n

i

D

VENTH E

ok

AN

FM

F

LIOT B. KO

EL

RI R. HANLY |

JE

PROBLEM SOLVING AND
PROGRAM DESIGN

This page intentionally left blank

PROBLEM SOLVING AND
PROGRAM DESIGN

Jeri R. Hanly, University of Wyoming
Elliot B. Koffman, Temple University

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi
Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director, ECS: Marcia Horton Creative Director: Jayne Conte

Editor-in-Chief: Michael Hirsch Designer: Suzanne Behnke

Senior Project Manager: Carole Snyder Media Editor: Daniel Sandin

Director of Marketing: Patrice Jones Media Project Manager: John Cassar

Marketing Manager: Yezan Alayan Cover Image: (c) michael Holcomb/Shutterstock.com
Senior Marketing Coordinator: Kathryn Ferranti Full-Service Project Management: Mohinder Singh/
Director of Production: Vince O’Brien Aptara®, Inc.

Managing Editor: Jeff Holcomb Composition: Aptara®, Inc.

Associate Managing Editor: Robert Engelhardt Printer/Binder: Edwards Brothers

Production Manager: Pat Brown Cover Printer: Lehigh-Phoenix

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on appropriate page within text.

Photo Credits: Page 4: Fig. 0.1: akg-images/Paul Almasy/Newscom. Page 11: Fig. 0.4: © 2008 IEEE/Journal of
Microelectromechanical Systems (2006). Page 15: Fig. 1.1: Intel Corporation Pressroom Photo Archives. Page 16:
Fig. 1.2(a) ©Hugh Threlfall/Alamy; Fig. 1.2(b) Hewlett-Packard Company; Fig. 1.2(c) © D. Hurst/Alamy; Fig. 1.2(d)
Handout/MCT/Newscom.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries.
Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or
endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2013, 2010, 2007, 2004, and 2002 Pearson Education, Inc., publishing as Addison-Wesley.
All rights reserved. Printed in the United States of America. This publication is protected by Copyright, and permis-
sion should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Hanly, Jeri R.
Problem solving and program design in C/ Jeri R. Hanly, Elliot B. Koffman. —T7th ed.
p. cm.
ISBN-13: 978-0-13-293649-1
ISBN-10: 0-13-293649-6
1. C (Computer program language) I. Koffman, Elliot B. II. Title.

QA76.73.C15H363 2013

005.13'3—dc23 2012000375

10987654321

PEARSON ISBN 10: 0-13-293649-6
ISBN 13: 978-0-13-293649-1

This book is dedicated to

Jeri Hanly’s family:
Brian, Kevin, Laura, Trinity, and Alex
Eric, Jennifier, Mical, Micah, Josiah, and Rachel

Elliot Koffman'’s family:
Caryn and Deborah
Richard, Jacquie, and Dustin
Robin, Jeffrey, Jonathan, and Eliana

This page intentionally left blank

PREFACE

Problem Solving and Program Design in C teaches a disciplined approach to prob-
lem solving, applying widely accepted software engineering methods to design
program solutions as cohesive, readable, reusable modules. We present as an
implementation vehicle for these modules a subset of ANSI C—a standardized,
industrial-strength programming language known for its power and portability. This
text can be used for a first course in programming methods: It assumes no prior
knowledge of computers or programming. The text’s broad selection of case studies
and exercises allows an instructor to design an introductory programming course in
C for computer science majors or for students from a wide range of other disciplines.

New to this Edition
Several changes to this edition are listed below:

* Chapters 3 (Functions), 5 (Loops), and 7 (Arrays) include optional sections on
graphics programming

e Chapter 6 (Pointers and Modular Programming) includes a new section 6.1
on pointers

e New complete programs show use of if statements in Chapter 4

e New complete program shows use of switch statement in Chapter 4

e Chapter 7 (Simple Data Types) in previous edition is eliminated and its
contents integrated into other chapters of the book

e Hardware examples in Chapter 1 are updated to reflect current technology

e Several chapters contain new programming project homework problems

More About Graphics Many Computer Science faculty have recommended the
use of graphics to help motivate the study of introductory programming and as a
vehicle to help students understand how to use libraries and to call functions. We
agree with this viewpoint and have included three optional sections with graphics
examples in this edition. The new graphics sections include:

Section 3.6: Introduction to Computer Graphics
Section 5.11: Loops in Graphics Programs
Section 7.10: Graphics Programs with Arrays

To reduce the overhead required to introduce graphics, we decided to use
WinBGIm (Windows BGI with mouse), which is a package based on the Turbo

Viii Preface

1=

File Edit Wiew Project Debug Tools Window Help

DI ER| LI BBRBR2 920/ F) @i a®ited & & w
Project Properties

Target name: Igraphics_proiect_'l

Target path: I Browsze. ..

whorking directany: Iu\Documents\E revigionhC graphics programs Browsze...

— Tupe of Build
" Caonsole application ™ Object Library

" Win32 GUI application DLL
% winBGIm Graphics application

" koolplat application ¥ With Console

Extra FLTE libraries |zelect if needed]—
" FLTK application ’7|— Forms T~ OpenGL T Images

Press F1 for help [n -1, Col -1 [nom
FIGURE 1

Pascal BGI (Borland Graphics Interface) library. WinBGIm was created to run
on top of the Win32 library by Michael Main and his students at the University of
Colorado. Several development platforms appropriate for CS 1 courses have incor-
porated WinBGIm. Quincy (developed by Al Stevens) is an open-source student-
oriented C++ IDE that includes WinBGIm as well as more advanced libraries
(http://www.codecutter.net/tools/quincy). Figure 1 shows the Quincy new project
window (File = New — Project) with WinBGIm Graphics application selected.

A command-line platform based on the open-source GNU g++ compiler and
the emacs program editor is distributed by the University of Colorado (http:/www.
codecutter.net/tools/winbgim). WinBGIm is also available for Bloodshed Software’s
Dev-C++ and Microsoft’s Visual Studio C++.

Using C to Teach Program Development

Two of our goals—teaching program design and teaching C—may be seen by some
as contradictory. C is widely perceived as a language to be tackled only after one has
learned the fundamentals of programming in some other, friendlier language. The

http://www.codecutter.net/tools/quincy
http://www.codecutter.net/tools/winbgim
http://www.codecutter.net/tools/winbgim

Preface ix

perception that C is excessively difficult is traceable to the history of the language.
Designed as a vehicle for programming the UNIX operating system, C found its
original clientele among programmers who understood the complexities of the oper-
ating system and the underlying machine and who considered it natural to exploit
this knowledge in their programs. Therefore, it is not surprising that many textbooks
whose primary goal is to teach C expose the student to program examples requir-
ing an understanding of machine concepts that are not in the syllabus of a standard
introductory programming course.

In this text, we are able to teach both a rational approach to program devel-
opment and an introduction to ANSI C because we have chosen the first goal as
our primary one. One might fear that this choice would lead to a watered-down
treatment of ANSI C. On the contrary, we find that the blended presentation of
programming concepts and of the implementation of these concepts in C captures
a focused picture of the power of ANSI C as a high-level programming language,
a picture that is often blurred in texts whose foremost objective is the coverage of
all of ANSI C. Even following this approach of giving program design precedence
over discussion of C language features, we have arrived at coverage of the essential
constructs of C that is quite comprehensive.

Pointers and the Organization of the Book

The order in which C language topics are presented is dictated by our view of the
needs of the beginning programmer rather than by the structure of the C programming
language. The reader may be surprised to discover that there is no chapter entitled
“Pointers.” This missing chapter title follows from our treatment of C as a high-level
language, not from an absence of awareness of the critical role of pointers in C.

Whereas other high-level languages have separate language constructs for out-
put parameters and arrays, C openly folds these concepts into its notion of a pointer,
drastically increasing the complexity of learning the language. We simplify the
learning process by discussing pointers from these separate perspectives where such
topics normally arise when teaching other programming languages, thus, allowing
a student to absorb the intricacies of pointer usage a little at a time. Our approach
makes possible the presentation of fundamental concepts using traditional high-
level language terminology—output parameter, array, array subscript, string—and
makes it easier for students without prior assembly language background to master
the many facets of pointer usage.

Therefore, this text has not one but four chapters that focus on pointers.
Chapter 6 (Pointers and Modular Programming) begins with a discussion of point-
ers, indirect reference, and the use of pointers to files (moved from Chapter 2). It
then discusses the use of pointers as simple output and input/output parameters,
Chapter 7 deals with arrays, Chapter 8 presents strings and arrays of pointers.
Chapter 11 discusses file pointers again. Chapter 13 describes dynamic memory
allocation after reviewing pointer uses previously covered.

X

Preface

Software Engineering Concepts

The book presents many aspects of software engineering. Some are explicitly discussed
and others are taught only by example. The connection between good problem-solving
skills and effective software development is established early in Chapter 1 with a sec-
tion that discusses the art and science of problem solving. The five-phase software
development method presented in Chapter 1 is used to solve the first case study and is
applied uniformly to case studies throughout the text. Major program style issues are
highlighted in special displays, and the coding style used in examples is based on guide-
lines followed in segments of the C software industry. There are sections in several
chapters that discuss algorithm tracing, program debugging, and testing.

Chapter 3 introduces procedural abstraction through selected C library func-
tions, parameterless void functions, and functions that take input parameters and
return a value. Chapters 4 and 5 include additional function examples including the
use of a function as a parameter and Chapter 6 completes the study of functions
that have simple parameters. The chapter discusses the use of pointers to represent
output and input/output parameters.

Case studies and sample programs in Chapters 6, 7, and 10 introduce by exam-
ple the concepts of data abstraction and encapsulation of a data type and operators.
Chapter 12 presents C’s facilities for formalizing procedural and data abstraction
in personal libraries defined by separate header and implementation files. Chapter
14 (on the textbook website) introduces essential concepts of multiprocessing, such
as parent and child processes, interprocess communication, mutual exclusion lock-
ing, and dead lock avoidance. Chapter 15 (on the textbook website) describes how
object-oriented design is implemented by C++.

The use of visible function interfaces is emphasized throughout the text. We do
not mention the possibility of using a global variable until Chapter 12, and then we
carefully describe both the dangers and the value of global variable usage.

Pedagogical Features

We employ the following pedagogical features to enhance the usefulness of this
book as a learning tool:

End-of-Section Exercises Most sections end with a number of Self-Check
Exercises. These include exercises that require analysis of program fragments as
well as short programming exercises. Answers to selected Self-Check Exercises
appear online at www.aw.com/cssupport in the directory for “Hanly”.

Examples and Case Studies The book contains a wide variety of programming
examples. Whenever possible, examples contain complete programs or functions
rather than incomplete program fragments. Each chapter contains one or more
substantial case studies that are solved following the software development method.
Numerous case studies give the student glimpses of important applications of

www.aw.com/cssupport

Preface Xi

computing, including database searching, business applications such as billing and
sales analysis, word processing, and environmental applications such as radiation
level monitoring and water conservation.

Syntax Display Boxes The syntax displays describe the syntax and semantics of
new C features and provide examples.

Program Style Displays The program style displays discuss major issues of good
programming style.

Error Discussions and Chapter Review Each chapter concludes with a
section that discusses common programming errors. The Chapter Review includes
a table of new C constructs.

End-of-Chapter Exercises Quick-Check Exercises with answers follow each
Chapter Review. There are also review exercises available in each chapter.

End-of-Chapter Projects Each chapter ends with Programming Projects giving
students an opportunity to practice what they learned in the chapter.

Appendices

Reference tables of ANSI C constructs appear on the inside covers of the book.
Because this text covers only a subset of ANSI C, the appendices play a vital role
in increasing the value of the book as a reference. Throughout the book, array
referencing is done with subscript notation; Appendix A is the only coverage
of pointer arithmetic. Appendix B is an alphabetized table of ANSI C standard
libraries. The table in Appendix C shows the precedence and associativity of all
ANSI C operators; the operators not previously defined are explained in this
appendix. Appendix D presents character set tables, and Appendix E lists all ANSI
C reserved words.

Supplements

The following supplemental materials are available to all readers of this book at
www.pearsonhighered.com/irc:

e Source code
e Known errata
e Answers to odd-numbered Self-Check exercises.

The following instructor supplement is available only to qualified instructors
at the Pearson Instructor Resource Center. Visit Www.pearsonhighered.com/irc or
contact your local Pearson sales representative to gain access to the IRC.

¢ Solutions Manual

www.pearsonhighered.com/irc
www.pearsonhighered.com/irc

Xii

Preface

Acknowledgments

Many people participated in the development of this textbook. For this edition, we
want to thank Michael Main for his assistance with WinBGIm and help with some of
the graphics examples. We would also like to acknowledge the contributions of his
students at the University of Colorado who adapted WinBGI to create WinBGIm
(Grant Macklem, Gregory Schmelter, Alan Schmidt, and Ivan Stashak). The review-
ers for this edition were Frank L. Friedman, Temple University, Philadelphia, PA;
Mark S. Hutchenreuther, California Polytechnic State University, San Luis Obispo,
CA; Anwar Mamat, University of Nebraska, Lincoln, NE; Hamdy Soliman, New
Mexico Tech, Socorro, NM; Tami Sorgente, Florida Atlantic University, Boca
Raton, FL; and Alexander Stoychev, Iowa State University, Ames, IA.

We also want to thank Charlotte Young of South Plains College for her help in
creating Chapter 0, and Jeff Warsaw of WaveRules, LLC, who contributed substan-
tially to Chapter 14. Joan C. Horvath of the Jet Propulsion Laboratory, California
Institute of Technology, contributed several programming exercises, and Nelson
Max of the University of California, Davis suggested numerous improvements to the
text. Jeri appreciates the assistance of her Loyola College in Maryland colleagues—
James R. Glenn, Dawn J. Lawrie, and Roberta E. Sabin—who contributed several
programming projects. We are also grateful for the assistance over the years of
several Temple University, University of Wyoming, and Howard University former
students who helped to verify the programming examples and who provided answer
keys for the host of exercises, including Mark Thoney, Lynne Doherty, Andrew
Wrobel, Steve Babiak, Donna Chrupcala, Masoud Kermani, Thayne Routh, and
Paul Onakoya.

It has been a pleasure to work with the Pearson team in this endeavor. The
Editor-in-Chief, Michael Hirsch, along with the Senior Project Manager, Carole
Snyder provided guidance and encouragement throughout all phases of manuscript
revision. Pat Brown and Bob Engelhardt supervised the production of the book,
while Yez Alayan developed the marketing campaign.

JRH.
E.B.K.

CONTENTS

0.

Computer Science as a Career Path 1

Section 1 Why Computer Science May be the Right Field for You 2
Section 2 The College Experience: Computer Disciplines

and Majors to Choose From 4

Section 3 Career Opportunities 9

1. Overview of Computers and Programming 13
11 Electronic Computers Then and Now 14
1.2 Computer Hardware 17
1.3 Computer Software 25
1.4 The Software Development Method 33
1.5 Applying the Software Development Method 36
Case Study: Converting Miles to Kilometers 36
1.6 Professional Ethics for Computer Programmers 39
Chapter Review 41
2. Overview of C 45
2.1 C Language Elements 46
2.2 Variable Declarations and Data Types 53
2.3 Executable Statements 59
2.4 General Form of a C Program 69
2.5 Arithmetic Expressions 72
Case Study: Supermarket Coin Processor 82
2.6 Formatting Numbers in Program Output 87
2.7 Interactive Mode, Batch Mode, and Data Files 90
2.8 Common Programming Errors 93

Chapter Review 99

Xiv

Contents

3. Top-Down Design with Functions 107
3.1 Building Programs from Existing Information 108
Case Study: Finding the Area and Circumference of a Circle 109
Case Study: Computing the Weight of a Batch of Flat Washers 112
3.2 Library Functions 117
3.3 Top-Down Design and Structure Charts 124
Case Study: Drawing Simple Diagrams 124
34 Functions without Arguments 126
3.5 Functions with Input Arguments 136
3.6 Introduction to Computer Graphics (Optional) 146
3.7 Common Programming Errors 163
Chapter Review 164
4. Selection Structures: if and switch Statements 173
4.1 Control Structures 174
4.2 Conditions 175
4.3 The if Statement 185
4.4 if Statements with Compound Statements 191
4.5 Decision Steps in Algorithms 194
Case Study: Water Bill Problem 195
4.6 More Problem Solving 204
Case Study: Water Bill with Conservation Requirements 205
4.7 Nested if Statements and Multiple-Alternative Decisions 207
4.8 The switch Statement 217
4.9 Common Programming Errors 223
Chapter Review 224
5. Repetition and Loop Statements 235
5.1 Repetition in Programs 236
5.2 Counting Loops and the while Statement 238
5.3 Computing a Sum or a Product in a Loop 242
5.4 The for Statement 247
5.5 Conditional Loops 256
5.6 Loop Design 261
5.7 Nested Loops 268
5.8 The do-while Statement and Flag-Controlled Loops 273
5.9 Iterative Approximations 276

Case Study: Bisection Method for Finding Roots 278

5.10
5.11
5.12

Contents

How to Debug and Test Programs 287
Loops in Graphics Programs (Optional) 289
Common Programming Errors 296
Chapter Review 299

Pointers and Modular Programming

6.1
6.2
6.3
6.4
6.5
6.6

6.7
6.8

Pointers and the Indirection Operator 316

Functions with Output Parameters 320

Multiple Calls to a Function with Input/Output Parameters 328
Scope of Names 334

Formal Output Parameters as Actual Arguments 336
Problem Solving lllustrated 340

Case Study: Collecting Area For Solar-Heated House 340
Case Study: Arithmetic with Common Fractions 347
Debugging and Testing a Program System 356
Common Programming Errors 359

Chapter Review 359

Arrays

71

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

710
7.1

Declaring and Referencing Arrays 376

Array Subscripts 379

Using for Loops for Sequential Access 381
Using Array Elements as Function Arguments 386
Array Arguments 388

Searching and Sorting an Array 401

Parallel Arrays and Enumerated Types 406
Multidimensional Arrays 414

Array Processing lllustrated 419

Case Study: Summary of Hospital Revenue 419
Graphics Programs with Arrays (Optional) 428
Common Programming Errors 437

Chapter Review 438

Strings

8.1
8.2
8.3

String Basics 454
String Library Functions: Assignment and Substrings 460
Longer Strings: Concatenation and Whole-Line Input 469

XV

Xvi

Contents

8.4 String Comparison 474
8.5 Arrays of Pointers 477
8.6 Character Operations 483
8.7 String-to-Number and Number-to-String Conversions 488
8.8 String Processing lllustrated 495
Case Study: Text Editor 495
8.9 Common Programming Errors 504
Chapter Review 506
9. Recursion 517
9.1 The Nature of Recursion 518
9.2 Tracing a Recursive Function 524
9.3 Recursive Mathematical Functions 532
9.4 Recursive Functions with Array and String Parameters 538
Case Study: Finding Capital Letters in a String 538
Case Study: Recursive Selection Sort 541
9.5 Problem Solving with Recursion 545
Case Study: Operations on Sets 545
9.6 A Classic Case Study in Recursion: Towers of Hanoi 553
9.7 Common Programming Errors 558
Chapter Review 560
10. Structure and Union Types 567
10.1 User-Defined Structure Types 568
10.2 Structure Type Data as Input and Output Parameters 574
10.3 Functions Whose Result Values Are Structured 580
10.4 Problem Solving with Structure Types 583
Case Study: A User-Defined Type for Complex Numbers 584
10.5 Parallel Arrays and Arrays of Structures 592
Case Study: Universal Measurement Conversion 594
10.6 Union Types (Optional) 603
10.7 Common Programming Errors 610
Chapter Review 610
11. Text and Binary File Processing 623
111 Input/Output Files: Review and Further Study 624
11.2 Binary Files 634
11.3 Searching a Database 640

Contents Xvii
Case Study: Database Inquiry 641
11.4 Common Programming Errors 650
Chapter Review 651
12. Programming in the Large 659
12.1 Using Abstraction to Manage Complexity 660
12.2 Personal Libraries: Header Files 663
12.3 Personal Libraries: Implementation Files 668
12.4 Storage Classes 671
12.5 Modifying Functions for Inclusion in a Library 675
12.6 Conditional Compilation 678
12.7 Arguments to Function main 682
12.8 Defining Macros with Parameters 685
12.9 Common Programming Errors 690
Chapter Review 691
13. Dynamic Data Structures 699
13.1 Pointers 700
13.2 Dynamic Memory Allocation 704
13.3 Linked Lists 710
13.4 Linked List Operators 716
13.5 Representing a Stack with a Linked List 721
13.6 Representing a Queue with a Linked List 725
13.7 Ordered Lists 731
Case Study: Maintaining an Ordered List of Integers 732
13.8 Binary Trees 743
13.9 Common Programming Errors 753
Chapter Review 754
14. Multiprocessing Using Processes and Threads
(Online at www.pearsonhighered.com/irc)
141 Multitasking
14.2 Processes
14.3 Interprocess Communications and Pipes
14.4 Threads

14.5

Threads Illustrated

www.pearsonhighered.com/irc

Xviii

Contents

Case Study: The Producer/Consumer Model

14.6 Common Programming Errors
Chapter Review
15. On to C++ (Online at www.pearsonhighered.com/irc)
15.1 C++ Control Structures, Input/Output, and Functions
15.2 C++ Support for Object-Oriented Programming
Chapter Review
Appendices
A More about Pointers A-1
B ANSI C Standard Libraries B-1
C C Operators C-1
D Character Sets D-1
E ANSI C Reserved Words E-1

Answers to Odd-Numbered Self-Check Exercises
(Online at www.pearsonhighered.com/irc)

Glossary G-1

Index I-1

www.pearsonhighered.com/irc
www.pearsonhighered.com/irc

PROBLEM SOLVING AND
PROGRAM DESIGN

This page intentionally left blank

Computer Science
as a Career Path

CHAPTER OBJECTIVES

® To learn why computer science may be the right field
for you

* To become familiar with different computer disciplines
and related college majors

e To find out about career opportunities

CHAPTER

0

Section 1

Millennials Those
born from 1982 on are
said to be confident,
social and team-
oriented, proud of
achievement, prone
to use analytic skills to
make decisions, and
determined to seek
security, stability, and
balance for themselves

Introduction

In order to choose a course of study and eventually a desirable career path, we may
ask many important questions. Why would we choose this field? Will we be good at
it? Will there be jobs for us when we finish our education? Will we enjoy our work?
This chapter sheds some light on these types of questions for anyone contemplating
a degree in computer science or a related field.

