
ICS-233 Computer Architecture & Assembly Lang. (Term 062) 1

Lab# 4 BIT MANIPULATION INSTRUCTIONS

Instructor: I Putu Danu Raharja.

Objectives:
Learn to use MIPS bit manipulation instructions in assembly language programs.

Method:

Translate an algorithm from pseudo-code into assembly language.

Preparation:

Read the chapter 2 of lecture textbook.

4.1 INTRODUCTION
Every computer's architecture needs some bit manipulation instructions. At a

minimum, it could provide a NAND operation, since all other logical functions can be

derived from NAND operation.

These logical operations are semantically different to what is known as in most of high

level programming language. The difference lies down at the fact that bitwise logical

operations are performed at bit-by-bit basis.

4.2 BITWISE LOGICAL INSTRUCTIONS
Instructions Description

and rd, rs, rt rd = rs & rt
andi rt, rs, immediate rt = rs & immediate
or rd, rs, rt rd = rs | rt
ori rt, rs, immediate rd = rs | immediate
nor rd, rs, rt rd = ! (rs | rt)
xor rd, rs, rt To do a bitwise logical Exclusive OR.
xori rt, rs, immediate

The main usage of bitwise logical instructions are: to set, to clear, to invert, and to isolate

some selected bits in the destination operand. To do this, a source bit pattern known as a

mask is constructed. The Mask bits are chosen based on the following properties of AND,

OR, and XOR with Z represents a bit (either 0 or 1):

AND OR XOR
Z AND 0 = 0 Z OR 0 = Z Z XOR 0 = Z
Z AND 1 = Z Z OR 1 = 1 Z XOR 1 = ~Z

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 2

The AND instruction can be used to CLEAR specific destination bits while preserving

the others. A zero mask bit clears the corresponding destination bit; a one mask bit

preserves the corresponding destination bit.

The OR instruction can be used to SET specific destination bits while preserving the

others. A one mask bit sets the corresponding destination bit; a zero mask bit preserves

the corresponding destination bit.

The XOR instruction can be used to INVERT specific destination bits while preserving

the others. A one mask bit inverts the corresponding destination bit; a zero mask bit

preserves the corresponding destination bit.

A. Example 1:
The following code fragment will clear bit 2, 4, 6, and 7 of the register $t2:

 addi $t0, $zero, 0xFF2B
andi $t2, $t2, $t0

B. Example 2:
The following code fragment will set bit 7, 6, 5, 3 and 0 of the register $t2 using OR

operation:

 ori $t2, $t2, 0x00E9

C. Example 3:
The following code fragment will toggle bit 7, 2, and 0 of the register $t2 using XOR

operation:

 xori $t2, $t2, 0x85

4.3 SHIFT INSTRUCTIONS
Instructions Description

sll rd, rs, sa rd = rs << sa (Shift Left Logical)
sllv rd, rt, rs rd = rt << rs (To left-shift a word by a variable number of

bits)
sra rd, rs, sa The contents of the low-order 32-bit word of rt are shifted

right, duplicating the sign-bit (bit 31) in the emptied bits;
the word result is placed in rd. The bit-shift amount is
specified by sa.

srav rd, rt, rs rd = rt >> rs (Arithmetic)

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 3

Instructions Description
srl rd, rs, sa rd = rs >> sa (Shift Right Logical)
srlv rd, rt, rs rd = rt >> rs

Logical Shift instructions are useful mainly in these situations:

1. To manipulate bits;

2. To multiply and divide unsigned numbers by a power of 2.

A. Example 1
The following code fragment will multiply the content of register $t0 with 80:

 sll $t1, $t0, 4 # *16
 sll $t0, $t0, 6 # *64
 addu $t0, $t0, $t1

B. Example 2
Explain what the following code fragment will do?

addu $t1,$t0, $zero
sll $t0,$t0,4
srl $t1,$t1,4
or $t1,$t1,$t0

4.4 EXERCISES
1. Write a MIPS assembly language program that converts all lowercase letters of a

string to uppercase ones.

2. Write a MIPS assembly language program that displays the binary string of the

content of register $t0.

