William Stallings Data and Computer Communications

Chapter 2 Protocols and Architecture

Characteristics

- Direct or indirect
- Monolithic or structured
- Symmetric or asymmetric
- Standard or nonstandard

Direct or Indirect

- Direct
 - I Systems share a point to point link or
 - Systems share a multi-point link
 - Data can pass without intervening active agent
- Indirect
 - Switched networks or
 - Internetworks or internets
 - Data transfer depend on other entities

Monolithic or Structured

- Communications is a complex task
- To complex for single unit
- Structured design breaks down problem into smaller units
- Layered structure

Symmetric or Asymmetric

- Symmetric
 - I Communication between peer entities
- Asymmetric
 - Client/server

Standard or Nonstandard

- Nonstandard protocols built for specific computers and tasks
- K sources and L receivers leads to K*L protocols and 2*K*L implementations
- If common protocol used, K + L implementations needed

Use of Standard Protocols

(a) Without standards: 12 different protocols; 24 protocol implementations

(a) With standards: 1 protocol; 7 implementations

Functions

- Encapsulation
- Segmentation and reassmebly
- Connection control
- Ordered delivery
- Flow control
- Error control
- Addressing
- Multiplexing
- Transmission services

Encapsulation

- Addition of control information to data
 - Address information
 - Error-detecting code
 - Protocol control

Segmentation (Fragmentation)

- Data blocks are of bounded size
- Application layer messages may be large
- Network packets may be smaller
- Splitting larger blocks into smaller ones is segmentation (or fragmentation in TCP/IP)
 - I ATM blocks (cells) are 53 octets long
 - Ethernet blocks (frames) are up to 1526 octets long
- Checkpoints and restart/recovery

Why Fragment?

- Advantages
 - More efficient error control
 - More equitable access to network facilities
 - Shorter delays
 - Smaller buffers needed
- Disadvantages
 - Overheads
 - I Increased interrupts at receiver
 - More processing time

Connection Control

- Connection Establishment
- Data transfer
- Connection termination
- May be connection interruption and recovery
- Sequence numbers used for
 - Ordered delivery
 - Flow control
 - Error control

Ordered Delivery

- PDUs may traverse different paths through network
- PDUs may arrive out of order
- Sequentially number PDUs to allow for ordering

Flow Control

- Done by receiving entity
- Limit amount or rate of data
- Stop and wait
- Credit systems
 - Sliding window
- Needed at application as well as network layers

Error Control

- Guard against loss or damage
- Error detection
 - Sender inserts error detecting bits
 - I Receiver checks these bits
 - I If OK, acknowledge
 - If error, discard packet
- Retransmission
 - If no acknowledge in given time, re-transmit
- Performed at various levels

Addressing

- Addressing level
- Addressing scope
- Connection identifiers
- Addressing mode

Addressing level

- Level in architecture at which entity is named
- Unique address for each end system (computer) and router
- Network level address
 - IP or internet address (TCP/IP)
 - Network service access point or NSAP (OSI)
- Process within the system
 - Port number (TCP/IP)
 - Service access point or SAP (OSI)

Addressing Scope

- Global nonambiguity
 - Global address identifies unique system
 - There is only one system with address X
- Global applicability
 - I it is possible at any system (any address) to identify any other system (address) by the global address of the other system
 - Address X identifies that system from anywhere on the network
- e.g. MAC address on IEEE 802 networks

Connection Identifiers

- Connection oriented data transfer (virtual circuits)
- Allocate a connection name during the transfer phase
 - Reduced overhead as connection identifiers are shorter than global addresses
 - Routing may be fixed and identified by connection name
 - Entities may want multiple connections multiplexing
 - State information

Addressing Mode

- Usually an address refers to a single system
 - Unicast address
 - Sent to one machine or person
- May address all entities within a domain
 - Broadcast
 - Sent to all machines or users
- May address a subset of the entities in a domain
 - Multicast
 - Sent to some machines or a group of users

Multiplexing

- Supporting multiple connections on one machine
- Mapping of multiple connections at one level to a single connection at another
 - Carrying a number of connections on one fiber optic cable
 - Aggregating or bonding ISDN lines to gain bandwidth

Transmission Services

- Priority
 - e.g. control messages
- Quality of service
 - Minimum acceptable throughput
 - I Maximum acceptable delay
- Security
 - Access restrictions

OSI - The Model

- A layer model
- Each layer performs a subset of the required communication functions
- Each layer relies on the next lower layer to perform more primitive functions
- Each layer provides services to the next higher layer
- Changes in one layer should not require changes in other layers

Elements of Standardization

- Protocol specification
 - Operates between the same layer on two systems
 - May involve different operating system
 - Protocol specification must be precise
 - Format of data units
 - I Semantics of all fields
 - I allowable sequence of PCUs
- Service definition
 - I Functional description of what is provided
- Addressing
 - Referenced by SAPs

OSI Layers (1)

- Physical
 - Physical interface between devices
 - Mechanical
 - | Electrical
 - **I** Functional
 - 1 Procedural
- Data Link
 - Means of activating, maintaining and deactivating a reliable link
 - Error detection and control
 - I Higher layers may assume error free transmission

OSI Layers (2)

- Network
 - Transport of information
 - Higher layers do not need to know about underlying technology
 - Not needed on direct links
- Transport
 - I Exchange of data between end systems
 - Error free
 - I In sequence
 - No losses
 - No duplicates
 - I Quality of service

OSI Layers (3)

- Session
 - Control of dialogues between applications
 - Dialogue discipline
 - I Grouping
 - Recovery
- Presentation
 - Data formats and coding
 - Data compression
 - Encryption
- Application
 - Means for applications to access OSI environment

TCP/IP Protocol Suite

- Dominant commercial protocol architecture
- Specified and extensively used before OSI
- Developed by research funded US Department of Defense
- Used by the Internet

TCP/IP Protocol Architecture(1)

- Application Layer
 - I Communication between processes or applications
- End to end or transport layer (TCP/UDP/...)
 - End to end transfer of data
 - May include reliability mechanism (TCP)
 - Hides detail of underlying network
- Internet Layer (IP)
 - Routing of data

TCP/IP Protocol Architecture(2)

- Network Layer
 - Logical interface between end system and network
- Physical Layer
 - I Transmission medium
 - I Signal rate and encoding

Required Reading

- Stallings chapter 2
- Comer,D. Internetworking with TCP/IP volume I
- Comer,D. and Stevens,D. Internetworking with TCP/IP volume II and volume III, Prentice Hall
- Halsall, F> Data Communications, Computer Networks and Open Systems, Addison Wesley
- **■** RFCs