Why Computer Science May be the
Right Field for You

Reasons to Major in Computer Science

Almost everything we do is influenced by computing. Today’s generation of college
students, dubbed the Millennials, are not surprised by this statement. They have
grown up with computers, the Internet, instant communication, and electronic
entertainment. They embrace new technology and expect it to do fantastic things.

However, previous generations are not as comfortable with technology and try
to solve problems without always thinking of technology first. Many people in the
workforce resist the changes that technology requires. They often turn to the young-
est employees to take over technology issues and to make choices that will have
important consequences.

This difference among generations creates a great environment for bright
and dedicated students to choose to major in computer science or a related field.
The computer industry is one of the fastest growing segments of our economy and
promises to continue to see growth well into the future. In order to be competitive,
businesses must continue to hire well-trained professionals not only to produce high
quality products for the present, but also to plan creative scientific and engineering
advances for the future.

A person who is part of the computer industry can choose from a wide variety
of fields where many interesting and challenging problems will need to be solved.
In addition to all the business and communication jobs that may first come to
mind, people with degrees in computer science are working on problems from
all spectrums of life. A quick review of technical articles highlights such areas as
developing electronic balloting for state and national elections, using signals from
wireless devices to update vehicle and pedestrian travel times in order to make the
best decisions for traffic signals or management of construction zones, and using a
supercomputer-powered “virtual earthquake” to study benefits of an early warning
system using 3D models of actual geographic locations and damage scenarios.

Section 1 ¢ Why Computer Science May be the Right Field for You 3

Some problems being worked on right now by computer professionals in the medi-
cal world include understanding how the human brain works by modeling brain activa-
tion patterns with emphasis on helping people impacted by autism or disorders like
paranoid schizophrenia; customizing a wide array of helpful devices for the physically
impaired, from programmable robotic prostheses to digital “sight”; gathering informa-
tion from implanted pacemakers in order to make timely decisions in times of crisis;
developing a computer system capable of recognizing human emotional states by analyz-
ing a human face in real-time; and developing human—computer interfaces that allow a
computer to be operated solely by human gestures in order to manipulate virtual objects.

The fields of security and law enforcement present many challenges to the com-
puter professional, and include the following: The U.S. government is performing
observational studies on normal behavior in online worlds in hopes of developing
techniques for uncovering online activities of terrorist groups. Advancements in
voice biometrics technology allow speech to be analyzed by computer software to
determine identity, truthfulness, and emotional states. Electronic protection against
malicious software is of great concern to national economies and security interests.

Some of our world’s most challenging problems will be worked on by teams of
professionals from many disciplines. Obviously these teams will include computer
professionals who are creative and possess the knowledge of how to best use technol-
ogy. In the near future we will see much innovation in the areas of the human genome
project, environmental monitoring, AIDS vaccine research, clean fuels, tracking
weather changes by using robots in potentially dangerous areas, and using supercom-
puters to simulate the earth’s architecture and functions in order to predict natural dis-
asters. A way to make a positive difference in the world would be to study computing.

Traits of a Computer Scientist

An individual’s personality and character traits typically influence the field he or
she chooses to study and eventually in which he or she will work. The demands of
certain fields are met by individuals with certain capabilities. It makes sense that
people who are successful computer science students will have many common traits.
Read the following description and decide if it sounds like you.

Foremost, you must love the challenge of solving problems. Computer science
is more about finding solutions to problems than it is about using the current com-
puter hardware or programming language. Solving problems requires being creative
and “thinking outside the box.” You must be willing to try things that are different
from the “accepted” solution.

You enjoy working with technology and enjoy being a lifelong learner. You
enjoy puzzles and work tenaciously to find solutions. You probably don’t even notice
that the hours have flown by as you are narrowing in on the answer. You enjoy
building things, both in the actual world and in a “virtual world.” You can see how
to customize a particular object to make it work in a specific environment. You like
to tackle large projects and see them to completion. You like to build things that are
useful to people and that will have a positive impact on their lives.

4 Chapter 0 ¢ Computer Science as a Career Path

Section 2

To be successful in the workplace, you must also be a good communicator. You
should be able to explain your plans and solutions well to both technical and non-
technical people. You must be able to write clearly and concisely in the technical
environment. Since most projects involve multiple people, it is important to work
well in a group. If you plan to become a manager or run your own company, it is
very important to be able to work with different personalities.

Frederick P. Brooks, famous for leading the team that developed the operat-
ing system for the IBM System/360, wrote a book in the 1970’s titled The Mythical
Man Month—Essays on Software Engineering. Even though much has changed in
the computing world since he wrote the book, his essays still hold a lot of relevance
today. He listed the “Joys of the Craft” as the following: First is the sheer joy of
making things of your own design. Second is the pleasure of making things that
are useful to and respected by other people. Third is the joy of fashioning complex
puzzle-like entities into a system that works correctly. Fourth is the joy of always
learning because of the non-repetitive nature of the work. Finally, there is the joy
of working with a very tractable medium. The programmer can create in his or her
imagination and readily produce a product that can be tested and easily changed
and reworked. Wouldn’t the sculptor or civil engineer enjoy such easy tractability!

The IBM System/360 was a mainframe computer system family announced by IBM in 1964. It
was the first family of computers making a clear distinction between architecture and imple-
mentation, allowing IBM to release a suite of compatible designs at different price points. The
design is considered by many to be one of the most successful computers in history, influenc-
ing computer design for years to come (see Figure 0.1).

FIGURE 0.1

.

IBM Introduced the A =
System/360 Family of Business " B2
Mainframe Computers in : C—

1964.

(©2012 akg-images/Paul Almasy/
Newscom. Unauthorized use not
permitted.)

The College Experience: Computer Disciplines
and Majors to Choose From

Most professionals in the computing industry have at least an undergraduate degree
in mathematics, computer science, or a related field. Many have advanced degrees,
especially those involved primarily in research or education.

Section 2 ¢ The College Experience: Computer Disciplines and Majors to Choose From 5

FIGURE 0.2

Example of
relationships
between
computing
degrees and
university colleges
and departments.
This can vary
widely from
school to school

Computing is a broad discipline that intersects many other fields such as math-
ematics, science, engineering, and business. Because of such a wide range of choices,
it is impossible for anyone to be an expert in all of them. A career involving computing
requires the individual to focus his or her efforts while obtaining a college degree.

There are many different degrees that involve computing offered at institutions
of higher learning. These degrees can even be from different departments within
the same institution. Although computing degrees can share some of the same
courses, they can also be quite different from each other. Choosing among them
can be confusing.

To ease this confusion, it is wise for students to be exposed to the work already
done on this topic. The three largest international professional societies for comput-
ing professionals—the Association for Computing Machinery (ACM), the Association
for Information Systems (AIS), and the Institute of Electrical and Electronics
Engineers Computer Society (IEEE-CS)—produced a cooperative report titled
“Computing Curricula 2005.” Five fields and their suggested college curricula have
been identified and explained in this report: computer science, computer engineer-
ing, information systems, information technology, and software engineering.

Most of the degree programs in our colleges and universities follow these guide-
lines. The report states at the beginning that “it is important that the computing
disciplines attract quality students from a broad cross section of the population and
prepare them to be capable and responsible professionals, scientists, and engineers.”
There are countless opportunities for the dedicated and curious individual who is
willing to put in the hard work to obtain a degree. Those students who are also mem-
bers of an underrepresented minority will find these fields to be full of prospects.

Engineering Sciences Business
college college college
Electrical Computer
engineering science
department department
Computer Computer Software Information Information
engineering science engineering technology systems
degree degree degree degree degree

! “Computing Curricula 2005” by the Association for Computing Machinery, Association for Information
Systems, Institute of Electrical and Electronic Engineers. Copyright © 2005 IEEE. Reprinted by
permission.

6

Chapter 0 ¢ Computer Science as a Career Path

Computer Science

Computer science as a discipline encompasses a wide range of topics from theoreti-
cal and algorithmic foundations to cutting-edge developments. The work computer
scientists are trained to do can be arranged into three categories:

* Designing and implementing useful software.
® Devising new ways to use computers.
e Developing effective ways to solve computing problems.

A computer science degree consists of courses that include computing theory, pro-
gramming, and mathematics. These courses ultimately develop the logic and reasoning
skills integral to becoming a computer scientist. The math sequence includes calculus I
and II (and in many cases, calculus III) as well as discrete mathematics. Some students
also study linear algebra and probability and statistics. A computer science degree
offers a comprehensive foundation that permits graduates to understand and adapt to
new technologies and new ideas. Computer science departments are often found at
universities as part of the science, engineering, or mathematics divisions.

Computer scientists take on challenging programming jobs, supervise other
programmers, and advise other programmers on the best approaches to be taken.
Computer science researchers are working with scientists from other fields to do
such things as using databases to create and organize new knowledge, making robots
that will be practical and intelligent aides, and using computers to help decipher the
secrets of human DNA. Their theoretical background allows them to determine the
best performance possible for new technologies and their study of algorithms helps
them to develop creative approaches to new (and old) problems.

Computer Engineering

For students who are more interested in understanding and designing the actual
computing devices, many opportunities are available in computer engineering,
which is concerned with the design and construction of computers and computer-
based systems. A computer engineering degree involves the study of hardware, soft-
ware, communications, and the interaction among them, and is a customized blend
of an Electrical Engineering degree with a Computer Science degree.

The computer engineering curriculum includes courses on the theories, prin-
ciples, and practices of traditional electrical engineering as well as mathematics
through the standard calculus sequence and beyond. This knowledge is then applied
in courses dealing with designing computers and computer-based devices. In addi-
tion, programming courses are required so that the computer engineer can develop
software for digital devices and their interfaces.

Currently, an important area for computer engineers involves embedded sys-
tems. This involves the development of devices that have software and hardware
embedded in them such as cell phones, digital music players, alarm systems, medical

Section 2 ¢ The College Experience: Computer Disciplines and Majors to Choose From 7

diagnostic devices, laser surgical tools, and so on. The devices a computer engineer
might work with are limitless as he or she applies his or her knowledge of how to
integrate hardware and software systems.

Information Systems

The information systems (IS) field focuses on integrating technology into businesses
and other enterprises to manage their information in an efficient and secure man-
ner. In this area, technology is viewed as an instrument for generating, processing,
and distributing information. Therefore, the focus in this field is on business and
organizational principles.

Most IS programs are located in the business school of a university or college,
and IS degrees combine business and computing coursework, and the math that is
required has a business application focus. These degrees may be found under such
programs as Computer Information Systems (CIS) or Management Information
Systems (MIS). Degree program names are not always consistent, but they all have
their focus on business principles and applications of technology with less emphasis
on the theory of computer science or the digital design of computer engineering.

IS specialists must understand both technical and organizational factors, and
must be able to help an organization determine how to use information and technol-
ogy to provide a competitive edge. These professionals serve as a bridge between
the technical community and the management community within an organization.
They are called on to determine the best way to use technology, organize informa-
tion, and communicate effectively.

Information Technology

An Information Technology (IT) program prepares students to meet the computer
technology needs of business, government, healthcare, schools, and other organiza-
tions. IT has its emphasis on the technology itself, more than on the information
handled, the theory behind it, or how to design hardware or software. IT profes-
sionals work with computer systems to ensure they work properly, are secure, are
upgraded and maintained, and are replaced as appropriate.

Because computers have become integral parts of the work environment for all
employees at all levels of the organization, many enterprises must maintain depart-
ments of IT workers. Organizations of every kind are dependent on information
technology on a daily basis and the need for qualified workers is great.

Degree programs in IT are commonly found in business or information man-
agement departments, or as an alternate degree in a computer science depart-
ment. IT programs in business departments focus on using applications to meet
the requirements, networking, systems integration, and resource planning. The
emphasis is less on programming and more on using programs already written to
the best advantage. IT programs in computer science departments often have more

8

Chapter 0 ¢ Computer Science as a Career Path

emphasis on programming for computer users, with a focus on writing software for
interactive web pages, multimedia, and cloud computing.

IT specialists select appropriate hardware and software products for an organi-
zation and then integrate these products within the existing infrastructure. They
install and customize and maintain the software as needed. Other examples of
responsibilities include network administration and security, design and imple-
mentation of Web pages, development of multimedia resources, oversight of email
systems, and installation of communication components. User support and training
are often important responsibilities for the IT professional as well.

Software Engineering

Software engineering (SE) is the discipline of developing and maintaining large
software systems. These systems must behave reliably and efficiently, be affordable,
and satisfy all requirements defined for them. SE seeks to integrate the theory of
computer science and mathematics with the practical engineering principles devel-
oped for physical objects.

An SE degree program is closely related to the computer science degree
program, and they are usually offered within the same department. In fact, most
computer science curricula require one or more software engineering courses. An
SE degree can be considered a specialized degree within the confines of the field
of computer science.

SE students learn more about software reliability and maintenance of large
systems and focus more on techniques for developing and maintaining software that
is engineered to be correct from its inception. Most programs require SE students
to participate in group projects for the development of software that will be used in
earnest by others. Students assess customer needs, develop usable software, test the
product thoroughly, and analyze its usefulness.

Professionals who hold a software engineering degree expect to be involved
with the creation and maintenance of large software systems that may be used by
many different organizations. Their focus will be on the design principles that make
the system viable for many people and through many years.

Although an SE degree has a recognized description, the term software engi-
neer is merely a job label in the workplace. There is no standard definition for
this term when used in a job description, and its meaning can vary widely among
employers. An employer may think of a programmer or an IT specialist as a soft-
ware engineer.

Mixed Disciplinary Majors

Technology is opening doors for fields of study that combine different sciences or
engineering fields with computing. Institutes of higher learning have responded by
offering courses or programs for multidisciplinary majors. Some examples follow.

Section 3 e Career Opportunities 9

FIGURE 0.3 * Bioinformatics is the use of computer science to maintain, analyze, and

. store biological data as well as to assist in solving biological problems—usu-
lllustrations of ally on the molecular level. Such biological problems include protein folding,
the overlapping protein function prediction, and phylogeny (the history, origin, and evolution
fields within mixed of a set of organisms). The core principal of bioinformatics involves using
disciplinary majors computing resources to help solve problems on scales of magnitude too great

for human observation.

e Artificial Intelligence (Al) is the implementation and study of systems that

Biology _(Bionfomatis| 3RS can exhibit autonomous intelligence or behaviors. Al research draws from
many fields including computer science, psychology, philosophy, linguistics,
neuroscience, logic, and economics. Applications include robotics, control
systems, scheduling, logistics, speech recognition, handwriting recognition,
understanding natural language, proving mathematical theorems, data mining,
and facial recognition.

e Computer Forensics is a branch of forensic science pertaining to legal evi-
dence that may be found in computers and digital storage devices. The col-
lection of this evidence must adhere to standards of evidence admissible in a
court of law. Computer forensics involves the fields of law, law enforcement,
and business.

e Cryptology (or cryptography) is the practice and study of hiding information
and involves mathematics, computer science, and engineering. Electronic
data security for commerce, personal uses, and military uses continue to be of
vast importance.

* Mechatronics is the combination of mechanical engineering, electronic engi-
neering, and software engineering in order to design advanced hybrid systems.
Examples of mechatronics include production systems, planetary exploration
rovers, automotive subsystems such as anti-lock braking systems, and autofo-
cus cameras.

Computer
science

V|

Philosophy

Engineering
and robotics

Artificial

imeuigen
\ Psychology

Computer

Forensic
science science

Computer
forensics

Computer
science

Cryptology

Even when the definitions are given for the different computing disciplines men-
tioned in this chapter, it is easy to see that there is great overlap among all of them.
In fact, many professionals who have earned a computer science degree may be
working in jobs that are closer to an information systems description or vice versa.
The student is encouraged to choose a computing field that seems closest to his or
her personal goals. Keep in mind that in general, computer science is probably the
degree that will open the most doors in the most diverse areas of computing.

Mechanical Computer

engineering science
Electrical engineering

Section 3 Career Opportunities

The Bureau of Labor Statistics is the principal fact-finding agency for the U.S.
Federal Government in the field of labor economics and statistics. This agency pub-
lishes The Occupational Outlook Handbook, which is a nationally recognized source

10

Chapter 0 ¢ Computer Science as a Career Path

of career information, designed to provide valuable assistance to individuals making
decisions about their future work lives. The Handbook is revised every two years.
In 2011, an occupation search using the term computer science resulted in over
9000 search results with more than 40 career matches. This means that computer
science was listed in the job description, or in the type of degree desired, or in the
recommended courses for that job. Examples of the matched include Computer
Software engineers, Computer Systems analysts, Mathematicians, Computer
Programmers, Web Designers and Developers, Secondary and Postsecondary
Teachers, Statisticians, Medical Records and Health Information Technicians,
Atmospheric Scientists, Market and Survey Researcher, Economists, Radiation
Therapists, Urban and Regional Planners, Surveyors and Mapping Technicians,
Conservation Scientists and Foresters, Travel Agents, Private Detectives and
Investigators, Geoscientists, Psychologists, and Interpreters and Translators.

Look up information from the Bureau of Labor Statistics’ The Occupational Outlook
Handbook using http://www.bls.gov/oco/home.htm.

The Demand in the United States and in the World

According to the BLS Occupational Outlook Handbook, computer software engineer
and computer scientist and database administrator are some of the occupations pro-
jected to grow the fastest and to add the most new jobs over the 2008-2018 decade.
Strong employment growth combined with a limited supply of qualified workers will
result in excellent employment prospects. Those with practical experience and at
least a bachelor’s degree in computer engineering or computer science should have
the best opportunities. Employers will continue to seek computer professionals with
strong programming, systems analysis, interpersonal, and business skills.

The Federal Government is the nation’s largest employer, with more than 1.8
million civilian employees. Computer specialists—primarily computer software
engineers, computer systems analysts, and network administrators—are employed
throughout the federal government. Of all the “professional and related occupa-
tions” listed as employed by the federal government, only the occupations of
computer specialists and conservation scientists were projected to have an actual
increase in job numbers for the 2008-2018 decade.

The growing need for computer professionals is increased by the looming
retirement of a generation of baby boomers, and all of this is occurring as the
government projects that the computer science/IT workforce will grow nearly 25
percent between 2008 and 2018 more than twice as fast as the overall workforce.

Today’s student should not be worried about any impact outsourcing computer
jobs to other countries will have on their ability to find a job. The fact is many com-
panies have tried outsourcing entire projects and found that it does not work well.

http://www.bls.gov/oco/home.htm

FIGURE 0.4

Untethered,
Electrostatic,
Globally
Controllable MEMS

Micro-Robot.
(© 2008 IEEE/Journal of
Microelectromechanical
Systems [2006])

Section 3 ¢ Career Opportunities 11

Some of the more mundane aspects of coding can be outsourced, but the more cre-
ative work is best kept in house. For example, during the design and development
of a new system, interaction with specialists from other disciplines and communica-
tion with other team members and potential system users are of utmost importance.
These activities cannot be effectively done from a distance. Many companies are
abandoning outsourcing and doing more system development at home.

The number of graduates from the computing fields will not meet the demand in
the marketplace in the foreseeable future. Projections and statistics show that there
will be plenty of jobs to be offered to the qualified computer professional and the
salaries will be higher than the average full-time worker earns in the United States.

The Demand for Underrepresented Groups

The demand for women and minorities to fill computer-related jobs is higher than
ever. The computer-related fields have traditionally seen small numbers of women
and minorities in the workplace. Colleges and universities want to attract these
groups to computer science and IS departments and often offer good scholarships
and opportunities.

According to a recent study by the National Center for Women and
Information Technology, the most successful IT teams were also the most diverse.
The study showed that diversity of thought leads to innovation, and that companies
should be aware of the significance of diversity. Prospective students should not
be turned away by the stereotypical view of a “computer geek” who sits in front of
a computer all day, but should realize all the opportunities to be found in such a
diverse and fast-growing field. Computer professionals will be creating the applica-
tions that allow computers to solve real-world problems.

12

Chapter 0 ¢ Computer Science as a Career Path

New Careers Constantly on the Horizon

It is clear that there will be a healthy need for computer professionals in the career
paths that are known about today. For the student just starting to plan a career,
there will surely be opportunities that have not even been imagined yet. The possibili-
ties are amazing and the rewards are many.

One such window into the future can be seen in the work of Bruce Donald, a
professor of Computer Science and of Biochemistry at Duke University. Through
his research, Professor Donald has developed microscopic robots that can be con-
trolled individually or as a group. These robots are measured in microns (millionths
of a meter) and are almost 100 times smaller than any previous robotic designs of
their kind. “Our work constitutes the first implementation of an untethered, multi-
microrobotic system.” Each robot can respond differently to the same single “global
control signal” as voltages charge and discharge on their working parts. A budding
computer scientist should see many fantastic applications for these devices!

The student who chooses to major in computer science or a related field can
look forward to challenging and interesting classes. The job market will be wide
open upon graduation, with the assurance that such degrees will be highly market-
able. A new employee or researcher will have opportunities to be at the forefront
of innovative technology in a constantly changing world. The prospects are limited
only by the imagination.

Overview of
Computers and
Programming

CHAPTER OBJECTIVES

To learn about the different categories of computers
To understand the role of each component in a computer
To understand the purpose of an operating system

To learn the differences between machine language,
assembly language, and higher level languages

To understand what processes are required to run a
C program

To learn how to solve a programming problem in a
careful, disciplined way

To understand and appreciate ethical issues related to
the use of computers and programming

CHAPTER

1

computer a machine
that can receive, store,
transform, and output
data of all kinds

In developed countries, life in the twenty-first century is conducted in a veritable

sea of computers. From the coffeepot that turns itself on to brew your morning cof-
fee to the microwave that cooks your breakfast to the automobile that you drive to
work to the automated teller machine you stop by for cash, virtually every aspect of
your life depends on computers. These machines which receive, store, process, and
output information can deal with data of all kinds: numbers, text, images, graphics,
and sound, to name a few.

