
Lab# 13 A PIPELINED IMPLEMENTATION 

Instructor: I Putu Danu Raharja. 
 
Objectives: 
Learn how to observe pipelining mechanism. 

Method: 

Observing the effect of pipelining using PCSPIM simulator. 

Preparation: 

Read the slides. 

File To Use: 

13.1 OVERVIEW: 
As explained in the class, the 32-bit MIPS processor has a five-stage pipeline 

implementation. The functions performed in these five stages are as follows: 

1. Instruction Fetch Stage (IF): Fetch the instruction from cache memory and load 

it into the instruction register. Increment the program counter by four. 

2. Instruction Decode/register file read (ID): Fetch values Rs and Rt from the 

register file. If this is a branch instruction and the branch condition is met, then 

load the PC with the branch target address. 

3. Execution/address calculation (EX): Perform an arithmetic or logic operation in 

the ALU and load the result register. This is the stage where an addition is 

performed to calculate the effective address for a load or store instruction. 

4. Memory access (MEM): If the instruction is a load, a read from the data cache 

occurs. If the instruction is a store, write to the data to cache occurs. Otherwise, 

pass the data in the result register on to the write back register. 

5. Write back (WB): Store the value in the write back register to the register file. 

13.2 DATA HAZARD 
The term data hazard refers to the following situation. Suppose we have 3 sequential 

instructions x, y, and z that come into the pipeline and suppose also that x is the first 

instruction into the pipeline followed by y and z. If the results computed by instruction x 

are needed by y or z, then we have a data hazard. The hardware solution to this problem 

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 1



is to include forwarding paths in the machine's datapath so that even though the results 

have not yet been written back to the register file, the needed information is forwarded 

from the result register or the write back register to the input of the ALU. 

One type of data hazard cannot be solved with forwarding hardware. This is a situation 

where a load instruction is immediately followed by an instruction that would use the 

value fetched from memory. The only solution to this problem is to rearrange the 

assembly language code so that the instruction following the load is not an instruction 

that uses the value being fetched from memory. In recognition of this situation we refer to 

load instructions on pipelined processors as being delayed loads. If existing instructions 

in the algorithm cannot be rearranged to solve the data hazard then a no-operation (nop) 

instruction is placed in memory immediately following the load instruction. 

13.3 CONTROL HAZARD 
Associated with every branch or jump instruction we have a control hazard. The 

improvement of this kind of hazard is to assume that the branch will not be taken and 

thus continue execution down the sequential instruction stream. If the branch is taken, the 

instructions that are being fetched and decoded must be discarded. 

13.4 EXERCISE 
1. Download the file Lab13a.s from the Website. Run this program using single-step 

mode in a pipelined implementation. Fix the problems in such a way the program 

can run correctly. 

2. Download the file Lab13b.s from the Website. Fix the problems in such a way the 

program can run correctly. 

 

 

ICS-233 Computer Architecture & Assembly Lang. (Term 062) 2


	A Pipelined Implementation
	Overview:
	Data Hazard
	Control Hazard
	Exercise


