generates data to be transmitted
- Transmitter
 - Converts data into transmittable signals
- Transmission System
 - Carries data
- Receiver
 - I Converts received signal into data
- Destination
 - Takes incoming data

Key Communications Tasks

- Transmission System Utilization
- Interfacing
- Signal Generation
- Synchronization
- **■** Exchange Management
- Error detection and correction
- Addressing and routing
- Recovery
- Message formatting
- Security
- Network Management

Simplified Data Communications Model

Networking

- Point to point communication not usually practical
 - Devices are too far apart
 - Large set of devices would need impractical number of connections
- Solution is a communications network

Wide Area Networks

- Large geographical area
- Crossing public rights of way
- Rely in part on common carrier circuits
- Alternative technologies
 - Circuit switching
 - Packet switching
 - Frame relay
 - Asynchronous Transfer Mode (ATM)

Circuit Switching

- Dedicated communications path established for the duration of the conversation
- e.g. telephone network

Packet Switching

- Data sent out of sequence
- Small chunks (packets) of data at a time
- Packets passed from node to node between source and destination
- Used for terminal to computer and computer to computer communications

Frame Relay

- Packet switching systems have large overheads to compensate for errors
- Modern systems are more reliable
- Errors can be caught in end system
- Most overhead for error control is stripped out

Asynchronous Transfer Mode

- ATM
- Evolution of frame relay
- Little overhead for error control
- Fixed packet (called cell) length
- Anything from 10Mbps to Gbps
- Constant data rate using packet switching technique

Integrated Services Digital Network

- ISDN
- Designed to replace public telecom system
- Wide variety of services
- Entirely digital domain

Local Area Networks

- Smaller scope
 - Building or small campus
- Usually owned by same organization as attached devices
- Data rates much higher
- Usually broadcast systems
- Now some switched systems and ATM are being introduced

Protocols

- Used for communications between entities in a system
- Must speak the same language
- **■** Entities
 - User applications
 - e-mail facilities
 - I terminals
- Systems
 - Computer
 - I Terminal
 - Remote sensor

Key Elements of a Protocol

- Syntax
 - Data formats
 - Signal levels
- Semantics
 - Control information
 - Error handling
- Timing
 - Speed matching
 - Sequencing

Protocol Architecture

- Task of communication broken up into modules
- For example file transfer could use three modules
 - File transfer application
 - I Communication service module
 - Network access module

Simplified File Transfer Architecture Computer X Computer Y Files and file transfer commands File transfer File transfer application application Communications-related data units Communications Communications service module service module Network access Communications Network access module network module Network interfac Network interface logic logic

A Three Layer Model

- Network Access Layer
- Transport Layer
- Application Layer

Network Access Layer

- Exchange of data between the computer and the network
- Sending computer provides address of destination
- May invoke levels of service
- Dependent on type of network used (LAN, packet switched etc.)

Transport Layer

- Reliable data exchange
- Independent of network being used
- Independent of application

Application Layer

- Support for different user applications
- e.g. e-mail, file transfer

Addressing Requirements

- Two levels of addressing required
- Each computer needs unique network address
- Each application on a (multi-tasking) computer needs a unique address within the computer
 - The service access point or SAP

Protocols in Simplified Architecture

Protocol Data Units (PDU)

- At each layer, protocols are used to communicate
- Control information is added to user data at each layer
- Transport layer may fragment user data
- Each fragment has a transport header added
 - Destination SAP
 - Sequence number
 - Error detection code
- This gives a transport protocol data unit

Network PDU

- Adds network header
 - I network address for destination computer
 - Facilities requests

TCP/IP Protocol Architecture

- Developed by the US Defense Advanced Research Project Agency (DARPA) for its packet switched network (ARPANET)
- Used by the global Internet
- No official model but a working one.
 - Application layer
 - Host to host or transport layer
 - Internet layer
 - Network access layer
 - Physical layer

Physical Layer

- Physical interface between data transmission device (e.g. computer) and transmission medium or network
- Characteristics of transmission medium
- Signal levels
- Data rates
- etc.

Network Access Layer

- Exchange of data between end system and network
- Destination address provision
- Invoking services like priority

Internet Layer (IP)

- Systems may be attached to different networks
- Routing functions across multiple networks
- Implemented in end systems and routers

Transport Layer (TCP)

- Reliable delivery of data
- Ordering of delivery

Application Layer

- Support for user applications
- e.g. http, SMPT

OSI Model

- Open Systems Interconnection
- Developed by the International Organization for Standardization (ISO)
- Seven layers
- A theoretical system delivered too late!
- TCP/IP is the de facto standard

OSI Layers

- Application
- Presentation
- Session
- Transport
- Network
- Data Link
- Physical

Standards

- Required to allow for interoperability between equipment
- Advantages
 - Ensures a large market for equipment and software
 - Allows products from different vendors to communicate
- Disadvantages
 - Freeze technology
 - May be multiple standards for the same thing

Standards Organizations

- Internet Society
- **■** ISO
- ITU-T (formally CCITT)
- ATM forum

Further Reading

- Stallings, W. Data and Computer Communications (6th edition), Prentice Hall 1999 chapter 1
- Web site for Stallings bookwww.shore.net/~ws/DCC6e.html
- Web sites for IETF, IEEE, ITU-T, ISO
- Internet Requests for Comment (RFCs)
- Usenet News groups
 - comp.dcom.*
 - I comp.protocols.tcp-ip