The computer program’s role in this technology is essential; without a list of
instructions to follow, the computer is virtually useless. Programming languages
allow us to write those programs and thus to communicate with computers.

You are about to begin the study of computer science using one of the most
versatile programming languages available today: the C language. This chapter
introduces you to the computer and its components and to the major categories of
programming languages. It discusses how C programs are processed by a computer.
It also describes a systematic approach to solving programming problems called the
software development method and shows you how to apply it.

1.1 Electronic Computers Then and Now

In our everyday life, we come in contact with computers frequently, some of us using
computers for creating presentations and other documents, tabulating data in spread-
sheets, or even having studied programming in high school. But it wasn’t always this
way. Not so long ago, most people considered computers to be mysterious devices
whose secrets were known only by a few computer wizards.

The first electronic computer was built in the late 1930s by Dr. John Atanasoff
and Clifford Berry at Iowa State University. Atanasoff designed his computer to
assist graduate students in nuclear physics with their mathematical computations.

The first large-scale, general-purpose electronic digital computer, called the
ENIAC, was completed in 1946 at the University of Pennsylvania with funding from
the U.S. Army. Weighing 30 tons and occupying a 30-by-50-foot space, the ENIAC
was used to compute ballistics tables, predict the weather, and make atomic energy
calculations.

These early computers used vacuum tubes as their basic electronic component.
Technological advances in the design and manufacture of electronic components
led to new generations of computers that were considerably smaller, faster, and less
expensive than previous ones.

FIGURE 1.1

The Intel Atom
processor chip
contains the full
circuitry of a
central processing
unitin an
integrated circuit
whose small size
and low power
requirements make
it suitable for use
in mobile internet

devices. (Intel
Corporation Pressroom
Photo Archives)

computer chip
(microprocessor
chip) asilicon

chip containing the
circuitry for a computer
processor

1.1 o Electronic Computers Then and Now 15

Using today’s technology, the entire circuitry of a computer processor can be pack-
aged in a single electronic component called a computer or microprocessor chip
(Fig. 1.1), which is less than one-fourth the size of a standard postage stamp. Their
affordability and small size enable computer chips to be installed in watches, cellphones,
GPS systems, cameras, home appliances, automobiles, and, of course, computers.

Today, a common sight in offices and homes is a personal computer, which can
cost less than $1000 and sit on a desk (Fig. 1.2a) and yet has as much computational
power as one that 40 years ago cost more than $100,000 and filled a 9-by-12-foot
room. Even smaller computers can fit inside a briefcase or purse (Fig. 1.2b, c) or your
hand (Fig. 1.2d).

Modern computers are categorized according to their size and performance.
Personal computers, shown in Fig. 1.2, are used by a single person at a time. Large
real-time transaction processing systems, such as ATMs and other banking net-
works, and corporate reservations systems for motels, airlines, and rental cars use
mainframes, very powerful and reliable computers. The largest capacity and fastest
computers are called supercomputers and are used by research laboratories and in
computationally intensive applications such as weather forecasting.

16 Chapter 1 ¢ Overview of Computers and Programming

FIGURE 1.2

(a) Desktop Computer, iMac. (© Hugh Threlfall/Alamy). (b) Hewlett Packard Laptop. (© Hewlett-Packard
Company). () iPad. (© D. Hurst/Alamy). (d) Android phone, LG Thrill 4G. (© Handout/MCT/Newscom).

ALDIANLG e TR L

hardware the actual
computer equipment

software the set of
programs associated
with a computer

program a list

of instructions that
enables a computer to
perform a specific task

binary number a
number whose digits
are0and 1

L]

1.2 ¢ Computer Hardware 17

The elements of a computer system fall into two major categories: hardware and
software. Hardware is the equipment used to perform the necessary computations
and includes the central processing unit (CPU), monitor, keyboard, mouse, printer,
and speakers. Software consists of the programs that enable us to solve problems
with a computer by providing it with lists of instructions to perform.

Programming a computer has undergone significant changes over the years.
Initially, the task was very difficult, requiring programmers to write their program
instructions as long binary numbers (sequences of 0s and 1s). High-level pro-
gramming languages such as C make programming much easier.

Self-Check

1. Is a computer program a piece of hardware or is it software?
2. For what applications are mainframes used?

1.2 Computer Hardware

Despite significant variations in cost, size, and capabilities, modern computers
resemble one another in many basic ways. Essentially, most consist of the following
components:

= Main memory
Secondary memory, which includes storage devices such as hard disks, CDs,
DVDs, and flash drives

= Central processing unit
Input devices, such as keyboards, mouses, touch pads, scanners, joysticks

= Output devices, such as monitors, printers, and speakers

Figure 1.3 shows how these components interact in a computer, with the arrows
pointing in the direction of information flow. The program must first be transferred
from secondary storage to main memory before it can be executed. Normally the
person using a program (the program user) must supply some data to be processed.
These data are entered through an input device and are stored in the computer’s
main memory, where they can be accessed and manipulated by the central process-
ing unit. The results of this manipulation are then stored back in main memory.
Finally, the information in main memory can be displayed through an output device.
In the remainder of this section, we describe these components in more detail.

Memory

Memory is an essential component in any computer. Let’s look at what it consists of
and how the computer works with it.

18 Chapter 1 ¢ Overview of Computers and Programming

FIGURE 1.3

Components of a Computer

memory cell an
individual storage
location in memory

address of a memory
cell the relative
position of a memory
cell in the computer’s
main memory

contents of a memory
cell the information
stored in a memory

cell, either a program
instruction or data

stored program
concept a computer’s
ability to store program
instructions in main
memory for execution

Secondary storage

Y
Input devices > LT > Output devices

memory
Y
Y

Central

processing
unit “Sps

Anatomy of Memory Imagine the memory of a computer as an ordered
sequence of storage locations called memory cells (Fig. 1.4). To store and access
information, the computer must have some way of identifying the individual
memory cells. Therefore, each memory cell has a unique address that indicates
its relative position in memory. Figure 1.4 shows a computer memory consisting of
1000 memory cells with addresses 0 through 999. Most computers, however, have
millions of individual memory cells, each with its own address.

The data stored in a memory cell are called the contents of the cell. Every
memory cell always has some contents, although we may have no idea what they are.
In Fig. 1.4, the contents of memory cell 3 are the number —26 and the contents of
memory cell 4 are the letter H.

Although not shown in Fig. 1.4, a memory cell can also contain a program
instruction. The ability to store programs as well as data is called the stored
program concept: A program’s instructions must be stored in main memory
before they can be executed. We can change the computer’s operation by stor-
ing a different program in memory.

byte the amount of
storage required to
store a single character

bit a binary digit; a 0
oral

data storage setting
the individual bits of a
memory cellto 0 or 1,
destroying its previous
contents

data retrieval

copying the contents of
a particular memory cell
to another storage area

random access
memory (RAM) the
part of main memory
that temporarily stores
programs, data, and
results

1.2 e Computer Hardware 19

Memory
Address Contents
0 —27.2
1 354
2 0.005
3 —26
4 H
998 X Bit
999 75.62 loo101100]
<—Byte >
FIGURE 1.4 FIGURE 1.5
1000 Memory Cells Relationship
in Main Memory Between a Byte
and a Bit

Bytes and Bits A memory cell is actually a grouping of smaller units called
bytes. A byte is the amount of storage required to store a single character, such as
the letter H in memory cell 4 of Fig. 1.4. The number of bytes a memory cell can
contain varies from computer to computer. A byte is composed of even smaller units
of storage called bits (Fig. 1.5). The term bit, derived from the words binary digit,
is the smallest element a computer can deal with. Binary refers to a number system
based on two numbers, 0 and 1, so a bit is either a 0 or a 1. Generally, there are 8

bits to a byte.

Storage and Retrieval of Information in Memory Each value in memory
is represented by a particular pattern of Os and 1s. A computer can either store a
value or retrieve a value. To store a value, the computer sets each bit of a selected
memory cell to either 0 or 1, destroying the previous contents of the cell in the
process. To retrieve a value from a memory cell, the computer copies the pattern
of Os and 1s stored in that cell to another storage area for processing; the copy
operation does not destroy the contents of the cell whose value is retrieved. This
process is the same regardless of the kind of information—character, number, or
program instruction—to be stored or retrieved.

Main Memory Main memory stores programs, data, and results. Most computers
have two types of main memory: random access memory (RAM), which offers

20 Chapter 1 ¢ Overview of Computers and Programming

read-only memory
(ROM) the part of
main memory that
permanently stores
programs or data

volatile

memory memory
whose contents
disappear when
the computer is
switched off

secondary

storage units such as
disks or flash drives that
retain data even when
the power to the drive
is off

disk thin platter
of metal or plastic
on which data are
represented by

magnetized spots
arranged in tracks

optical drive device
that uses a laser to
access or store data on
a CD or DVD

FIGURE 1.6

Secondary Storage
Media

temporary storage of programs and data, and read-only memory (ROM), which
stores programs or data permanently. RAM temporarily stores programs while they
are being executed (carried out) by the computer. It also temporarily stores such
data as numbers, names, and even pictures while a program is manipulating them.
RAM is usually volatile memory, which means that everything in RAM will be lost
when the computer is switched off.

ROM, on the other hand, stores information permanently within the computer.
The computer can retrieve (or read), but cannot store (or write) information in
ROM, hence its name, read-only. Because ROM is not volatile, the data stored there
do not disappear when the computer is switched off. Start-up instructions and other
critical instructions are burned into ROM chips at the factory. When we refer to
main memory in this text, we mean RAM because that is the part of main memory
that is normally accessible to the programmer.

Secondary Storage Devices Computer systems provide storage in addition to
main memory for two reasons. First, computers need storage that is permanent or
semipermanent so that information can be retained during a power loss or when the
computer is turned off. Second, systems typically store more information than will
fit in memory.

Figure 1.6 shows some of the most frequently encountered secondary storage
devices and storage media. Most personal computers use two types of disk drives
as their secondary storage devices—hard drives and optical drives. Hard disks are
attached to their disk drives and are coated with a magnetic material. Each data bit
is a magnetized spot on the disk, and the spots are arranged in concentric circles
called tracks. The disk drive read/write head accesses data by moving across the
spinning disk to the correct track and then sensing the spots as they move by. The
hard disks in personal computers usually hold several hundred gigabytes (GB) of
data, but clusters of hard drives that store data for an entire network may provide as
much as several terabytes (TB) of storage (see Table 1.1).

Most of today’s personal computers are equipped with optical drives for stor-
ing and retrieving data on compact disks (CDs) or digital versatile disks (DVDs) that
can be removed from the drive. A CD is a silvery plastic platter on which a laser
records data as a sequence of tiny pits in a spiral track on one side of the disk. One
CD can hold 680 MB of data. A DVD uses smaller pits packed in a tighter spiral,
allowing storage of 4.7 GB of data on one layer. Some DVDs can hold four layers of
data—two on each side—for a total capacity of 17 GB, sufficient storage for as much
as nine hours of studio-quality video and multi-channel audio.

g i >
'\J ¥' ¥
’
o I
CD Flash Hard

drive

flash drive device
that plugs into USB port
and stores data bits as
trapped electrons

file named collection
of data stored on a disk

directory a list of the
names of files stored on
a disk

subdirectory a list of
the names of files that
relate to a particular
topic

central processing
unit (CPU)

coordinates all
computer operations
and performs arithmetic
and logical operations
on data

fetching an
instruction retrieving
an instruction from
main memory

1.2 e Computer Hardware 21

TABLE 1.1 Terms Used to Quantify Storage Capacities

Term Abbreviation Equivalent to Comparison to Power of 10
Byte B 8 bits

Kilobyte KB 1,024 (27°) bytes > 103

Megabyte MB 1,048,576 (22°) bytes > 108

Gigabyte GB 1,073,741,824 (2%°) bytes > 10°

Terabyte B 1,099,511,627,776 (2%) bytes > 10"

Flash drives such as the one pictured in Fig. 1.6 use flash memory packaged
in small plastic cases about three inches long that can be plugged into any of a
computer’s USB (Universal Serial Bus) ports. Unlike hard drives and optical drives
that must spin their disks for access to data, flash drives have no moving parts and
all data transfer is by electronic signal only. In flash memory, bits are represented
as electrons trapped in microscopic chambers of silicon dioxide. Typical USB flash
drives store 1 to several GB of data, but 64-GB drives are also available.

Information stored on a disk is organized into separate collections called files.
One file may contain a C program. Another file may contain the data to be proc-
essed by that program (a data file). A third file could contain the results generated
by a program (an output file). The names of all files stored on a disk are listed in
the disk’s directory. This directory may be broken into one or more levels of sub-
directories or folders, where each subdirectory stores the names of files that relate
to the same general topic. For example, you might have separate subdirectories
of files that contain homework assignments and programs for each course you are
taking this semester. The details of how files are named and grouped in directories
vary with each computer system. Follow the naming conventions that apply to your
system.

Central Processing Unit

The central processing unit (CPU) has two roles: coordinating all computer
operations and performing arithmetic and logical operations on data. The CPU
follows the instructions contained in a computer program to determine which
operations should be carried out and in what order. It then transmits coordinating
control signals to the other computer components. For example, if the instruction
requires scanning a data item, the CPU sends the necessary control signals to the
input device.

To process a program stored in main memory, the CPU retrieves each instruc-
tion in sequence (called fetching an instruction), interprets the instruction to
determine what should be done, and then retrieves any data needed to carry out

22 Chapter 1 ¢ Overview of Computers and Programming

register high-speed
memory location inside
the CPU

multiprocessor a
computer with more
than one CPU.

cursor a moving place
marker that appears on
the monitor

function keys special
keyboard keys used

to select a particular
operation; operation
selected depends on
program being used

mouse an input
device that moves its
cursor on the computer
screen to select an
operation

icon a picture
representing a
computer operation

hard copy a printed
version of information

local area network
(LAN) computers,
printers, scanners,

and storage devices
connected by cables for
intercommunication

that instruction. Next, the CPU performs the actual manipulation, or processing, of
the data it retrieved. The CPU stores the results in main memory.

The CPU can perform such arithmetic operations as addition, subtraction, mul-
tiplication, and division. The CPU can also compare the contents of two memory
cells (for example, Which contains the larger value? Are the values equal?) and
make decisions based on the results of that comparison.

The circuitry of a modern CPU is housed in a single integrated circuit or chip,
millions of miniature circuits manufactured in a sliver of silicon. An integrated cir-
cuit (IC) that is a full central processing unit is called a microprocessor. A CPU’s
current instruction and data values are stored temporarily inside the CPU in special
high-speed memory locations called registers.

Some computers have multiple CPUs (multiprocessors) or a multi-core CPU.
These computers are capable of faster speeds because they can process different
sets of instructions at the same time.

Input/Output Devices

We use input/output (I/0) devices to communicate with the computer. Specifically, they
allow us to enter data for a computation and to observe the results of that computation.

You will be using a keyboard as an input device and a monitor (display screen) as an
output device. When you press a letter or digit key on a keyboard, that character is sent
to main memory and is also displayed on the monitor at the position of the cursor, a
moving place marker (often a blinking line or rectangle). A computer keyboard has keys
for letters, numbers, and punctuation marks plus some extra keys for performing special
functions. The twelve function keys along the top row of the keyboard are labeled F1
through F12. The activity performed when you press a function key depends on the pro-
gram currently being executed; that is, pressing F1 in one program will usually not pro-
duce the same results as pressing F1 in another program. Other special keys enable you
to delete characters, move the cursor, and “enter” a line of data you typed at the keyboard.

Another common input device is a mouse. A mouse is a handheld device used
to select an operation. Moving the mouse around on your desktop moves the mouse
cursor (normally a small rectangle or an arrow) displayed on the monitor’s screen.
You select an operation by moving the mouse cursor to a word or icon (picture) that
represents the computer operation you wish to perform and then pressing a mouse
button to activate the operation selected.

A monitor provides a temporary display of the information that appears on its
screen. If you want hard copy (a printed version) of some information, you must
send that information to an output device called a printer.

Computer Networks

The explosion we are experiencing in worldwide information access is primarily due
to the fact that computers are now linked together in networks so they can com-
municate with one another. In a local area network (LAN), computers and other

FIGURE 1.7

Local Area
Network

file server the
computer in a network
that controls access to a
secondary storage device
such as a hard disk

wide area network
(WAN) a network
such as the Internet that
connects computers
and LANs over a large
geographic area

World Wide Web
(WWW) a part of

the Internet whose
graphical user interfaces
make associated
network resources
easily navigable

graphical user
interface (GUI)
pictures and menus
displayed to allow user
to select commands
and data

modem a device that
converts binary data
into audio signals that
can be transmitted
between computers
over telephone lines

DSL connection
(digital subscriber
line) a high-speed
Internet connection that
uses a telephone line
and does not interfere
with simultaneous voice
communication on the
same line

1.2 e Computer Hardware 23

devices in a building are connected by cables or a wireless network, allowing them
to share information and resources such as printers, scanners, and secondary stor-
age devices (Fig. 1.7). A computer that controls access to a secondary storage device
such as a large hard disk is called a file server.

Local area networks can be connected to other LANs using the same tech-
nology as telephone networks. Communications over intermediate distances use
phone lines, fiber-optics cables or wireless technology, and long-range com-
munications use either phone lines or microwave signals that may be relayed by
satellite (Fig. 1.8).

A network that links many individual computers and local area networks over a
large geographic area is called a wide area network (WAN). The most well-known
WAN is the Internet, a network of university, corporate, government, and public-
access networks. The Internet is a descendant of the computer network designed
by the U.S. Defense Department’s 1969 ARPAnet project. The goal of the project
was to create a computer network that could continue to operate even if partially
destroyed. The most widely used aspect of the Internet is the World Wide Web
(WWW), the universe of Internet-accessible resources that are navigable through
the use of a graphical user interface (GUI).

If you have a computer with a modem, you can connect to the information
superhighway through a telephone line, television or fiber-optic cable, or through
wireless or satellite communications. A modem (modulator/demodulator) converts
binary computer data into audio tones that can be transmitted to another computer
over a normal telephone circuit. At the computer on the receiving end, another
modem converts the audio tones back to binary data.

Early modems for telephone lines transmitted at only 300 baud (300 bits per
second). Today’s modems transmit over 50,000 bits per second, or if you have a
digital subscriber line (DSL connection) or fiber-optics telephone line, the associated

24 Chapter 1 ¢ Overview of Computers and Programming

FIGURE 1.8

A Wide Area Network with Satellite Relays of Microwave Signals

-

Local area network (LAN)

cable Internet
?;;:;straa’:gi\:ﬁgnhgh_ moderp can trzjmsmit '1.5 milli9n bits per second (DSL) ora few billion bits per sec-
Internet data through ond (fiber optics) while allowing you to use the same line simultaneously for voice
two of the hundreds of ¢alls. Cable Internet access brings Internet data to your computer at speeds of
channels available over a1

several billion bits per second using the same coaxial cable that carries cable TV.

the coaxial cable that)) o i
carries cable television ~ Wireless and satellite communications provide data speeds comparable to cable.

signals

I | EXERCISES FOR SECTION 1.2

Self-Check

1. If a computer executes instructions to sum the contents of memory cells 2 and
999 in Fig. 1.4 and store the result in cell 0, what would then be the contents
of cells 0, 2, and 999?

2. One bit can have two values, 0 or 1. A combination of 2 bits can have four val-
ues: 00, 01, 10, 11. List all of the values you can form with a combination of 3
bits. Do the same for 4 bits.

3. List the following in order of smallest to largest: byte, bit, WAN, main mem-
ory, memory cell, LAN, secondary storage.

1.3 ¢ Computer Software 25

1.3 Computer Software

operating system
(0S) software that
controls interaction
of user and computer
hardware and that
manages allocation of
computer resources

booting a computer
loading the operating
system from disk into
memory

In the previous section, we surveyed the components of a computer system, compo-
nents referred to collectively as hardware. We also studied the fundamental opera-
tions that allow a computer to accomplish tasks: repeated fetching and execution
of instructions. In this section we focus on these all-important lists of instructions
called computer programs or computer software. We will consider first the software
that makes the hardware friendly to the user. We will then look at the various levels
of computer languages in which software is written and at the process of creating
and running a new program.

Operating System

The collection of computer programs that control the interaction of the user and
the computer hardware is called the operating system (OS). The operating sys-
tem of a computer is often compared to the conductor of an orchestra, for it is the
software that is responsible for directing all computer operations and managing all
computer resources. Usually part of the operating system is stored permanently
in a read-only memory (ROM) chip so that it is available as soon as the computer
is turned on. A computer can look at the values in read-only memory, but can-
not write new values to the chip. The ROM-based portion of the OS contains the
instructions necessary for loading into memory the rest of the operating system
code, which typically resides on a disk. Loading the operating system into memory
is called booting the computer.
Here is a list of some of the operating system’s many responsibilities:

1. Communicating with the computer user: receiving commands and carrying
them out or rejecting them with an error message.

2. Managing allocation of memory, of processor time, and of other resources for
various tasks.

3. Collecting input from the keyboard, mouse, and other input devices, and pro-
viding this data to the currently running program.

4. Conveying program output to the screen, printer, or other output device.

5. Accessing data from secondary storage.

6. Writing data to secondary storage.

In addition to these responsibilities, the operating system of a computer with multiple
users must verify each individual’s right to use the computer and must ensure that
each user can access only data for which he or she has proper authorization.

Table 1.2 lists some widely used operating systems. An OS that uses a com-
mand-line interface displays a brief message, called a prompt, that indicates its
readiness to receive input, and the user then types a command at the keyboard.
Figure 1.9 shows an entry of a UNIX command (1s temp/misc) requesting a list of
the names of all the files (6ridvar.c, Gridvar.exe, Gridok.txt) in subdirectory

26 Chapter 1 ¢ Overview of Computers and Programming

application software
used for a specific task
such as word processing,
accounting, or database
management

TABLE 1.2 Widely Used Operating System Families
Categorized by User Interface Type

Command-Line Interface Graphical User Interface
UNIX Macintosh OS

MS-DOS Windows

VMS 0S/2 Warp

UNIX + X Window System

misc of directory temp. In this case, the prompt is mycomputer:~> (In this figure,
and in all subsequent figures showing program runs, input typed by the user is
shown in color to distinguish it from computer-generated text.)

In contrast, operating systems with a graphical user interface provide the
user with a system of icons and menus. To issue commands, the user moves the
mouse or touch pad cursor to point to the appropriate icon or menu selection
and pushes a button once or twice. Figure 1.10 shows the window that pops up
in Microsoft Windows 7 when you left-click on the Start icon and then left-click
on Computer. You can view the directories of the hard drive (C:), backup drive
(F:), optical drive (D:), or flash drive (E:) by double-clicking the appropriate

icon.

Application Software

Application programs are developed to assist a computer user in accomplishing
specific tasks. For example, a word-processing application such as Microsoft Word
or OpenOffice.org Writer helps to create a document, a spreadsheet application
such as Microsoft Office Excel helps to automate tedious numerical calculations and
to generate charts that depict data, and a database management application such as

FIGURE 1.9 Entering a UNIX Command for Directory Display

1. mycomputer:~> 1ls temp/misc

2. Gridvar.c Gridvar.exe Gridok.txt

4. MYCOMPUTER:~>

FIGURE 1.10

Accessing
Secondary Storage
Devices through
Windows

install make an
application available on
a computer by copying
it to the computer’s
hard drive

machine language
binary number codes
understood by a
specific CPU

1.3 ¢ Computer Software 27

i3 Computer L 10| x|
(_)90 |j'.i ~ Computer - - [ii}] I Search Computer 1O
" . - z ==)
Organize * System properties Uninstall or change a program — Map network drive o= E] I@J
¥ Favorites = Hard Disk Drives {2}
Acer (C1)
ibrari e
- Libraries w
. 97.7 GB free of 220 GB
j Documents
@/ Music Mewvolume (F:)
(&5 Pictures 0" 408 GE free 0f 931 GB
B Videos
« Devices with Removable Storage (2)
i& Homegroup . DVDRW Drive {D:) Untitled CD Selecta_ file
"0 0bytes free of 21.7 MB to preview,

R Caryn (ELLIOT-PC)

(G o

1% Computer Remavable Disk (E1)
= 0 bytes free of 952 MB
& K FaT32
M Metworl
M ELLIoT + Metwork Location (1)
1M ELLIOT-RC

My Web Sites on MSM
File folder

ELLIOT Workaroup: WORKGROUP Memory: 4.00 GB
L& Elliat Processor: AMD Athlon{tm) X2 Dual ...

Microsoft Office Access or dBASE assists in data storage and quick keyword-based
access to large collections of records.

Computer users typically purchase application software on CDs or by down-
loading files from the Internet and install the software by copying the programs
to the hard disk. When buying software, you must always check that the program
you are purchasing is compatible with both the operating system and the computer
hardware you plan to use. We have already discussed some of the differences among
operating systems; now we will investigate the different languages understood by
different processors.

Computer Languages

Developing new software requires writing lists of instructions for a computer to
execute. However, software developers rarely write in the language directly under-
stood by a computer, since this machine language is a collection of binary num-
bers. Another drawback of machine language is that it is not standardized: There is a
different machine language for every type of CPU. This same drawback also applies

28 Chapter 1 ¢ Overview of Computers and Programming

assembly language
mnemonic codes that
correspond to machine
language instructions

high-level language
machine-independent
programming language
that combines algebraic
expressions and English
symbols

compiler software
that translates a high-
level language program
into machine language

TABLE 1.3 A Machine Language Program Fragment and Its Assembly
Language Equivalent

Machine Language
Instructions

Assembly Language

Memory Addresses Instructions

00000000 00000000 CLA
00000001 00010101 ADD A
00000010 00010110 ADD B
00000011 00110101 STAA
00000100 01110111 HLT
00000101 ? A?
00000110 ? B?

to the somewhat more readable assembly language, a language in which computer
operations are represented by mnemonic codes rather than binary numbers and
variables can be given names rather than binary memory addresses. Table 1.3
shows a tiny machine language program fragment that adds two numbers and the
equivalent fragment in assembly language. Notice that each assembly language
instruction corresponds to exactly one machine instruction: The assembly language
memory cells labeled A and B are space for variables; they are not instructions.
The symbol ? indicates that we do not know the contents of the memory cells with
addresses 00000101 and 00000110.

To write programs that are independent of the CPU on which they will be
executed, software designers use high-level languages that combine algebraic
expressions and symbols taken from English. For example, the machine/assembly
language program fragment shown in Table 1.3 would be a single statement in a

high-level language:
a=a + b;

This statement means “add the values of variables a and b, and store the result in
variable a (replacing a’s previous value).”

There are many high-level languages available. Table 1.4 lists some of the
most widely used ones along with the origin of their names and the application
areas that first popularized them. Although programmers find it far easier to
express problem solutions in high-level languages, there remains the problem
that computers do NOT understand these languages. Thus, before a high-level
language program can be executed, it must first be translated into the target com-
puter’s machine language. The program that does this translation is called a com-
piler. Figure 1.11 illustrates the role of the compiler in the process of developing

1.3 ¢ Computer Software 29

TABLE 1.4 High-Level Languages

Language Application Area Origin of Name

FORTRAN Scientific programming Formula translation

COBOL Business data processing Common Business-Oriented Language

LISP Artificial Intelligence List processing

@ Systems programming Predecessor language was named B

Prolog Artificial Intelligence Logic programming

Ada Real-time distributed systems Ada Augusta Byron collaborated with nineteenth-century

computer pioneer Charles Babbage

Smalltalk Graphical user interfaces; Objects “talk” to one another via messages
object-oriented programming

C++ Supports objects and object-oriented Incremental modification of C (++ is the C increment operator)
programming

Java Supports Web programming and Originally named “Oak”

programming Android applications

source file file
containing a program
written in a high-level
language; the input for
a compiler

syntax grammar
rules of a programming
language

object file file of
machine language
instructions that is the
output of a compiler

linker software
that combines object
files and resolves
crossreferences to
create an executable
machine language
program

and testing a high-level language program. Both the input to and the output from
the compiler (when it is successful) are programs. The input to the compiler is a
source file containing the text of a high-level language program. The software
developer creates this file by using a word processor or editor. The format of the
source file is text, which means that it is a collection of character codes. For exam-
ple, you might type a program into a file called myprog.c. The compiler will scan
this source file, checking the program to see if it follows the high-level language’s
syntax (grammar) rules. If the program is syntactically correct, the compiler saves
in an object file the machine language instructions that carry out the program’s
purpose. For program myprog.c, the object file created might be named myprog.
obj. Notice that this file’s format is binary. This means that you should not send
it to a printer, display it on your monitor, or try to work with it in a word proces-
sor because it will appear to be meaningless garbage to a word processor, printer,
or monitor. If the source program contains syntax errors, the compiler lists these
errors but does not create an object file. The developer must return to the word
processor, correct the errors, and recompile the program.

Although an object file contains machine instructions, not all of the instruc-
tions are complete. High-level languages provide the software developer with many
named chunks of code for operations that the developer will likely need. Almost all
high-level language programs use at least one of these chunks of code called func-
tions that reside in other object files available to the system. The linker program
combines these prefabricated functions with the object file, creating a complete

30 Chapter 1 ¢ Overview of Computers and Programming

FIGURE 1.11

Entering, Translating, and Running a High-Level Language Program

ord Processo
(editor) Used to

_| Source File

type in program
and corrections

Format: text

!

Compiler
Attempts to
translate program
into machine
code

Unsuccessful

Error
Messages

Other Object
Files

——>| cross-references

Format: binary

Successful

Y
Object File

Format: binary

Linker
Resolves

among
object files

Input data

Executable File
(load module)

Format: binary

Loader
Copies executable
file into memory;

initiates execution
of instructions

/ B\ > Results

integrated
development
environment

(IDE) software
package combining

a word processor,
compiler, linker, loader,
and tools for finding
errors

input data the data
values that are scanned
by a program

program output the
lines displayed by a
program

1.3 ¢ Computer Software 31

machine language program that is ready to run. For your sample program, the linker
might name the executable file it creates myprog. exe.

As long as myprog.exe is just stored on your disk, it does nothing. To run it,
the loader must copy all its instructions into memory and direct the CPU to begin
execution with the first instruction. As the program executes, it takes input data
from one or more sources and sends results to output and/or secondary storage
devices.

Some computer systems require the user to ask the OS to carry out separately
each step illustrated in Fig. 1.11. However, most high-level language compilers are
sold as part of an integrated development environment (IDE), a package that
combines a simple word processor with a compiler, linker, and loader. Such environ-
ments give the developer menus from which to select the next step, and if the devel-
oper tries a step that is out of sequence, the environment simply fills in the missing
steps automatically.

The user of an integrated development environment should be aware that
the environment may not automatically save to disk the source, object, and
executable files. Rather, it may simply leave these versions of the program in
memory. Such an approach saves the expenditure of time and disk space needed
to make copies and keeps the code readily available in memory for application
of the next step in the translation/execution process. However, the developer
can risk losing the only copy of the source file in the event of a power outage
or serious program error. To prevent such a loss when using an IDE, be sure to
explicitly save the source file to disk after every modification before attempting
to run the program.

Executing a Program

To execute a machine language program, the CPU must examine each program
instruction in memory and send out the command signals required to carry out the
instruction. Although the instructions normally are executed in sequence, as we will
discuss later, it is possible to have the CPU skip over some instructions or execute
some instructions more than once.

During execution, data can be entered into memory and manipulated in some
specified way. Special program instructions are used for entering or scanning a
program’s data (called input data) into memory. After the input data have been
processed, instructions for displaying or printing values in memory can be executed
to display the program results. The lines displayed by a program are called the
program output.

Let’s use the situation described in Fig. 1.12—executing a water bill program
stored in memory—as an example. The first step of the program scans into memory
data that describe the amount of water used. In step 2, the program manipulates
the data and stores the results of the computations in memory. In the final step, the
computational results are displayed as a water bill.

32 Chapter 1 ¢ Overview of Computers and Programming

FIGURE 1.12

Flow of Information During Program Execution

Memory

Machine language

program for
computing water
bill

Step 1 Step 2
Input data:
plles Program Data entered Cg;gzlsin
readings during execution Enit 9

Program
Computed results g Oufput resus:

water bill

I | EXERCISES FOR SECTION 1.3

Self-Check

1. What do you think these five high-level language statements mean?
x=a+b+ c; x =y / z; d=c-Db+ a;
z =z + 1; kelvin = celsius + 273.15;

2. List two reasons why it would be preferable to write a program in C rather
than in machine language.

3. Would a syntax error be found in a source program or an object program?
What system program would find a syntax error if one existed? What system
program would you use to correct it?

4. Explain the differences among the source program, the object program, and
an executable program. Which do you create, and which does the compiler
create? Which does the linker or loader create?

1.4 e The Software Development Method 33

1.4 The Software Development Method

Programming is a problem-solving activity. If you are a good problem solver, you
have the potential to become a good programmer. Therefore, one goal of this book
is to help you improve your problem-solving ability. Problem-solving methods are
covered in many subject areas. Business students learn to solve problems with a
systems approach while engineering and science students use the engineering and
scientific method. Programmers use the software development method.

Software Development Method

Specify the problem requirements.
Analyze the problem.

Design the algorithm to solve the problem.
Implement the algorithm.

Test and verify the completed program.
Maintain and update the program.

S

PROBLEM

Specifying the problem requirements forces you to state the problem clearly and
unambiguously and to gain a clear understanding of what is required for its solution.
Your objective is to eliminate unimportant aspects and zero in on the root problem.
This goal may not be as easy to achieve as it sounds. You may find you need more
information from the person who posed the problem.

ANALYSIS

Analyzing the problem involves identifying the problem (a) inputs, that is, the data
you have to work with; (b) outputs, that is, the desired results; and (c) any additional
requirements or constraints on the solution. At this stage, you should also determine
the required format in which the results should be displayed (for example, as a table
with specific column headings) and develop a list of problem variables and their
relationships. These relationships may be expressed as formulas.

If steps 1 and 2 are not done properly, you will solve the wrong problem. Read
the problem statement carefully, first, to obtain a clear idea of the problem and
second, to determine the inputs and outputs. You may find it helpful to underline
phrases in the problem statement that identify the inputs and outputs, as in the
problem statement below.

Compute and display the total cost of apples given the number of pounds of apples
purchased and the cost per pound of apples.

Next, summarize the information contained in the underlined phrases:

34 Chapter 1 ¢ Overview of Computers and Programming

abstraction the

process of modeling a
problem by extracting
the essential variables
and their relationships

algorithm a list of
steps for solving a
problem

top-down design
breaking a problem into
its major subproblems
and then solving the
subproblems

stepwise refinement
development of a
detailed list of steps to
solve a particular step in
the original algorithm

Problem Inputs

quantity of apples purchased (in pounds)
cost per pound of apples (in dollars per pound)

Problem Output
total cost of apples (in dollars)

Once you know the problem inputs and outputs, develop a list of formulas that
specify relationships between them. The general formula

Total cost = Unit cost X Number of units

computes the total cost of any item purchased. Substituting the variables for our
particular problem yields the formula

Total cost of apples = Cost per pound X Pounds of apples

In some situations, you may need to make certain assumptions or simplifications
to derive these relationships. This process of modeling a problem by extracting the
essential variables and their relationships is called abstraction.

DESIGN

Designing the algorithm to solve the problem requires you to develop a list of steps
called an algorithm to solve the problem and to then verify that the algorithm
solves the problem as intended. Writing the algorithm is often the most difficult
part of the problem-solving process. Don’t attempt to solve every detail of the
problem at the beginning; instead, discipline yourself to use top-down design. In
top-down design (also called divide and conquer), you first list the major steps, or
subproblems, that need to be solved. Then you solve the original problem by solving
each of its subproblems. Most computer algorithms consist of at least the following
subproblems.

ALGORITHM FOR A PROGRAMMING PROBLEM

1. Get the data.
2. Perform the computations.
3. Display the results.

Once you know the subproblems, you can attack each one individually. For
example, the perform-the-computations step may need to be broken down into a
more detailed list of steps through a process called stepwise refinement.

You may be familiar with top-down design if you use an outline when writing
a term paper. Your first step is to create an outline of the major topics, which you
then refine by filling in subtopics for each major topic. Once the outline is com-
plete, you begin writing the text for each subtopic.

desk checking the
step-by-step simulation
of the computer
execution of an
algorithm

1.4 ¢ The Software Development Method 35

Desk checking is an important part of algorithm design that is often overlooked.
To desk check an algorithm, you must carefully perform each algorithm step (or
its refinements) just as a computer would and verify that the algorithm works as
intended. You'll save time and effort if you locate algorithm errors early in the
problem-solving process.

IMPLEMENTATION

Implementing the algorithm (step 4 in the software development method) involves
writing it as a program. You must convert each algorithm step into one or more
statements in a programming language.

TESTING

Testing and verifying the program requires testing the completed program to verify
that it works as desired. Don’t rely on just one test case. Run the program several
times using different sets of data to make sure that it works correctly for every situ-
ation provided for in the algorithm.

MAINTENANCE

Maintaining and updating the program involves modifying a program to remove
previously undetected errors and to keep it up-to-date as government regulations
or company policies change. Many organizations maintain a program for five years
or more, often after the programmers who originally coded it have left or moved on
to other positions.

A disciplined approach is essential if you want to create programs that are
easy to read, understand, and maintain. You must follow accepted program style
guidelines (which will be stressed in this book) and avoid tricks and programming
shortcuts.

Caution: Failure Is Part of the Process

Although having a step-by-step approach to problem solving is helpful, we must avoid
jumping to the conclusion that if we follow these steps, we are guaranteed a correct
solution the first time, every time. The fact that verification is so important implies
an essential truth of problem solving: The first (also the second, the third, or the
twentieth) attempt at a solution may be wrong. Probably the most important distinc-
tion between outstanding problem solvers and less proficient ones is that outstanding
problem solvers are not discouraged by initial failures. Rather, they see the faulty and
near-correct early solutions as a means of gaining a better understanding of the prob-
lem. One of the most inventive problem solvers of all time, Thomas Edison, is noted
for his positive interpretation of the thousands of failed experiments that contributed
to his incredible record of inventions. His friends report that he always saw those
failures in terms of the helpful data they yielded about what did not work.

36 Chapter 1 ¢ Overview of Computers and Programming

|

Self-Check

1. List the steps of the software development method.
2. In which phase is the algorithm developed? In which phase do you identify the
problem inputs and outputs?

1.5 Applying the Software Development Method

Throughout this book, we use the first five steps of the software development
method to solve programming problems. These example problems, presented as
Case Studies, begin with a problem statement. As part of the problem analysis, we
identify the data requirements for the problem, indicating the problem inputs and
the desired outputs. Next, we design and refine the initial algorithm. Finally, we
implement the algorithm as a C program. We also provide a sample run of the pro-
gram and discuss how to test the program.

We walk you through a sample case study next. This example includes a running
commentary on the process, which you can use as a model in solving other problems.

CASE STUDY Converting Miles to Kilometers

PROBLEM

Your summer surveying job requires you to study some maps that give distances in
kilometers and some that use miles. You and your coworkers prefer to deal in metric
measurements. Write a program that performs the necessary Conversion.

ANALYSIS

The first step in solving this problem is to determine what you are asked to do. You
must convert from one system of measurement to another, but are you supposed to
convert from kilometers to miles, or vice versa? The problem states that you prefer
to deal in metric measurements, so you must convert distance measurements in miles
to kilometers. Therefore, the problem input is distance in miles and the problem
output is distance in kilometers. To write the program, you need to know the rela-
tionship between miles and kilometers. Consulting a metric table shows that one mile
equals 1.609 kilometers.

The data requirements and relevant formulas are listed below. miles identifies
the memory cell that will contain the problem input and kms identifies the memory
cell that will contain the program result, or the problem output.

1.5 ¢ Applying the Software Development Method 37

DATA REQUIREMENTS

Problem Input

miles /* the distance in miles*/

Problem Output

kms /* the distance in kilometers */

Relevant Formula
1 mile = 1.609 kilometers

DESIGN

Next, formulate the algorithm that solves the problem. Begin by listing the three
major steps, or subproblems, of the algorithm.

ALGORITHM

1. Get the distance in miles.
2. Convert the distance to kilometers.
3. Display the distance in kilometers.

Now decide whether any steps of the algorithm need further refinement or whether
they are perfectly clear as stated. Step 1 (getting the data) and step 3 (displaying a
value) are basic steps and require no further refinement. Step 2 is fairly straightfor-
ward, but some detail might help:

Step 2 Refinement

2.1 The distance in kilometers is 1.609 times the distance in miles.

We list the complete algorithm with refinements below to show you how it all
fits together. The algorithm resembles an outline for a term paper. The refinement
of step 2 is numbered as step 2.1 and is indented under step 2.

ALGORITHM WITH REFINEMENTS

1. Get the distance in miles.
2. Convert the distance to kilometers.

2.1 The distance in kilometers is 1.609 times the distance in miles.
3. Display the distance in kilometers.

Let’s desk check the algorithm before going further. If step 1 gets a distance
of 10.0 miles, step 2.1 would convert it to 1.609 X 10.00 or 16.09 kilometers. This
correct result would be displayed by step 3.

38

00 N o U1 B> W N

N NN NNR B R B B B 2 B B 2
B W N H O W= U & WNRFE o W

Chapter 1 ¢ Overview of Computers and Programming

FIGURE 1.13 Miles-to-Kilometers Conversion Program

/*

* Converts distance in miles to kilometers.

*/

#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER MILE 1.609 /* conversion constant @y
int

main(void)

{
double miles, /* input - distance in miles. */
kms ; /* output - distance in kilometers */
/* Get the distance in miles. */
printf (“Enter the distance in miles> ”);
scanf (“%$1f”, &miles);
/* Convert the distance to kilometers. */
kms = KMS PER MILE * miles;
/* Display the distance in kilometers. */
printf (“That equals %f kilometers.\n”, kms);
return (0);
}
Sample Run

Enter the distance in miles> 10.00
That equals 16.090000 kilometers.

IMPLEMENTATION

To implement the solution, you must write the algorithm as a C program. To do
this, you must first tell the C compiler about the problem data requirements—that
is, what memory cell names you are using and what kind of data will be stored in
each memory cell. Next, convert each algorithm step into one or more C statements.
If an algorithm step has been refined, you must convert the refinements, not the
original step, into C statements.

Figure 1.13 shows the C program along with a sample execution or run. For
easy identification, the program statements corresponding to algorithm steps are in

1.6 ¢ Professional Ethics for Computer Programmers 39

color as is the input data typed in by the program user. Don’t worry about under-
standing the details of this program yet. We explain the program in the next chapter.

TESTING

How do you know the sample run is correct? You should always examine program
results carefully to make sure that they make sense. In this run, a distance of 10.0
miles is converted to 16.09 kilometers, as it should be. To verify that the program
works properly, enter a few more test values of miles. You don’t need to try more
than a few test cases to verify that a simple program like this is correct.

Self-Check

1. Change the algorithm for the metric conversion program to convert distance
in kilometers to miles.

2. List the data requirements, formulas, and algorithm for a program that con-
verts a volume from quarts to liters.

1.6 Professional Ethics for Computer Programmers

computer theft
(computer fraud)
lllegally obtaining
money by falsifying
information in a
computer database

We end this introductory chapter with a discussion of professional ethics for com-
puter programmers. Like other professionals, computer programmers and software
system designers (called software engineers) need to follow certain standards of
professional conduct.

Privacy and Misuse of Data

As part of their jobs, programmers may have access to large data banks or databases
containing sensitive information on financial transactions or personnel, or informa-
tion that is classified as “secret” or “top secret.” Programmers should always behave
in a socially responsible manner and not retrieve information that they are not
entitled to see. They should not use information to which they are given access for
their own personal gain, or do anything that would be considered illegal, unethical,
or harmful to others. Just as doctors and lawyers must keep patient information con-
fidential, programmers must respect an individual’s rights to privacy.

A programmer who changes information in a database containing financial
records for his or her own personal gain—for example, changes the amount of
money in a bank account—is guilty of computer theft or computer fraud. This is
a felony that can lead to fines and imprisonment.

40 Chapter 1 ¢ Overview of Computers and Programming

virus Code attached
to another program
that spreads through

a computer’s disk
memory, disrupting the
computer or erasing
information

worm A virus that
can disrupt a network
by replicating itself
on other network
computers

Computer Hacking

You may have heard about “computer hackers” who break into secure data
banks by using their own computer to call the computer that controls access to
the data bank. Classified or confidential information retrieved in this way has
been sold to intelligence agencies of other countries. Other hackers have tried
to break into computers to retrieve information for their own amusement or as
a prank, or just to demonstrate that they can do it. Regardless of the intent, this
activity is illegal, and the government will prosecute anyone who does it. Your
university probably addresses this kind of activity in your student handbook.
The punishment is likely similar to that for other criminal activity, because that
is exactly what it is.

Another illegal activity sometimes practiced by hackers is attaching harmful
code, called a virus, to another program so that the virus code copies itself through-
out a computer’s disk memory. A virus can cause sporadic activities to disrupt the
operation of the host computer—for example, unusual messages may appear on the
screen at certain times—or cause the host computer to erase portions of its own disk
memory, destroying valuable information and programs. Viruses are spread from
one computer to another in various ways—for example, if you copy a file that origi-
nated on another computer that has a virus, or if you open an e-mail message that
is sent from an infected computer. A computer worm is a virus that can replicate
itself on other network computers, causing these computers to send multiple mes-
sages over the network to disrupt its operation or shut it down. Certainly, data theft
and virus propagation should not be considered harmless pranks; they are illegal and
carry serious penalties.

Plagiarism and Software Piracy

Using someone else’s programs without permission is also unprofessional behavior.
Although it is certainly permissible to use modules from libraries that have been
developed for reuse by their own company’s programmers, you cannot use another
programmer’s personal programs or programs from another company without get-
ting permission beforehand. Doing so could lead to a lawsuit, with you or your com-
pany having to pay damages.

Modifying another student’s code and submitting it as your own is a fraudulent
practice—specifically, plagiarism—and is no different than copying paragraphs of
information from a book or journal article and calling it your own. Most universities
have severe penalties for plagiarism that may include failing the course and/or being
dismissed from the university. Be aware that even if you modify the code slightly
or substitute your own comments or different variable names, you are still guilty of
plagiarism if you are using another person’s ideas and code. To avoid any question of
plagiarism, find out beforehand your instructor’s rules about working with others on
a project. If group efforts are not allowed, make sure that you work independently
and submit only your own code.

software

piracy Violating
copyright agreements
by illegally copying
software for use in
another computer

Chapter Review 41

Many commercial software packages are protected by copyright laws against
software piracy—the practice of illegally copying software for use on another
computer. If you violate this law, your company or university can be fined heavily
for allowing this activity to occur. Besides the fact that software piracy is against the
law, using software copied from another computer increases the possibility that your
computer will receive a virus. For all these reasons, you should read the copyright
restrictions on each software package and adhere to them.

Misuse of a Computer Resource

Computer system access privileges or user account codes are private property.
These privileges are usually granted for a specific purpose—for example, for work to
be done in a particular course or for work to be done during the time you are a stu-
dent at your university. The privilege should be protected; it should not be loaned to
or shared with anyone else and should not be used for any purpose for which it was
not intended. When you leave the institution, this privilege is normally terminated
and any accounts associated with the privilege will be closed.

Computers, computer programs, data, and access (account) codes are like any
other property. If they belong to someone else and you are not explicitly given per-
mission to use them, then do not use them. If you are granted a use privilege for a
specific purpose, do not abuse the privilege or it will be taken away.

Legal issues aside, it is important that we apply the same principles of right and
wrong to computerized property and access rights as to all other property rights and
privileges. If you are not sure about the propriety of something you want to do, ask
first. As students and professionals in computing, we set an example for others. If
we set a bad example, others are sure to follow.

Self-Check

1. Some computer users will not open an e-mail message unless they know the
person who sent it. Why might someone adopt this policy?

Find out the penalty for plagiarism at your school.

Why is it a good policy to be selective about opening e-mail attachments?

4. Define the terms virus and worm.

Chapter Review

1. The basic components of a computer are main memory and secondary storage,
the CPU, and input and output devices.

2. All data manipulated by a computer are represented digitally, as base 2 num-
bers composed of strings of the digits 0 and 1.

42 Chapter 1 ¢ Overview of Computers and Programming

10.

11.

Main memory is organized into individual storage locations called memory

cells.

= Each memory cell has a unique address.

= A memory cell is a collection of bytes; a byte is a collection of 8 bits.

= A memory cell is never empty, but its initial contents may be meaningless
to your program.

m The current contents of a memory cell are destroyed whenever new infor-
mation is stored in that cell.

m Programs must be loaded into the memory of the computer before they can
be executed.

» Data cannot be manipulated by the computer until they are first stored in
memory.

Information in secondary storage is organized into files: program files and data

files. Secondary storage provides a low-cost means of storing large quantities

of information in semipermanent form.

A CPU runs a computer program by repeatedly fetching and executing simple

machine-code instructions.

Connecting computers in networks allows sharing of resources—local

resources on LANs and worldwide resources on a WAN such as the Internet.

Programming languages range from machine language (meaningful to a com-

puter) to high-level language (meaningful to a programmer).

Several system programs are used to prepare a high-level language program

for execution. An editor enters a high-level language program into a file. A

compiler translates a high-level language program (the source program) into

machine language (the object program). The linker links this object program

to other object files, creating an executable file, and the loader loads the exe-

cutable file into memory. All of these programs are combined in an integrated

development environment (IDE).

Through the operating system, you can issue commands to the computer and

manage files.

Follow the first five steps of the software development method to solve pro-

gramming problems: (1) specify the problem, (2) analyze the problem, (3)

design the algorithm, (4) implement the algorithm, and (5) test and verify the

completed program. Write programs in a consistent style that is easy to read,

understand, and maintain.

Follow ethical standards of conduct in everything you do pertaining to comput-

ers. This means do not copy software that is copyright protected, do not hack

into someone else’s computer, do not send files that may be infected to oth-

ers, and do not submit someone else’s work as your own or lend your work to

another student.

Answers to Quick-Check Exercises 43

Quick-Check Exercises

—

10.

11.

12.

13.
14.

. A translates a high-level language program into

A(n) provides access to system programs for edltmg, compiling, and
so on.

Specify the correct order for these operations: execution, translation, linking,
loading.

A high-level language program is saved on disk as a(n) file.

The finds syntax errors in the

Before linking, a machine language program is saved on disk as a(n)

file.
After linking, a machine language program is saved on disk as a(n)
file.
Computer programs are components of a computer system while a
disk drive is
In a high-level or an assembly language, you can reference data using
rather than memory cell addresses.
is composed of units such as disks, flash memory, or writable CDs
that retain the data stored even when power is lost.
On a magnetic disk, data are represented as arranged in concentric
tracks.
On a CD or DVD, data are represented as laser-written pits arranged in a

A list of all files stored on a disk is stored in its
Give an example of a wide area network.

Answers to Quick-Check Exercises

e S A i

compiler, machine language
operating system

translation, linking, loading, execution
source

compiler, source file

object

executable

software, hardware

variables

Secondary storage

. magnetized spots
. spiral

. directory

. the Internet

44 Chapter 1 ¢ Overview of Computers and Programming

Review Questions

S Utk W

List at least three kinds of information stored in a computer.

List two functions of the CPU.

List two input devices, two output devices, and two secondary storage devices.
Describe three categories of programming languages.

What is a syntax error?

What processes are needed to transform a C program to a machine language
program that is ready for execution?

Explain the relationship between memory cells, bytes, and bits.

Name three high-level languages and describe their original usage.

What are the differences between RAM and ROM?

What is the World Wide Web?

. How do you install new software on a computer?
. What are two high-speed Internet connection options available to home com-

puter users?

Overview of C

CHAPTER

CHAPTER OBJECTIVES

To become familiar with the general form of a C
program and the basic elements in a program

To appreciate the importance of writing comments in a
program

To understand the use of data types and the differences
between the data types int, double, and char

To know how to declare variables

To understand how to write assignment statements to
change the values of variables

To learn how C evaluates arithmetic expressions and
how to write them in C

To learn how to read data values into a program and to
display results

To understand how to write format strings for data
entry and display

To learn how to use redirection to enable the use of files
for input/output

To understand the differences between syntax errors,
run-time errors, and logic errors, and how to avoid them
and to correct them

2.1

preprocessor directive
a C program line
beginning with # that
provides an instruction
to the preprocessor

preprocessor a
system program that

modifies a C program
prior to its compilation

library a collection
of useful functions and
symbols that may be
accessed by a program

This chapter introduces C—a high-level programming language developed in
1972 by Dennis Ritchie at AT&T Bell Laboratories. Because C was designed as
a language in which to write the UNIX® operating system, it was originally used
primarily for systems programming. Over the years, however, the power and flex-
ibility of C, together with the availability of high-quality C compilers for comput-
ers of all sizes, have made it a popular language in industry for a wide variety of
applications.

This chapter describes the elements of a C program and the types of data that
can be processed by C. It also describes C statements for performing computations,
for entering data, and for displaying results.

C Language Elements

One advantage of C is that it lets you write programs that resemble everyday
English. Even though you do not yet know how to write your own programs, you
can probably read and understand the program in Fig. 1.14. Figure 2.1 repeats this
figure with the basic features of C highlighted. We identify them briefly below, and
explain them in detail in Sections 2.2 to 2.4. The line numbers shown in all code
figures are not part of the C programming.

Preprocessor Directives

The C program in Fig. 2.1 has two parts: preprocessor directives and the main
function. The preprocessor directives are commands that give instructions to
the C preprocessor, whose job it is to modify the text of a C program before it
is compiled. A preprocessor directive begins with a number symbol (#) as its first
nonblank character. The two most common directives appear in Fig. 2.1: #include
and #define.

The C language explicitly defines only a small number of operations: Many
actions that are necessary in a computer program are not defined directly by C.
Instead, every C implementation contains collections of useful functions and
symbols called libraries. The ANSI (American National Standards Institute)
standard for C requires that certain standard libraries be provided in every ANSI
C implementation. A C system may expand the number of operations available by
supplying additional libraries; an individual programmer can also create libraries
of functions. Each library has a standard header file whose name ends with the
symbols .h.

2.1 o Clanguage Elements 47

FIGURE 2.1 C Language Elements in Miles-to-Kilometers Conversion Program

/*
* Converts distances from miles to kilometers.
x/
standard header file comment
preprocessor <:::::::#include <stdio.h> /* printf, scanf definitions */
directive #define KMS_PER MILE 1.609 /* conversion constant */
constant int reserved word
main(void)
{
double miles, /* distance in miles
variable » kms ; /* equivalent distance in kilometers */

. . . <«———— comment
/* Get the distance in miles. */

standard printf("Enter the distance in miles> ");
\demﬁmr-<:::::::::::::::»scanf("%lf", smiles);

/* Convert the distance to kilometers. */
kms = KMS_PER_MILE * miles;

special symbol
/* Display the distance in kilometers. */
printf("That equals %f kilometers.\n", kms);

reserved /

» . «— punctuation
word return (0); p

»

} «— special symbol

The #include directive gives a program access to a library. This directive
causes the preprocessor to insert definitions from a standard header file into a pro-
gram before compilation. The directive

#include <stdio.h> /* printf, scanf definitions */

notifies the preprocessor that some names used in the program (such as scanf and
printf) are found in the standard header file <stdio.h>.
The other preprocessor directive in Fig. 2.1

#define KMS_PER_MILE 1.609 /* conversion constant */

48 Chapter 2 ¢ Overview of C

constant macro a
name that is replaced
by a particular constant
value before the
program is sent to the
compiler

comment text
beginning with /* and
ending with */ that
provides supplementary
information but

is ignored by the
preprocessor and
compiler

associates the constant macro kMs_PER_MILE with the meaning 1.609. This
directive instructs the preprocessor to replace each occurrence of KMS_PER_

MILE in the text of the C program by 1.609 before compilation begins. As a result
the line

kms = KMS_PER_MILE * miles;
would read
kms = 1.609 * miles;

by the time it was sent to the C compiler. Only data values that never change (or
change very rarely) should be given names using a #define, because an executing C
program cannot change the value of a name defined as a constant macro. Using the
constant macro KMS_PER_MILE in the text of a program for the value 1.609 makes
it easier to understand and maintain the program.

The text on the right of each preprocessor directive, starting with /* and ending
with */, is a comment. Comments provide supplementary information making it
easier for us to understand the program, but comments are ignored by the C pre-
processor and compiler.

Syntax Displays for Preprocessor Directives

For each new C construct introduced in this book, we provide a syntax display that
describes and explains the construct’s syntax and shows examples of its use. The
following syntax displays describe the two preprocessor directives. The italicized
elements in each construct are discussed in the interpretation section.

#include Directive for Defining Identifiers from
Standard Libraries

SYNTAX: #include <standard header file>

EXAMPLES: #include <stdio.h>

#include <math.h>

INTERPRETATION: #include directives tell the preprocessor where to find the meanings of
standard identifiers used in the program. These meanings are collected in files called stan-
dard header files. The header file stdio.h contains information about standard input and
output functions such as scanf and print£. Descriptions of common mathematical func-
tions are found in the header file math.h. We will investigate header files associated with
other standard libraries in later chapters.

declarations the part
of a program that tells
the compiler the names
of memory cellsin a
program

executable
statements program
lines that are converted
to machine language
instructions and
executed by the
computer

2.1 » Clanguage Elements 49

#define Directive for Creating Constant Macros
SYNTAX: #define NAME value

EXAMPLES: #define MILES_PER KM 0.62137
#define PI 3.141593
#define MAX_LENGTH 100

INTERPRETATION: The C preprocessor is notified that it is to replace each use of the identi-
fier NAME by value. C program statements cannot change the value associated with NAME.

Function main

The two-line heading

int

main(void)

marks the beginning of the main function where program execution begins. Every
C program has a main function. The remaining lines of the program form the body
of the function which is enclosed in braces {, }.

A function body has two parts: declarations and executable statements. The
declarations tell the compiler what memory cells are needed in the function (for
example, miles and kms in Fig. 2.1). To create this part of the function, the pro-
grammer uses the problem data requirements identified during problem analysis.
The executable statements (derived from the algorithm) are translated into
machine language and later executed.

The main function contains punctuation and special symbols (*, =). Commas
separate items in a list, a semicolon appears at the end of several lines, and braces
({, 3) mark the beginning and end of the body of function main.

main Function Definition

SYNTAX: int
main(void)

{
function body

(continued)

50 Chapter 2 ¢ Overview of C

reserved word a
word that has special
meaning in C

standard identifier
a word having special
meaning but one
that a programmer
may redefine (but
redefinition is not
recommended!)

EXAMPLE: int
main(void)
{
printf("Hello world\n");
return (0);

}

INTERPRETATION: Program execution begins with the main function. Braces enclose the main
function body, which contains declarations and executable statements. The line int indicates
that the main function returns an integer value (0) to the operating system when it finishes
normal execution. The symbols (void) indicate that the main function receives no data from
the operating system before it begins execution.

Reserved Words

Each line of Fig. 2.1 contains a number of different words classified as reserved
words, identifiers from standard libraries, and names for memory cells. All the
reserved words appear in lowercase; they have special meaning in C and cannot
be used for other purposes. A complete list of ANSI C reserved words is found in
Appendix E. Table 2.1 describes the reserved words in Fig 2.1.

Standard Identifiers

The other words in Fig. 2.1 are identifiers that come in two varieties: standard and
user-defined. Like reserved words, standard identifiers have special meaning in
C. In Fig. 2.1, the standard identifiers printf and scanf are names of operations
defined in the standard input/output library. Unlike reserved words, standard identi-
fiers can be redefined and used by the programmer for other purposes—however,
we don’t recommend this practice. If you redefine a standard identifier, C will no
longer be able to use it for its original purpose.

TABLE 2.1 Reserved Words in Fig. 2.1

Reserved Word Meaning

int integer; indicates that the main function returns an integer value

void indicates that the main function receives no data from the operating
system

double indicates that the memory cells store real numbers

return returns control from the main function to the operating system

2.1 o Clanguage Elements 51

User-Defined Identifiers

We choose our own identifiers (called user-defined identifiers) to name memory
cells that will hold data and program results and to name operations that we define
(more on this in Chapter 3). The first user-defined identifier in Fig. 2.1, KMS_PER_
MILE, is the name of a constant macro.

You have some freedom in selecting identifiers. The syntax rules and some valid
identifiers follow. Table 2.2 shows some invalid identifiers.

1. Anidentifier must consist only of letters, digits, and underscores.

2. An identifier cannot begin with a digit.

3. A Creserved word cannot be used as an identifier.

4. An identifier defined in a C standard library should not be redefined.”

Valid Identifiers
letter_1, letter_2, inches, cent, CENT_PER_INCH, Hello, variable

Although the syntax rules for identifiers do not place a limit on length, some ANSI
C compilers do not consider two names to be different unless there is a variation within
the first 31 characters. The two identifiers

per_capita meat_consumption_in 1980
per_capita meat_consumption_in 1995

would be viewed as identical by a C compiler that considered only the first 31 char-
acters to be significant.

Table 2.3 lists the category of each identifier appearing in the main function of
Fig. 2.1.

TABLE 2.2 Invalid Identifiers

Invalid Identifier Reason Invalid
lLetter begins with a letter
double reserved word

int reserved word
TWO*FOUR character * not allowed
joe's character ' not allowed

*Rule 4 is actually advice from the authors rather than ANSI C syntax.

52

Chapter 2 ¢ Overview of C

TABLE 2.3 Reserved Words and Identifiers in Fig. 2.1

Reserved Words Standard Identifiers User-Defined Identifiers
int, void, printf, scanf KMS_PER_MILE, main,
double, miles, kms

return

Uppercase and Lowercase Letters

The C programmer must take great care in the use of uppercase and lowercase
letters because the C compiler considers such usage significant. The names Rate,
rate, and RATE are viewed by the compiler as different identifiers. Adopting a con-
sistent pattern in the way you use uppercase and lowercase letters is helpful to the
readers of your programs. You will see that all reserved words in C and the names
of all standard library functions use only lowercase letters. One style that has been
widely adopted in industry uses all uppercase letters in the names of constant mac-
ros. We follow this convention in this text; for other identifiers we use all lowercase
letters.

Program Style Choosing Identifier Names

We discuss program style throughout the text in displays like this one. A program
that “looks good” is easier to read and understand than one that is sloppy. Most pro-
grams will be examined or studied by someone other than the original programmers.
In industry, programmers spend considerably more time on program maintenance
(that is, updating and modifying the program) than they do on its original design or
coding. A program that is neatly stated and whose meaning is clear makes every-
one’s job simpler.

Pick a meaningful name for a user-defined identifier, so its use is easy to under-
stand. For example, the identifier salary would be a good name for a memory cell
used to store a person’s salary, whereas the identifier s or bagel would be a bad
choice. If an identifier consists of two or more words, placing the underscore char-
acter (_) between words will improve the readability of the name (dollars_per
hour rather than dollarsperhour).

Choose identifiers long enough to convey your meaning, but avoid excessively
long names because you are more likely to make a typing error in a longer name.
For example, use the shorter identifier 1bs_per_sq_in instead of the longer identi-
fier pounds_per_square_inch.

If you mistype a name so that the identifier looks like the name of another mem-
ory cell, often the compiler cannot help you detect your error. For this reason and to
avoid confusion, do not choose names that are similar to each other. Especially avoid

2.2 e Variable Declarations and Data Types 53

selecting two names that are different only in their use of uppercase and lowercase
letters, such as LARGE and large. Also try not to use two names that differ only in the
presence or absence of an underscore (xcoord and x_coord).

Self-Check

1. Which of the following identifiers are (a) C reserved words, (b) standard
identifiers, (c) conventionally used as constant macro names, (d) other valid
identifiers, and (e) invalid identifiers?

double
xyz123

time G
part#2 "char"

void MAX ENTRIES
return printf

this_is_a long_one

Sue's
#insert

ro

Why should £ (2.7182818) be defined as a constant macro?

3. What part of a C implementation changes the text of a C program just before
it is compiled? Name two directives that give instructions about these changes.

4. Why shouldn’t you use a standard identifier as the name of a memory cell in a

program? Can you use a reserved word instead?

2.2 Variable Declarations and Data Types

variable aname
associated with a
memory cell whose
value can change

variable declarations
statements that
communicate to the
compiler the names
of variables in the
program and the kind
of information stored
in each variable

Variable Declarations

The memory cells used for storing a program’s input data and its computational
results are called variables because the values stored in variables can change
(and usually do) as the program executes. The variable declarations in a C
program communicate to the C compiler the names of all variables used in a pro-
gram. They also tell the compiler what kind of information will be stored in each
variable and how that information will be represented in memory. The variable
declarations

double miles; /* input - distance in miles. */
double kms; /* output - distance in kilometers */

give the names of two variables (miles, kms) used to store real numbers. Note that C
ignores the comments on the right of each line describing the usage of each variable.

A variable declaration begins with an identifier (for example, double) that tells
the C compiler the type of data (such as a real number) stored in a particular vari-
able. You can declare variables for any data type. C requires you to declare every
variable used in a program.

54 Chapter 2 ¢ Overview of C

data type a set of
values and operations
that can be performed
on those values

Syntax Display for Declarations

SYNTAX: int variable_list;
double variable_list;
char variable_list;

EXAMPLES: int count,
large;
double x, y, z;
char first initial;
char ans;

INTERPRETATION: A memory cell is allocated for each name in the variable_list. The type of
data (double, int, char) to be stored in each variable is specified at the beginning of
the statement. One statement may extend over multiple lines. A single data type can appear
in more than one variable declaration, so the following two declaration sections are equally
acceptable ways of declaring the variables rate, time, and age.

double rate, time; double rate;
int age; int age;
double time;

Data Types

A data type is a set of values and a set of operations on those values. Knowledge
of the data type of an item (a variable or value) enables the C compiler to cor-
rectly specify operations on that item. A standard data type in C is a data type that
is predefined, such as char, double, and int. We use the standard data types
double and int as abstractions for the real numbers and integers (in the math-
ematical sense).

Objects of a data type can be variables or constants. A positive numeric constant
(or number) in a C program can be written with or without a + sign. A numeric con-
stant cannot contain a comma.

Numeric constants in C are considered nonnegative numbers. Although you
can use a number like -10500 in a program, C views the minus sign as the nega-
tion operator (applied to the positive constant 10500) rather than as a part of the
constant.

Data Type int In mathematics, integers are whole numbers. The int data type
is used to represent integers in C. Because of the finite size of a memory cell, not all
integers can be represented by type int. ANSI C specifies that the range of data type

2.2 ¢ Variable Declarations and Data Types 55

int must include at least the values -32767 through 32767. You can store an integer
in a type int variable, perform the common arithmetic operations (add, subtract,
multiply, and divide), and compare two integers. Some values that you can store in a
type int variable are

-10500 435 +15 -25 32767

Data Type double A real number has an integral part and a fractional part that
are separated by a decimal point. In C, the data type double is used to represent
real numbers (for example, 3.14159, 0.0005, 150.0). You can store a real number
in a type double variable, perform the common arithmetic operations (add,
subtract, multiply, and divide), and compare them.

We can use scientific notation to represent real numbers (usually for very large
or very small values). In normal scientific notation, the real number 1.23 X 10°
is equivalent to 123000.0 where the exponent 5 means “move the decimal point
5 places to the right.” In C scientific notation, we write this number as 1.23e5
or 1.23E5. Read the letter e or E as “times 10 to the power™: 1.23e5 means 1.23
times 10 to the power 5. If the exponent has a minus sign, the decimal point is
moved to the left (for example, 0.34e-4 is equivalent to 0.000034). Table 2.4
lists some real numbers and indicates which ones can be stored in a type double
variable. The last line shows we can write a type double constant in C scientific
notation without a decimal point.

Data type double is an abstraction for the real numbers because it does
not include them all. Some real numbers are too large or too small, and some
real numbers cannot be represented precisely because of the finite size of a
memory cell. However, we can certainly represent enough of the real numbers
in C to carry out most of the computations we wish to perform with sufficient
accuracy.

TABLE 2.4 Type double Constants (real numbers)

Valid double Constants Invalid double Constants
3.14159 150 (no decimal point)

0.005 .12345e (missing exponent)
12345.0 15e-0.3 (0.3 is invalid exponent)
15.0e-04 (valueis 0.0015)

2.345e2 (valueis 234.5) 12.5e.3 (.3 isinvalid exponent)
1.15e-3 (valueis 0.00115) 34,500.99 (comma is not allowed)

12e+5 (value is 1200000.0)

56 Chapter 2 ¢ Overview of C

FIGURE 2.2

Internal Formats of
Type int and Type
double

type int format type double format

binary number sign | exponent | mantissa

Differences Between Numeric Types

You may wonder why having more than one numeric type is necessary. Can the
data type double be used for all numbers? Yes, but on many computers, operations
involving integers are faster than those involving numbers of type double. Less
storage space is needed to store type int values. Also, operations with integers are
always precise, whereas some loss of accuracy or round-off error may occur when
dealing with type double numbers.

These differences result from the way numbers are represented in the compu-
ter’s memory. All data are represented in memory as binary strings, strings of Os and
1s. However, the binary string stored for the type int value 13 is not the same as
the binary string stored for the type double number 13.0. The actual internal rep-
resentation is computer dependent, and type double numbers usually require more
bytes of computer memory than type int. Compare the sample int and double
formats shown in Fig. 2.2.

Positive integers are represented by standard binary numbers. If you are famil-
iar with the binary number system, you know that the integer 13 is represented as
the binary number 01101.

The format of type double values (also called floating-point format) is analo-
gous to scientific notation. The storage area occupied by the number is divided into
three sections: the sign (0 for positive numbers, 1 for negative numbers), the man-
tissa, and the exponent. The mantissa is a binary fraction between 0.5 and 1.0. The
exponent is an integer. The mantissa and exponent are chosen so that the following
formula is correct.

real number = mantissa X 2ewonent

If 64 bits are used for storage of a type double number, the sign would occupy 1
bit, the exponent 11 bits, and the mantissa 52 bits. Because of the finite size of a
memory cell, not all real numbers in the range allowed can be represented precisely
as type double values. We will discuss this concept later.

We have seen that type double values may include a fractional part, whereas
type int values cannot. An additional advantage of the type double format is that
a much larger range of numbers can be represented as compared to type int.
Actual ranges vary from one implementation to another, but the ANSI standard
for C specifies that the minimum range of positive values of type int is from 1 to
32,767 (approximately 3.3 X 10*). The minimum range specified for positive values

2.2 ¢ Variable Declarations and Data Types 57

TABLE 2.5 Integer Types in C

Type Range in Typical Microprocessor Implementation
short -32,767 .. 32,767

unsigned short 0 .. 65,535

int -2,147,483,647 .. 2,147,483,647

unsigned 0..4,294,967,295

long -2,147,483,647 .. 2,147,483,647

unsigned long 0..4,294,967,295

of type double is from 10737 to 10*". To understand how small 10757 is, consider the
fact that the mass of one electron is approximately 102" grams, and 107" is one
ten-billionth of 107%". The enormity of 10°" may be clearer when you realize that if
you multiply the diameter of the Milky Way galaxy in kilometers by a trillion, your
numeric result is just one ten-thousandth of 10%".

ANSI C provides several integer data types in addition to int. Table 2.5 lists these
types along with their ranges in a typical microprocessor-based C implementation
(short <= int <= long). Notice that the largest number represented by an unsigned
integer type is about twice the magnitude of the largest value in the corresponding
signed type. This results from using the sign bit as part of the number’s magnitude.

Similarly, ANSI C defines three floating-point types that differ in their memory
requirements: £loat, double, and long double. Values of type £loat must have at
least six decimal digits of precision; both type double and long double values must
have at least ten decimal digits. Table 2.6 lists the range of positive numbers repre-
sentable by each of these types in a typical C microprocessor-based implementation.

Data Type char

Data type char represents an individual character value—a letter, a digit, or a
special symbol. Each type char value is enclosed in apostrophes (single quotes) as
shown here.

A A 1o g [et [T [

TABLE 2.6 Floating-Point Types in C

Type Approximate Range* Significant Digits*
float 10-%7 .. 10%8 6
double 10-307 | 10308 15
long double 104931 109932 19

*In a typical microprocessor-based C implementation

58 Chapter 2 ¢ Overview of C

ASCll code a
particular code that
specifies the integer
representing each
char value.

TABLE 2.7 ASCIl Codes for Characters

Character ASCII Code

v 32

vk 42

‘A 65

'B’ 66

'z 90

‘a’ 97

'b’ 98

'z! 122

‘0! 48

'9 57
In the line above Table 2.6, the character value ' "' represents the character"; the
character value ' ' represents the blank character, which is typed by pressing

the apostrophe key, the space bar, and the apostrophe key.

Although a type char value in a program requires apostrophes, a type char data
value should not have them. Thus, for example, when entering the letter z as a char-
acter data item to be read by a program, press the z key instead of the sequence 'z'.

The ASCII Code

You should know that a character is represented in memory as an integer. The
value stored is determined by the code used by your C compiler. The ASCII code
(American Standard Code for Information Interchange) is the most common. Table 2.7
shows the ASCII (pronounced “askey”) code values for several characters. Appendix D
shows the complete ASCII code.

The digit characters ' 0" through '9' have code values of 48 through 57 (decimal).
The order relationship that follows holds for the digit characters (i.e., '0' < 1,
"1' < '2', and so on).

'0' < ']l' < '2' < '3'" < '"4' < 'K < 'fg' < 'T' < '8' < 'O

In ASCII, uppercase letters have the decimal code values 65 through 90. The
order relationship that follows holds for uppercase letters.
"A' < 'B' < 'C' < ... < 'X' < 'Y' < 'g°
Lowercase letters have the consecutive decimal code values 97 through 122, and the

following order relationship holds:

'a' < 'b' < 'c' < ... < 'x' < 'y' < 'z'

2.3 e Executable Statements 59

In ASCIL, the printable characters have codes from 32 (code for a blank or
space) to 126 (code for the symbol ~). The other codes represent nonprintable con-
trol characters. Sending a control character to an output device causes the device to
perform a special operation such as returning the cursor to column one, advancing
the cursor to the next line, or ringing a bell.

Self-Check

1. a. Write the following numbers in normal decimal notation:
103e-4 1.2345e+6 123.45e+3
b. Write the following numbers in C scientific notation:

1300 123.45 0.00426

2. Indicate which of the following are valid type int, double, or char constants
in C and which are not. Identify the data type of each valid constant.

'POR" 15E-2 35 'h -37.491 .912 4,719 "true' wpn
& 4.5e3 'S

3. What would be the best variable type for the area of a circle in square inches?
Which type for the number of cars passing through an intersection in an hour?
The first letter of your last name?

Programming

1. Write the #define preprocessor directive and declarations for a program
that has a constant macro for 1 (3.14159) and variables radius, area, and
circumf declared as double, variable num_circ as an int, and variable
circ_name as a char.

2.3 Executable Statements

The executable statements follow the declarations in a function. They are the C
statements used to write or code the algorithm and its refinements. The C compiler
translates the executable statements into machine language; the computer executes
the machine language version of these statements when we run the program.

Programs in Memory

Before examining the executable statements in the miles-to-kilometers conver-
sion program (Fig. 2.1), let’s see what computer memory looks like before and

60 Chapter 2 ¢ Overview of C

FIGURE 2.3

Memory (a) Before
and (b) After
Execution of a
Program

assignment statement
an instruction that
stores a value or a
computational result

in a variable

memory memory
machine language machine language
miles-to-kms con- miles-to-kms con-
version program version program
miles miles
? 10.00
kms kms
? 16.09

after that program executes. Figure 2.3a shows the program loaded into memory
and the program memory area before the program executes. The question marks
in memory cells miles and kms indicate that the values of these cells are unde-
fined before program execution begins. During program execution, the data
value 10.00 is copied from the input device into the variable miles. After the
program executes, the variables are defined as shown in Fig. 2.3b. We will see
why next.

Assignment Statements

An assignment statement stores a value or a computational result in a variable,
and is used to perform most arithmetic operations in a program. The assignment
statement

kms = KMS_PER_MILE * miles;

assigns a value to the variable kms. The value assigned is the result of the multiplica-
tion (* means multiply) of the constant macro xms_PER_MILE (1.609) by the variable
miles. The memory cell for miles must contain valid information (in this case, a
real number) before the assignment statement is executed. Figure 2.4 shows the
contents of memory before and after the assignment statement executes; only the
value of kms is changed.

In C the symbol = is the assignment operator. Read it as “becomes,” “gets,”
or “takes the value of” rather than “equals” because it is not equivalent to the
equal sign of mathematics. In mathematics, this symbol states a relationship
between two values, but in C it represents an action to be carried out by the
computer.

2.3 e Executable Statements 61

FIGURE 2.4 Before assignment KMS_PER_MILE miles kms
Effect of kms = 1.609 10.00 ?
KMS_PER_MILE *
miles;
*
16.090
After assignment KMS_PER_MILE miles kms
1.609 10.00 16.090

Assignment Statement

FORM: variable = expression;
EXAMPLE: x =y + z + 2.0;

INTERPRETATION: The variable before the assignment operator is assigned the value of the expres-
sion after it. The previous value of variable is destroyed. The expression can be a variable, a constant,
or a combination of these connected by appropriate operators (for example, +, =, /, and *).

EXAMPLE 2.1 In C you can write assignment statements of the form
sum = sum + item;

where the variable sum appears on both sides of the assignment operator. This is obvi-
ously not an algebraic equation, but it illustrates a common programming practice.
This statement instructs the computer to add the current value of sum to the value of
item; the result is then stored back into sum. The previous value of sum is destroyed
in the process, as illustrated in Fig. 2.5. The value of item, however, is unchanged.

FIGURE 2.5 Before assignment sum item

Effect of sum = 100 10
sum + item;

After assignment sum

62 Chapter 2 ¢ Overview of C

EXAMPLE 2.2

input operation an
instruction that copies
data from an input
device into memory

output operation an
instruction that displays
information stored in
memory

input/output
function a C function
that performs an input
or output operation

You can also write assignment statements that assign the value of a single variable
or constant to a variable. If x and new_x are type double variables, the statement

new_x = Xx;
copies the value of variable x into variable new_x. The statement
new _x = -X;

instructs the computer to get the value of x, negate that value, and store the result
in new_x. For example, if x is 3.5, new_x is -3.5. Neither of the assignment state-
ments above changes the value of x.

Section 2.5 continues the discussion of type int and double expressions and
operators.

Assignment to a char Variable

The char variable next_letter is assigned the character value 'a' by the assign-
ment statement

next_ letter = 'A';

A single character variable or value may appear on the right-hand side of a character
assignment statement.

Input/Output Operations and Functions

Data can be stored in memory in two different ways: either by assignment to a vari-
able or by copying the data from an input device into a variable using a function like
scanf. You copy data into a variable if you want a program to manipulate different
data each time it executes. This data transfer from the outside world into memory is
called an input operation.

As it executes, a program performs computations and stores the results in
memory. These program results can be displayed to the program user by an output
operation.

All input/output operations in C are performed by special program units called
input/output functions. The most common input/output functions are supplied
as part of the C standard input/output library to which we gain access through the
preprocessor directive

#include <stdio.h>

In this section we show how to use the input function scanf and the output func-
tion printf.

function call calling
or activating a function

function argument
enclosed in parentheses
following the function
name; provides
information needed by
the function

format string in a call
to printf, astring

of characters enclosed
in quotes ("), which
specifies the form of the
output line

print list in a call to
printf, the variables
or expressions whose
values are displayed

placeholder a symbol
beginning with % in

a format string that
indicates where to
display the output value

newline escape
sequence the
character sequence
\n, which is used in
a format string to
terminate an output
line

2.3 e Executable Statements 63

In C a function call is used to call or activate a function. Calling a function is
analogous to asking a friend to perform an urgent task. You tell your friend what to
do (but not how to do it) and wait for your friend to report back that the task is fin-
ished. After hearing from your friend, you can go on and do something else.

The printf Function

To see the results of a program execution, we must have a way to specify what vari-
able values should be displayed. In Fig. 2.1 the statement

function name function arguments

. !

printf("That equals %f kilometers.\n", kmé);

f f

format string print list

calls function printf (pronounced “print-eff”) to display a line of program output.
A function call consists of two parts: the function name and the function argu-
ments, enclosed in parentheses. The arguments for printf consist of a format
string (in quotes) and a print list (the variable kms). The function call above dis-
plays the line

That equals 16.090000 kilometers.

which is the result of displaying the format string "That equals %f kilo-
meters.\n" after substituting the value of kms for its placeholder (%£) in the format
string. A placeholder always begins with the symbol %. Here the placeholder s£
marks the display position for a type double variable.

Table 2.8 shows placeholders for type char, double, and int variables. Each
placeholder is an abbreviation for the type of data it represents. C uses $£ (or $1£)
and not %d with type double because programmers often refer to real numbers as
floating point numbers.

The placeholders used with scanf are the same as those used with printf
except for variables of type double. Type double variables use a $£ placeholder in
a printf format string and a $1£ placeholder in a scanf format string.

The format string shown on page 60 also contains the newline escape sequence
\n. Like all C escape sequences, \n begins with the backslash character. Including this
sequence at the end of the format string terminates the current output line.

Multiple Placeholders Format strings can have multiple placeholders. If the
print list of a print£ call has several variables, the format string should contain the
same number of placeholders. C matches variables with placeholders in left-to-right
order.

64 Chapter 2 ¢ Overview of C

TABLE 2.8 Placeholders in Format Strings

Placeholder Variable Type Function Use

%c char printf/scanf
%d int printf/scanf
$f double printf

$1f double scanf

EXAMPLE 2.3

cursor a moving place
marker that indicates
the next position on
the screen where
information will be
displayed

If letter 1, letter 2, and letter_ 3 are type char variables and age is type int,
the printf call

printf("Hi %c%c%c - your age is %d\n",
letter_ 1, letter 2, letter_ 3, age);

displays a line such as
Hi EBK - your age is 35

The placeholders sc%csc indicate the display position of the letters (g, B, and k)
stored in the three type char variables, and the placeholder 2d indicates the posi-
tion of the value of age (35).

Syntax Display for printf Function Call

SYNTAX: printf (format string, print list),
printf (format string),

EXAMPLES: printf("I am %d years old, and my gpa is %f\n",
age, gpa);
printf("Enter the object mass in grams> ");

INTERPRETATION: The printf function displays the value of its format string after substitut-
ing in left-to-right order the values of the expressions in the print list for their placeholders in
the format string and after replacing escape sequences such as \n by their meanings.

More About \n The cursor is a moving place marker that indicates the next
position on the screen where information will be displayed. When executing a
printf function call, the cursor is advanced to the start of the next line on the
screen if the \n escape sequence is encountered in the format string.

We often end a printf format string with a \n (newline escape sequence) so
that the call to printf produces a completed line of output. If no characters are

prompt (prompting
message) a message
displayed to indicate
what data to enter and
in what form

2.3 e Executable Statements 65

printed on the next line before another newline character is printed, a blank line will
appear in the output. For example, the calls

printf("Here is the first line\n");
printf("\nand this is the second.\n");

produce two lines of text with a blank line in between:
Here is the first line
and this is the second.

The blank line appears because the newline character terminates the first format
string and begins the second. Notice that because the format strings of these calls to
printf contain no placeholders, no print list of variables is needed.

If a printf format string contains a \n in the middle of the string

printf("This sentence appears \non two lines.\n");
the characters after the \n appear on a new output line:

This sentence appears
on two lines.

In the next section we will see examples where the newline escape sequence is
omitted.

Displaying Prompts When input data are needed in an interactive program, you
should use the printf function to display a prompting message, or prompt, that
tells the program user what data to enter. The printf statement below

printf("Enter the distance in miles> ");
scanf ("%$1f", &miles);

displays a prompt for square meters (a numeric value). The printf statement dis-
plays the format string and advances the cursor to the screen position following this
string. The program user can then type in the data value requested, which is proc-
essed by the scanf function as described next. The cursor is advanced to the next
line when the user presses the <return> or <enter> key.

The scanf Function
The statement
scanf("%1f", &miles);

calls function scanf (pronounced “scan-eff”) to copy data into the variable miles.
Where does function scanf get the data it stores in the variable miles? It copies
the data from the standard input device. In most cases the standard input device is
the keyboard; consequently, the computer will attempt to store in miles whatever
data the program user types at the keyboard.

66 Chapter 2 ¢ Overview of C

FIGURE 2.6

Effect of
scanf("%1lf",

&miles);

FIGURE 2.7
Scanning Data
Line Bob

number entered 30.5
miles

30.5

The format string “%1£” consists of a single placeholder that tells scanf what
kind of data to copy into the variable miles. Because the placeholder is $1¢£, the
input operation will proceed without error only if the program user types in a
number. Figure 2.6 shows the effect of the scanf operation.

Notice that in a call to scantf, the name of each variable that is to be given a
value is preceded by the ampersand character (&). The & is the C address-of opera-
tor. In the context of this input operation, the & operator tells the scanf function
where to find each variable into which it is to store a new value. If the ampersand
were omitted, scanf would know only a variable’s current value, not its location in
memory, so scanf would be unable to store a new value in the variable.

When scanf executes, the program pauses until the required data are entered
and the <return> or <enter> key is pressed. If an incorrect data character is typed,
the program user can press the backspace key () to edit the data. However, once
<return> or <enter> is pressed, the data are processed exactly as typed in and it is
too late to correct any data entry errors.

The function call

scanf("%c%cs%c", &letter_ 1, &letter 2, &letter 3);

causes the scanf function to copy data into each of the three variables, and the
format string includes one %c placeholder for each variable. Assuming these vari-
ables are declared as type char, one character will be stored in each variable. The
next three characters that are entered at the keyboard are stored in these variables.
Note that case is important for character data, so the letters B and b have different
representations in memory. Again, the program user should press the <return>
or <enter> key after typing in three characters. Figure 2.7 shows the effect of this
statement when the letters Bob are entered.

letters entered Bob
letter_ 1

B

letter 2

letter 3

2.3 ¢ Executable Statements 67

The number of input characters consumed by the scanf function depends
on the current format placeholder, which should reflect the type of the variable in
which the data will be stored. Only one input character is used for a $c (type char
variable). For a $1£ or %d (type double or int variable), the program first skips any
spaces and then scans characters until it reaches a character that cannot be part of
the number. Usually the program user indicates the end of a number by pressing
the space bar or by pressing the <return> or <enter> key.

If you would like scanf to skip spaces before scanning a character, put a blank
in the format string before the %c placeholder. If you type more data characters
on a line than are needed by the current call to scanf, the extra characters will be
processed by the next call to scant.

Some C compilers require you to use the format string "\nsc" to read the
first character of a data line. The \n causes scanf to skip over any extra characters
(including the newline character) not scanned from the previous data line.

Syntax Display for scanf Function Call
SYNTAX: scanf (format string, input list) ;
EXAMPLE: scanf("%c%d", &first_initial, &age);

INTERPRETATION: The scanf function copies into memory data typed at the keyboard by
the program user during program execution. The format string is a quoted string of place-
holders, one placeholder for each variable in the input list. Each int, double, or char
variable in the input list is preceded by an ampersand (&). Commas are used to separate
variable names. The order of the placeholders must correspond to the order of the variables
in the input list.

You must enter data in the same order as the variables in the input /ist. You should insert
one or more blank characters or carriage returns between numeric items. If you plan to insert
blanks or carriage returns between character data, you must include a blank in the format
string before the %c placeholder.

The return Statement
The last line in the main function (Fig. 2.1)
return (0);

transfers control from your program to the operating system. The value in paren-
theses, 0, is considered the result of function main’s execution, and it indicates that
your program executed without error.

68

Chapter 2 ¢ Overview of C

Syntax Display for return Statement
SYNTAX: return expression;
EXAMPLE: return (0);

INTERPRETATION: The return statement transfers control from a function back to the
activator of the function. For function main, control is transferred back to the operating
system. The value of expression is returned as the result of the function execution.

|

Self-Check

1.

Show the output displayed by the following program lines when the data
entered are 5 and 7:

printf("Enter two integers> ");
scanf ("%d%d", &m, &n);

m=m+ 5;

n =3 * n;

printf("m = %d\nn = %d\n", m, n);

Show the contents of memory before and after the execution of the program
lines shown in Exercise 1.
Show the output displayed by the following lines if the value of exp is 11:

printf("My name is ");

printf("Jane Doe.");

printf("\n");

printf("I live in ");

printf("Ann Arbor, MI\n");

printf("and I have %d years ", exp);
printf("of programming experience.\n");

How could you modify the code in Exercise 3 so that “My name is Jane Doe.”
and “I live in Ann Arbor, MI” would appear on the same line without running
together (i.e., with a space between the period and the “I”)?

Programming

1.

2.

Write a statement that asks the user to type three integers and another state-

ment that stores the three user responses into first, second, and third.

a. Write a statement that displays the following line with the value of the
type int variable n before the period.

The value of n is

2.4 o General Form of a C Program 69

b. Assuming that side and area are type double variables containing the
length of one side in cm and the area of a square in square cm, write a
statement that will display this information in this form:

The area of a square whose side length is cm
is square cm.

3. Write a program that asks the user to enter the radius of a circle and then
computes and displays the circle’s area. Use the formula

Area = PI X Radius X Radius

where PI is the constant macro 3.14159.

2.4 General Form of a C Program

FIGURE 2.8

General Form of a
C Program

Now that we have discussed the individual statements that can appear in C pro-
grams, we review the rules for combining them into programs. We also discuss the
use of punctuation, spacing, and comments in a program.

As shown in Fig. 2.8, each program begins with preprocessor directives that
serve to provide information about functions from standard libraries and definitions
of necessary program constants. Examples of such directives are #include and
#define. Unlike the declarations and executable statements of the main function
body, the preprocessor directives we have seen do not end in semicolons.

A simple C program defines the main function after the preprocessor directives.
An open curly brace ({) signals the beginning of the main function body. Within this
body, we first see the declarations of all the variables to be used by the main func-
tion. These variables are followed by the statements that are translated into machine
language and are eventually executed. The statements we have looked at so far per-
form computations or input/output operations. The end of the main function body
is marked by a closing curly brace (3).

C treats most line breaks like spaces so a C statement can extend over more
than one line. You should not split a statement that extends over more than one line
in the middle of an identifier, a reserved word, a constant, or a format string.

preprocessor directives
main function heading
{
declarations
executable statements

70 Chapter 2 ¢ Overview of C

program
documentation
information
(comments) that
enhances the
readability of a
program

You can write more than one statement on a line. For example, the line
printf("Enter distance in miles> "); scanf("%1lf", &miles);

contains a statement that displays a prompt and a statement that gets the data
requested. We recommend that you place only one statement on a line because it
improves readability and makes it easier to maintain a program.

Program Style Spaces in Programs

The consistent and careful use of blank spaces can improve the style of a program.
A blank space is required between consecutive words in a program line.

The compiler ignores extra blanks between words and symbols, but you may
insert space to improve the readability and style of a program. You should always
leave a blank space after a comma and before and after operators such as *, -, and
=. You should indent the body of the main function and insert blank lines between
sections of the program.

Although stylistic issues have no effect whatever on the meaning of the program as
far as the computer is concerned, they can make it easier for people to read and under-
stand the program. Take care, however, not to insert blank spaces where they do not
belong. For example, there cannot be a space between the characters that surround a
comment (/* and */). Also, you cannot write the identifier MAX_ITEMS as MAX ITEMS.

Comments in Programs

Programmers can make a program easier to understand by using comments to
describe the purpose of the program, the use of identifiers, and the purpose of each
program step. Comments are part of the program documentation because they
help others read and understand the program. The compiler, however, ignores com-
ments and they are not translated into machine language.

A comment can appear by itself on a program line, at the end of a line following a
statement, or embedded in a statement. In the following variable declarations, the first
comment is embedded in the declaration, while the second one follows the declaration.

double miles, /* input - distance in miles */
kms; /* output - distance in kilometers */

We document most variables in this way.

Program Style Using Comments
Each program should begin with a header section that consists of a series of com-
ments specifying

» the programmer’s name
m the date of the current version
» abrief description of what the program does

2.4 » General Form of a C Program 71

Program Comment

SYNTAX: /* comment text */
EXAMPLES: /* This is a one-line or partial-line comment */
/*

* This is a multiple-line comment in which the stars

* not immediately preceded or followed by slashes

* have no special syntactic significance, but simply

* help the comment to stand out as a block. This

* style is often used to document the purpose of a

* program.

*/
INTERPRETATION: A slash-star indicates the start of a comment; a star-slash indicates the end
of a comment. Comments are listed with the program but are otherwise ignored by the C
compiler. A comment may be put in a C program anywhere a blank space would be valid.

Note: ANSI C does not permit the placement of one comment inside another.

C++ Style Comment

SYNTAX: // comment text
EXAMPLES: // This is a one-line comment
int sales; // input - amount of sales

INTERPRETATION: A slash-slash indicates the start of a comment; the comment continues
until the end of the line.

Note: C++ style comments were added to standard C in 1999. However, it is possible that
the options set for a compiler may prevent it from recognizing them. For that reason, we do
not use them in the book.

If you write the program for a class assignment, you should also list the class
identification and your instructor’s name.

/*

* Programmer: William Bell Date completed: May 9, 2003
* Instructor: Janet Smith Class: CIS61

*

* Calculates and displays the area and circumference of a
* circle

*/

Before you implement each step in the initial algorithm, you should write a
comment that summarizes the purpose of the algorithm step. This comment should

72 Chapter 2 ¢ Overview of C

describe what the step does rather than simply restate the step in English. For
example, the comment

/* Convert the distance to kilometers. */
kms = KMS_PER MILE * miles;

is more descriptive and hence preferable to

/* Multiply KMS_PER_MILE by miles and store result in kms. */
kms = KMS_PER MILE * miles;

Self-Check

1. Change the following comments so they are syntactically correct.

/* This is a comment? *\
/* This one /* seems like a comment */ doesn't it */

2. Correct the syntax errors in the following program, and rewrite the program
so that it follows our style conventions. What does each statement of your
corrected program do? What output does it display?

/*
* Calculate and display the difference of two input values
*)

#include <stdio.h>

int

main(void) {int X, /* first input value */ x, /* second
input value */

sum; /* sum of inputs */

scanf ("%i%i"; X; x); X + X = sum;

printf("%d + %d = %d\n"; X; x; sum); return (0);}

Programming

1. Write a program that stores the values 'x' and 76.1 in separate memory cells.
Your program should get the values as data items and display them again for
the user when done.

2.5 Arithmetic Expressions

To solve most programming problems, you will need to write arithmetic expressions
that manipulate type int and double data. This section describes the operators
used in arithmetic expressions, and rules for writing and evaluating the expressions.

2.5 ¢ Arithmetic Expressions 73

TABLE 2.9 Arithmetic Operators

Arithmetic Operator Meaning Examples
+ addition 5+ 2 is 7
5.0 + 2.0 is 7.0
- subtraction 5 -2 1is 3
5.0 - 2.0 is 3.0
* multiplication 5 % 2 is 10
5.0 * 2.0 is 10.0
/ division 5.0 / 2.0 is 2.5
5/ 2 is 2
% remainder 5% 2 is 1

Table 2.9 shows all the arithmetic operators. Each operator manipulates two
operands, which may be constants, variables, or other arithmetic expressions. The
operators +, -, *, and / may be used with type int or double operands. As shown
in the last column, the data type of the result is the same as the data type of its oper-
ands. An additional operator, the remainder operator (%), can be used with integer
operands to find the remainder of longhand division. We will discuss the division
and remainder operators in the next subsection.

Operators / and %

When applied to two positive integers, the division operator (/) computes the inte-
gral part of the result of dividing its first operand by its second. For example, the
value of 7.0 / 2.0 is 3.5, but the value of 7 / 2 is the integral part of this result, or
3. Similarly, the value of 299.0 / 100.0 is 2.99, but the value of 299 / 100 is the
integral part of this result, or 2. If the / operator is used with a negative and a positive
integer, the result may vary from one C implementation to another. For this reason,
you should avoid using division with negative integers. The / operation is undefined
when the divisor (the second operand) is 0. Table 2.10 shows some examples of inte-
ger division.

TABLE 2.10 Results of Integer Division

3/ 15 =0 18 / 3 =6
15 / 3 =5 16 / -3 varies
16 / 3 =5 0/ 4=0
17 / 3 =5 4 / 0 isundefined

74

Chapter 2 ¢ Overview of C

The remainder operator (%) returns the integer remainder of the result of divid-
ing its first operand by its second. For example, the value of 7 % 2 is 1 because the
integer remainder is 1.

7/ 2 299 / 100
| |
3 2
217 100299
6 200
1<—7 % 2 99 «— 299 % 100

You can use longhand division to determine the result of a / or % operation with
integers. The calculation on the left shows the effect of dividing 7 by 2 by longhand
division: we get a quotient of 3 (7 / 2) and a remainder of 1 (7 % 2). The calculation
on the right shows that 299 % 100 is 99 because we get a remainder of 99 when we
divide 299 by 100.

The magnitude of m % n must always be less than the divisor n, so if m is
positive, the value of m % 100 must be between 0 and 99. The % operation is unde-
fined when n is zero and varies from one implementation to another if n is negative.
Table 2.11 shows some examples of the % operator.

The formula

m equals (m/n)*n + (m % n)

defines the relationship between the operators / and % for an integer dividend of m
and an integer divisor of n. We can see that this formula holds for the two problems
discussed earlier by plugging in values for m, n, m / n, and m % n. In the first exam-
ple that follows, m is 7 and n is 2; in the second, m is 299 and n is 100.

7 equals (7 / 2) * 2 + (7 % 2)
equals 3 * 2 + 1

299 equals (299 / 100) * 100 + (299 % 100)
equals 2 * 100 + 99

TABLE 2.11 Results of % Operation

3 %5=3 5% 3 =2

4 35 =4 5% 4 =1

5% 5=0 15 %5 =0

6 5 =1 15 $ 6 = 3

7% 5 =2 15 % -7 varies

8 85 =3 15 % 0 is undefined

2.5 e Arithmetic Expressions 75

EXAMPLE 2.4

mixed-type
expression an
expression with
operands of different
types

If you have p pieces of candy and c children and want to distribute the candy
equally, the expression
p/ c

tells you how many pieces to give each child. For example, if p is 18 and c is 4, give
each child 4 pieces. The expression

p % cC

tells you how many pieces would be left over (18 % 4 is 2).

Data Type of an Expression

The data type of each variable must be specified in its declaration, but how does C
determine the data type of an expression? The data type of an expression depends
on the type(s) of its operands. Let’s consider the types of expressions involving oper-
ands that are integers of type int or real numbers of type double.® For example,
the expression

ace + bandage

is type int if both ace and bandage are type int; otherwise, it is type double. In
general, an expression of the form

ace arithmetic_opemtor bandage

is of type int if both ace and bandage are of type int; otherwise, it is of type double.
An expression that has operands of both type int and double is a mixed-type
expression. The data type of such a mixed-type expression will be double.

Mixed-Type Assignment Statement

When an assignment statement is executed, the expression is first evaluated; then
the result is assigned to the variable listed to the left of the assignment operator (=).
Either a type double or a type int expression may be assigned to a type double
variable, so if m and n are type int and p, x, and y are type double, the statements
that follow assign the values shown in the boxes.

.
’

’

<X OB 8
I
== T N R %)
\\23
53

~e

*C defines additional integer and real data types besides int and double, but these two types can
represent most numbers used in programming apphcations.

76 Chapter 2 ¢ Overview of C

mixed-type
assignment the
expression being
evaluated and the
variable to which it is
assigned have different
data types

type cast converting
an expression to a
different type by writing
the desired type in
parentheses in front of
the expression

Ina mixed-type assignment such as
y =m / n;

the expression has a different data type from the variable y getting its value. A com-
mon error is to assume that because y is type double, the expression will be evaluated
as if m and n were also type double instead of type int. Remember, the expression is
evaluated before the assignment is made, and the type of the variable being assigned
has no effect whatsoever on the expression value. The expression m / n evaluates to
the integer 1. This value is converted to type double (1.0) before it is stored in y.
Assignment of a type double expression to a type int variable causes the
fractional part of the expression to be lost since it cannot be represented in a type
int variable. The expression in the assignment statements
Xx =9 * 0.5;
n=9* 0.5;

evaluates to the real number 4.5. If x is of type double, the number 4.5 is stored
in x, as expected. If n is of type int, only the integral part of the expression value is
stored in n, as shown.

Type Conversion through Casts

C allows the programmer to convert the type of an expression by placing the desired
type in parentheses before the expression, an operation called a type cast. In the
previous section, we saw that the fractional part of a real value is lost when it is
assigned to an int. Use a type cast to show that this happens.

n = (int)(9 * 0.5);

Two common uses of type casts are shown in Table 2.12—avoiding integer divi-
sion when computing an average and rounding a type double value by adding 0.5
and converting the result to int.

Characters as Integers

Since characters are represented by integer codes, C permits conversion of type
char to type int and vice versa. For example, you could use the following to find
out the code your implementation uses for a question mark:

gmark_code = (int)'?';
printf("Code for ? = %d\n", gmark code);

2.5 ¢ Arithmetic Expressions 77

TABLE 2.12 Examples of the Use of Type Casts

Application

Example Explanation

Avoiding integer
division

int num_students; /* number of If the assignment statement were written
students who took a test */
int total score; /* total of
all students' test scores */

average = (double) (total score
/ num_students);

double average; integer division would cause the loss
average = (double)total score / of the fractional part of the average.

(double)num students;

Rounding a double x; Consider cases when x’s fractional part is greater than
positive number int rounded_ x; or equal to 0.5, and cases when it is less. On the left
/* code to give x a value we see how 35.51 is rounded to 36; on the right how
omitted */ 35.12 is rounded to 35.
rounded x = (int)(x + 0.5); 35.51 35.12
+0.50 +0.50
36.01 35.67

unary operator an
operator with one
operand

binary operator an
operator with two
operands

You can perform arithmetic operations on characters. For example, the expres-
sion 'A' + 1 adds 1 to the code for 'a' and its value is the next character after 'a"
which is 'B* in ASCII.

Expressions with Multiple Operators

In our programs so far, most expressions have involved a single arithmetic operator;
however, expressions with multiple operators are common in C. Expressions can
include both unary and binary operators. Unary operators take only one operand.
In these expressions, we see the unary negation (-) and plus (+) operators.

X = -y;
P = +x * y;

Binary operators require two operands. When + and - are used to represent addi-
tion and subtraction, they are binary operators.

X =y + z;
2 =Y - X5

To understand and write expressions with multiple operators, we must know the
C rules for evaluating expressions. For example, in the expression x +y / z, is +
performed before / or is + performed after /? Is the expression x / y * z evaluated
as(x /y)*zorasx/ (y* z)? Verily for yourself that the order of evaluation does
make a difference by substituting some simple values for x, y, and z. In both of

78 Chapter 2 ¢ Overview of C

these expressions, the / operator is evaluated first; the reasons are explained in the
C rules for evaluation of arithmetic expressions that follow. These rules are based
on familiar algebraic rules.

Rules for Evaluating Expressions

a. Parentheses rule: All expressions in parentheses must be evaluated separately.
Nested parenthesized expressions must be evaluated from the inside out, with
the innermost expression evaluated first.

b. Operator precedence rule: Operators in the same expression are evaluated in
the following order:

unary +, - first
* /% next
binary +, - last

c. Associativity rule: Unary operators in the same subexpression and at the same
precedence level (such as + and -) are evaluated right to left (right associativity).
Binary operators in the same subexpression and at the same precedence level
(such as + and -) are evaluated left to right (left associativity).

These rules will help you understand how C evaluates expressions. Use parentheses
as needed to specify the order of evaluation. Often it is a good idea in complicated
expressions to use extra parentheses to document clearly the order of operator
evaluation. For example, the expression

x*y *z+a/b-c*d
can be written in a more readable form using parentheses:

(x *y *z)+ (a/ b) — (c *d)

EXAMPLE 2.5

The formula for the area of a circle

a = mr
can be written in C as
area = PI * radius * radius;

where the meaning of the constant macro PI is 3.14159. Figure 2.9 shows the eval-
uation tree for this formula. In this tree, which you read from top to bottom, arrows
connect each operand with its operator. The order of operator evaluation is shown
by the number to the left of each operator; the letter to the right of the operator
indicates which evaluation rule applies.

FIGURE 2.9

Evaluation Tree
for area = PI *
radius * radius;

2.5 ¢ Arithmetic Expressions 79

area = PI * radius * radius

area

In Fig. 2.10, we see a step-by-step evaluation of the same expression for a
radius value of 2.0. You may want to use a similar notation when computing by
hand the value of an expression with multiple operators.

EXAMPLE 2.6 The formula for the average velocity, v, of a particle traveling on a line between
points p, and pz in time ¢, to ¢, is
P2 — P1
U = -
ty — 1)
This formula can be written and evaluated in C as shown in Fig. 2.11.
EXAMPLE 2.7 Consider the expression
z - (a+b/2)+w?* -y
containing type int variables only. The parenthesized expression
(a+b / 2)
is evaluated first (rule a) beginning with b / 2 (rule b). Once the value of b / 2
is determined, it can be added to a to obtain the value of (a + b / 2). Next, y is
negated (rule b). The multiplication operation can now be performed (rule b) and
the value for w * -y is determined. Then, the value of (a + b / 2) is subtracted from
z (rule ¢). Finally, this result is added to w * -y. The evaluation tree and step-by-
step evaluation for this expression are shown in Fig. 2.12.
FIGURE 2.10 area = PI * radius * radius
3.14159 2.0 2.0
Step—by.—Step 628318
Expression 12.56636

Evaluation

80 Chapter 2

FIGURE 2.11

Evaluation Tree
and Evaluation for
v = (p2 - pl) /
(t2 - tl);

FIGURE 2.12

Evaluation Tree
and Evaluation for
z - (a+ b/ 2)
+ w * -y

Overview of C

v = (p2 — pl) / (t2 — tl) pl p2 t1 t2
4.5 9.0 0.0 60.0
v = (p2 — pl) / (t2 — t1)
9.0 4.5 60.0 0.0
4.5 60.0
0.075

Writing Mathematical Formulas in C

You may encounter two problems in writing a mathematical formula in C. First,
multiplication often can be implied in a formula by writing the two items to be mul-
tiplied next to each other, for example, a = be. In C, however, you must always use
the * operator to indicate multiplication, as in

a=>b * C;

The other difficulty arises in formulas with division. We normally write the
numerator and the denominator on separate lines:

y—>b
m:
X —a
z—(a+b/2)+w?* -y z a b w y
8 3 9 2 -5
z - (a + b / 2) + \ * -y
8 3 9 2 -5
4 5
7 10

11

representational
error an error due to
coding a real number
as a finite number of
binary digits

cancellation error an
error resulting from
applying an arithmetic
operation to operands
of vastly different
magnitudes; effect of
smaller operand is lost

2.5 e Arithmetic Expressions 81

TABLE 2.13 Mathematical Formulas as C Expressions

Mathematical Formula C Expression

1. b2 — dac b*b-4*a*c
2.a+b—-c a+b-c

a+b (a + b) / (c + d)
3.

c+d

1 1/ (1 + x * x)
4, ——

1+ X2
5.aX—(b+c¢ a * —(b + c)

In C, however, the numerator and denominator are placed on the same line.
Consequently, parentheses are often needed to separate the numerator from the
denominator and to indicate clearly the order of evaluation of the operators in the
expression. The above formula would be written in C as

m=(y-b)/ (x-a);

Table 2.13 shows several mathematical formulas rewritten in C.
The points illustrated in these examples can be summarized as follows:

= Always specify multiplication explicitly by using the operator * where needed
(formulas 1 and 4).

s Use parentheses when required to control the order of operator evaluation
(formulas 3 and 4).

s Two arithmetic operators can be written in succession if the second is a unary
operator (formula 5).

Numerical Inaccuracies

One of the problems in processing data of type double is that sometimes an error
occurs in representing real numbers. Just as certain fractions cannot be represented
exactly in the decimal number system (e.g., the fraction 1/3 is 0.333333 . . .), so
some fractions cannot be represented exactly as binary numbers in the mantissa of
the type double format. The representational error (sometimes called round-off
error) will depend on the number of bits used in the mantissa: the more bits, the
smaller the error.

Errors may occur when manipulating very large and very small real numbers.
When you add a large number and a small number, the larger number may “cancel
out” the smaller number, resulting in a cancellation error. If x is much larger than
y, then x + y may have the same value as x (for example, 1000.0 + 0.0000001234 is
equal to 1000.0 on some computers).

82 Chapter 2 ¢ Overview of C

arithmetic underflow
an error in which a very
small computational
result is represented

as zero

arithmetic overflow
an error that is an
attempt to represent
a computational result
that is too large

If two very small numbers are multiplied, the result may be too small to be
represented accurately, so it will be represented as zero. This phenomenon is called
arithmetic underflow. Similarly, if two very large numbers are multiplied, the
result may be too large to be represented. This phenomenon, called arithmetic
overflow, is handled in different ways by different C compilers. (Arithmetic over-
flow can occur when processing very large integer values as well.)

CASE STUDY Supermarket Coin Processor

This case study demonstrates the manipulation of type int data (using / and %) and
type char data.

PROBLEM

You are drafting software for the machines placed at the front of supermarkets to
convert change to personalized credit slips. In this draft, the user will manually
enter the number of each kind of coin in the collection, but in the final version,
these counts will be provided by code that interfaces with the counting devices in
the machine.

ANALYSIS

To solve this problem, you need to get the customer’s initials to use in personalizing
the credit slip along with the count of each type of coin (dollars, quarters, dimes,
nickels, pennies). From the counts, you can determine the total value of the coins
in cents. Once you have that figure, you can do an integer division using 100 as the
divisor to get the dollar value; the remainder of this division will be the leftover
change. In the data requirements, list the total value in cents (total_cents) as a
program variable, because it is needed as part of the computation process but is not
a required problem output.

DATA REQUIREMENTS
Problem Inputs

char first, middle, last /* a customer's initials */

int dollars /* number of dollars */
int quarters /* number of quarters */
int dimes /* number of dimes */
int nickels /* number of nickels */

int pennies /* number of pennies */

2.5 ¢ Arithmetic Expressions 83

Problem Outputs

int total dollars /* total dollar value @Y
int change /* leftover change */

Additional Program Variables

int total cents /* total value in cents */

DESIGN

INITIAL ALGORITHM

Get and display the customer’s initials.
Get the count of each kind of coin.
Compute the total value in cents.

Find the value in dollars and change.
Display the value in dollars and change.

Ul o =

Steps 3 and 4 may need refinement. Their refinements are:

Step 3 Refinement

3.1 Find the equivalent value of each kind of coin in pennies and add these
values.

Step 4 Refinement

4.1 total dollars is the integer quotient of total cents and 100.
4.2 change is the integer remainder of total cents and 100.

IMPLEMENTATION

The program is shown in Fig. 2.13. The statements

scanf ("%c%c%c", &first, &middle, &last);
printf("\n%c%c%c, please enter your coin information.\n",
first, middle, last);

copy three data characters into first, middle, and last and display those charac-
ters as part of the instructions to the customer.
The statement

total cents = 100 * dollars + 25 * quarters + 10 * dimes +
5 * nickels + pennies;

implements algorithm step 3.1. The statements

total dollars = total cents / 100;
change = total cents % 100;

implement steps 4.1 and 4.2. The last call to print£ displays the results.

84

Chapter 2 ¢ Overview of C

AP PREA PP WWWWWWWWWWNNNNNNNNNNS @Q@Q@QAQQaa
NS OO NOUVARWNSOCORINOURWNIOOONIOARWNSOL

GO = on B o2 B9 Y =2

FIGURE 2.13 Supermarket Coin Value Program

/*
* Determines the value of a collection of coins.
*/
#include <stdio.h>
int
main(void)
{
char first, middle, last; /* input - 3 initials
int pennies, nickels; /* input
int dimes, quarters; /* input -
int dollars; /* input -
int change; /* output - change amount
int total dollars; /* output - dollar amount
int total_ cents; /* total cents

/* Get and display the customer's initials. */
printf ("Type in your 3 initials and press return> ");

@/

- count of each coin type */

scanf ("%c%c%c", &first, &middle,
printf("\n%c%c%c, please enter your coin information.\n",

first, middle, last);

count of each coin type */
count of each coin type */

&last);

/* Get the count of each kind of coin. */

printf ("Number of $ coins >
scanf ("%d", &dollars);
printf ("Number of quarters>
scanf ("%d", &quarters);
printf ("Number of dimes >
scanf ("%d", &dimes);

printf ("Number of nickels >
scanf ("%d", &nickels);
printf ("Number of pennies >
scanf ("%d", &pennies);

")

")i

")

")

")

/* Compute the total value in cents. */
total cents = 100 * dollars +25 * quarters + 10 * dimes +
5 * nickels + pennies;

/* Find the value in dollars and change.
total dollars = total cents / 100;

change = total cents % 100;

<3/

S
@y
e/

/* Display the credit slip with value in dollars and change. */

(Continued)

43,
44,
45,
46.
47.

2.5 ¢ Arithmetic Expressions 85

printf("\n\n%c%c%c Coin Credit\nDollars: %d\nChange: %d cents\n",

first, middle, last, total dollars, change);

return (0);

Type in your 3 initials and press return> JRH
JRH, please enter your coin information.

Number
Number
Number
Number
Number

of $ coins > 2
of quarters> 14
of dimes > 12
of nickels > 25
of pennies > 131

JRH Coin Credit
Dollars: 9

Change:

26 cents

TESTING

To test this program, try running it with a combination of coins that yield an exact
dollar amount with no leftover change. For example, 1 dollar, 8 quarters, 0 dimes,
35 nickels, and 25 pennies should yield a value of 5 dollars and 0 cents. Then
increase and decrease the quantity of pennies by 1 (26 and 24 pennies) to make sure
that these cases are also handled properly.

Evaluate the following expressions with 7 and 22 as operands.
22 /17 7/ 22 22 % 7 7 % 22
Repeat this exercise for the following pairs of integers:

15, 16

Self-Check
1. a.

b.

C.

3,23
—3,16

86

Chapter 2 ¢ Overview of C

Do a step-by-step evaluation of the expressions that follow if the value of
celsius is 38.1 and salary is 38450.00.

1.8 * Celsius + 32.0
(salary - 5000.00) * 0.20 + 1425.00

Given the constants and variable declarations

#define PI 3.14159
#define MAX_ I 1000

double x, y;
int a, b, i;

indicate which of the following statements are valid, and find the value stored
by each valid statement. Also indicate which are invalid and why. Assume that
ais3,bis4,andyis-1.0.

a % b;

= (989 - MAX I) / a;
= b % a;
=PI * vy
-b
b;
(a / b);

0;

% (990 - MAX I);
(MAX_T - 990) / a;
=a/y;

= PI * aj;

=PI / y;

=b / a;

= (MAX_I - 990) % a;
= a % 0;

=a % (MAX I - 990);
= (double) a / b;

’
’

SeT O EE AT SR SO e T
]
O O o o 9
N 00 N

I T T S T R v O R VR SR VR R SR
1

What values are assigned by the legal statements in Exercise 3, assuming a is
7,bis 3, and yis 2.0?
Assume that you have the following variable declarations:

int color, lime, straw, red, orange;
double white, green, blue, purple, crayon;

Evaluate each of the statements below using the following values: color is 2,
crayon is -1.3, strawis 1, redis 3, purpleis 0.3E+1.

a. white = color * 2.5 / purple;
b. green = color / purple;

2.6 ¢ Formatting Numbers in Program Output 87

orange = color / red;
blue
lime = red / color + red % color;

(color + straw) / (crayon + 0.3);

m o o0

purple = straw / red * color;

6. Leta,b, c, and x be the names of four type double variables, and let i, j, and
k be the names of three type int variables. Each of the following statements
contains one or more violations of the rules for forming arithmetic expressions.
Rewrite each statement so that it is consistent with these rules.

a remainder c;
= 3a - bc;
4(1i + k);

a

S
I

o
[

7. Evaluate the following, assuming that letters have consecutive character codes.

a. (int)'D' - (int)'A’
b. (char)((int)'C' + 2)
c. (int)'6' - (int)'7"

*

How does cancellation error differ from representational error?
9. If squaring 10-% gives a result of zero, the type of error that has occurred is

called

10. Evaluate the following expressions if x is 10.5, y is 7.2, mis 5, and n is 2.

a. x / (double)m

b. x/m

C. (double)(n * m)

d. (double)(n / m) + y
e. (double)(n / m)

Programming
1. Write an assignment statement that might be used to implement the following
equation in C.
_ kA(T, — Ty)
T
2. Write a program that stores the values 'a*, 'B*, 19, and -0.42E7 in separate

memory cells that you have declared. Use an assignment statement to store
the first value, but get the other three values as input data from the user.

2.6 Formatting Numbers in Program Output

C displays all numbers in its default notation unless you instruct it to do otherwise.
This section explains how to specify the format or appearance of your output.

88 Chapter 2 ¢ Overview of C

field width the
number of columns
used to display a value

Formatting Values of Type int

Specifying the format of an integer value displayed by a C program is fairly easy.
You simply add a number between the % and the d of the %d placeholder in the
printf format string. This number specifies the field width—the number of col-
umns to use for the display of the value. The statement

printf("Results: %3d meters = %4d ft. %2d in.\n",
meters, feet, inches);

indicates that 3 columns will be used to display the value of meters, 4 columns will
be used for feet, and 2 columns will be used for inches (a number between 0 and
11). If meters is 21, feet is 68, and inches is 11, the program output will be

Results: 21 meters = 68 ft. 11 in.

In this line, notice that there is an extra space before the value of meters (21) and
two extra spaces before the value of feet (68). The reason is that the placeholder
for meters (%3d) allows space for 3 digits to be printed. Because the value of
meters is between 10 and 99, its two digits are displayed right-justified, preceded
by one blank space. Because the placeholder for feet (%4d) allows room for 4 digits,
printing its two-digit value right-justified leaves two extra blank spaces. We can use
the placeholder %24 to display any integer value between -9 and 99. The place-
holder %4d works for values in the range -999 to 9999. For negative numbers, the
minus sign is included in the count of digits displayed.

Table 2.14 shows how two integer values are displayed using different format
string placeholders. The character I represents a blank character. The last line
shows that C expands the field width if it is too small for the integer value displayed.

Formatting Values of Type double

To describe the format specification for a type double value, we must indicate both
the total field width needed and the number of decimal places desired. The total
field width should be large enough to accommodate all digits before and after the
decimal point. There will be at least one digit before the decimal point because a

TABLE 2.14 Displaying 234 and -234 Using Different Placeholders

Value Format Displayed Output Value Format Displayed Output
234 %4d 1234 -234 $4d -234

234 $5d 234 -234 %$5d -234

234 g6d jn234 -234 %6d -234

234 %$1ld 234 -234 %2d -234

2.6 * Formatting Numbers in Program Output 89

TABLE 2.15 Displaying x Using Format String Placeholder %6.2f

Displayed Displayed
Value of x Output Value of X Output
-99.42 -99.42 -25.554 -25.55
.123 ii0.12 99.999 100.00
-9.536 §-9.54 999.4 999.40

zero is printed as the whole-number part of fractions that are less than 1.0 and
greater than -1.0. We should also include a display column for the decimal point
and for the minus sign if the number can be negative. The form of the format string
placeholder is $n.mf where n is a number representing the total field width, and m
is the desired number of decimal places.

If x is a type double variable whose value will be between -99.99 and
999.99, we could use the placeholder %6.2f to display the value of x to an
accuracy of two decimal places. Table 2.15 shows different values of x displayed
using this format specification. The values displayed are rounded to two decimal
places and are displayed right-justified in six columns. When you round to two
decimal places, if the third digit of the value’s fractional part is 5 or greater, the
second digit is incremented by 1 (-9.536 becomes -9.54). Otherwise, the digits
after the second digit in the fraction are simply dropped (-25.554 becomes
-25.55).

Table 2.16 shows some values that were displayed using other placehold-
ers. The last line shows it is legal to omit the total field width in the format string
placeholder. If you use a placeholder such as $. mf to specify only the number of
decimal places, the value will be printed with no leading blanks.

TABLE 2.16 Formatting Type double Values

Displayed Displayed
Value Format Output Value Format Output
3.14159 %5.2f i3.14 3.14159 %4.2f 3.14
3.14159 %3.2f 3.14 3.14159 $5.1f 3.1
3.14159 %5.3f 3.142 3.14159 $8.5f §3.14159
.1234 %4.2f 0.12 -.006 %4.2f -0.01
-.006 %8.3f ii-0.006 -.006 %8.5f -0.00600

-.006 %.3f -0.006 -3.14159 $.4f -3.1416

920 Chapter 2 ¢ Overview of C

Program Style Eliminating Leading Blanks

As shown in Tables 2.14 through 2.16, a value whose whole-number part requires
fewer display columns than are specified by the format field width is displayed with
leading blanks. To eliminate extra leading blanks, omit the field width from the
format string placeholder. The simple placeholder $d will cause an integer value to
be displayed with no leading blanks. A placeholder of the form . mf has the same
effect for values of type double, and this placeholder still allows you to choose the
number of decimal places you wish.

Self-Check

1. Correct the statement
printf("Salary is %2.10f\n", salary);

2. Show how the value -3.6175 would be printed using the formats $8.4¢,
$8.3f, 38.2f, $8.1f, $8.0f, $.2f.

3. Assuming x (type double) is 12.335 and i (type int) is 100, show the lines
displayed by the following statements. For clarity, use the symbol i to denote
a blank space.
printf("x is %6.2f i is %4d\n", x, 1i);
printf("i is %d\n", 1i);
printf ("x is %.1f\n", x);

Programming

1. If the variables a, b, and c are 504, 302.558, and -12.31, respectively, write
a statement that will display the following line. (For clarity, a # denotes a

blank space.)

BI50400RER302.560000-12.3

2.7 Interactive Mode, Batch Mode, and Data Files

interactive mode
a mode of program
execution in which
the user responds to
prompts by entering
(typing in) data

There are two basic modes of computer operation: batch mode and interactive
mode. The programs that we have written so far run in interactive mode. In inter-
active mode, the program user interacts with the program and types in data while
it is running. We include prompts so the program user knows when to enter each

batch mode a mode
of program execution
in which the program
scans its data from a
previously prepared
data file

2.7 ¢ Interactive Mode, Batch Mode, and Data Files 921

data item. In batch mode, the program scans its data from a data file prepared
beforehand instead of interacting with its user.

Input Redirection

Figure 2.14 shows the miles-to-kilometers conversion program rewritten as a batch
program. We assume here that the standard input device is associated with a batch
data file instead of with the keyboard. In most systems, this association can be
accomplished relatively easily through input/output redirection using operating sys-
tem commands. For example, in the UNIX® and MS-DOS® operating systems, you
can instruct your program to take its input from file mydata.txt instead of from
the keyboard by placing the symbols <mydata.txt at the end of the command line
that causes your compiled and linked program to execute. You should use an editor
program or word processor to create the text file mydata.txt before attempting to
run the program. If you normally used the command line

metric
to execute this program, your new command line would be

metric <mydata.txt

Program Style Echo Prints versus Prompts
In Fig. 2.14, the statement
scanf("%1f", &miles);

gets a value for miles from the first (and only) line of the data file. Because the
program input comes from a data file, there is no need to precede this statement
with a prompting message. Instead, we follow the call to scan£ with the statement

printf("The distance in miles is %.2f.\n", miles);

This statement echo prints or displays the value just stored in miles and pro-
vides a record of the data manipulated by the program. Without it, we would have
no easy way of knowing what value scanf obtained for miles. Whenever you con-
vert an interactive program to a batch program, make sure you replace each prompt
with an echo print that follows the call to scanf.

Output Redirection

You can also redirect program output to a disk file instead of to the screen. Then
you can send the output file to the printer (using an operating system command) to
obtain a hard copy of the program output. In UNIX or MS-DOS, use the symbols
>myoutput.txt to redirect output from the screen to file myoutput.txt. You
do not need to create file myoutput.txt before running the program, but if you

92

Chapter 2 ¢ Overview of C

FIGURE 2.14 Batch Version of Miles-to-Kilometers Conversion Program

1. /* Converts distances from miles to kilometers. */

2.

3. #include <stdio.h> /* printf, scanf definitions */

4. #define KMS_PER MILE 1.609 /* conversion constant */

5.

6. int

7. main(void)

8. {

9. double miles, /* distance in miles */
10. kms; /* equivalent distance in kilometers */
11.

12. /* Get and echo the distance in miles. */

13. scanf("%1lf", &miles);

14. printf("The distance in miles is %.2f.\n", miles);
15.

16. /* Convert the distance to kilometers. */

17. kms = KMS_PER_MILE * miles;

18.

19. /* Display the distance in kilometers. */

20. printf("That equals %.2f kilometers.\n", kms);
21.

22. return (0);

23. }

The distance in miles is 112.00.
That equals 180.21 kilometers.

do have an existing file with this name, its contents will be overwritten when your
program runs. The command line

metric >myoutput.txt

executes the compiled and linked code for program metric, taking program input
from the keyboard and writing program output to file myoutput.txt. However,
interacting with the running program will be difficult because all program output,
including any prompting messages, will be sent to the output file. It would be better
to use the command line

metric <mydata.txt >myoutput.txt

which takes program input from data file mydata.txt and sends program output to
Outputﬁk%myoutput.txt

L]

2.8 ¢ Common Programming Errors 93

Self-Check

1. Explain the difference in placement of calls to print£ used to display
prompts and calls to printf used to echo data. Which calls are used in
interactive programs, and which are used in batch programs?

2. How is input data provided to an interactive program? How is input data
provided to a batch program?

Programming

1. Rewrite the program in Fig. 2.13 as a batch program. Assume that the data file
will be made accessible through input redirection.

2.8 Common Programming Errors

debugging removing
errors from a program

syntax error

a violation of the

C grammar rules,
detected during
program translation
(compilation)

As you begin to program, soon you will discover that a program rarely runs cor-
rectly the first time it executes. Murphy’s Law, “If something can go wrong, it will,”
seems to have been written with the computer program in mind. In fact, errors
are so common that they have their own special name—bugs—and the process of
correcting them is called debugging a program. (According to computer folklore,
computer pioneer Dr. Grace Murray Hopper diagnosed the first hardware error
caused by a large insect found inside a computer component.) To alert you to
potential problems, we will provide a section on common programming errors at
the end of each chapter.

When the compiler detects an error, the computer displays an error message,
which indicates that you have made a mistake and what the likely cause of the error
might be. Unfortunately, error messages are often difficult to interpret and are
sometimes misleading. As you gain experience, you will become more proficient at
locating and correcting errors.

Three kinds of errors—syntax errors, run-time errors, and logic errors—can
occur, as discussed in the following sections.

Syntax Errors

A syntax error occurs when your code violates one or more grammar rules of
C and is detected by the compiler as it attempts to translate your program. If a
statement has a syntax error, it cannot be translated and your program will not be
executed.

Figure 2.15 shows a compiler listing of the miles-to-kilometers conversion
program. A compiler listing is a listing created by the compiler during program

94

Chapter 2 ¢ Overview of C

translation that shows each line of the source program (preceded by a line number)
and any syntax errors detected by the compiler. For this particular compiler, errors
are indicated by lines that begin with five asterisks. The program contains the fol-
lowing syntax errors:

Missing semicolon at the end of the variable declaration (in line 271)
Undeclared variable miles (detected in lines 275 and 278)

Last comment is not closed because of blank in */ close-comment sequence
(in line 280)

The actual formats of the listing and the error messages produced by a com-
piler may differ from those in Fig. 2.15. Indeed, many C compilers do not produce
a listing at all, but merely display error messages. In this listing, whenever an error
is detected, the compiler displays a line starting with five asterisks followed by the
error message. Notice that the line marked for an error is not always the line con-
taining the programmer’s mistake. (For example, the error occurring in line 271 is
marked after line 274.)

The compiler attempts to correct errors wherever it can. Look at line 271
in the listing; it is missing a semicolon at the end. The compiler cannot be sure
that this semicolon is missing until it processes the printf symbol on line 274.
Because the printf is not a comma or a semicolon, the compiler then knows that
the variable declaration statement begun on line 271 is not being continued to
another line.

We see several cases in this listing where one mistake of the programmer leads
to the generation of multiple error messages. For example, the missing declaration
for variable miles causes an error message to be printed each time miles is used
in the program. This message would also occur if we remembered to declare miles
but mistyped it (perhaps as milles) in the declaration statement. The missing dec-
laration for miles also causes the second error message on line 275. Because the
address-of operator must have a variable as its operand, the fact that miles is not
declared as a variable makes it an invalid operand.

The mistyped close-comment character sequence also causes multiple mes-
sages. Because any text is valid inside a comment, the compiler is unaware that
there is a problem until it comes to the end of the source file without having
encountered a } to end the program! After complaining about this unexpected turn
of events (see line following line 284), it does what it can to correct the situation
by closing the comment at the end of the source file text and adding a } to end the
program properly.

Mistyping a close-comment sequence can cause errors that are very difficult
to find. If the comment that is not correctly closed is in the middle of a program,
the compiler will simply continue to treat program lines as comment text until it
comes to the */ that closes the next comment. When you begin getting error mes-
sages that make you think your compiler isn’t seeing part of your program, recheck
your comments carefully. In the worst case, treating these executable statements as

2.8 ¢ Common Programming Errors

FIGURE 2.15 Compiler Listing of a Program with Syntax Errors

95

221 /* Converts distances from miles to kilometers. */

222

223 #include <stdio.h> /* printf, scanf definitions */
266 #define KMS_PER MILE 1.609 /* conversion constant */
267

268 int

269 main(void)

270 {

271 double kms

272

273 /* Get the distance in miles. */

274 printf("Enter the distance in miles> ");

**%*%*% Semicolon added at the end of the previous source line
275 scanf("%1lf", &miles);

xx% Tdentifier "miles" is not declared within this scope
xx% TInvalid operand of address-of operator

276

277 /* Convert the distance to kilometers. */

278 kms = KMS_PER_MILE * miles;

xx% Tdentifier "miles" is not declared within this scope
279

280 /* Display the distance in kilometers. * /

281 printf ("That equals %f kilometers.\n", kms);

282

283 return (0);

284 }

xx% Unexpected end-of-file encountered in a comment

* Kk kkk

"}" inserted before end-of-file

comments may not cause a syntax error—then the program will simply run incor-
rectly. Mistyping the open-comment sequence /* will make the compiler attempt
to process the comment as a C statement, causing a syntax error.

Your strategy for correcting syntax errors should take into account the fact that
one error can lead to many error messages. It is often a good idea to concentrate on
correcting the errors in the declaration part of a program first. Then recompile the
program before you attempt to fix other errors. Many of the other error messages
will disappear once the declarations are correct.

Syntax errors are often caused by the improper use of quotation marks with
format strings. Make sure that you always use a quote (") to begin and end a string.

96 Chapter 2 ¢ Overview of C

run-time error

an attempt to perform
an invalid operation,
detected during
program execution

Run-Time Errors

Run-time errors are detected and displayed by the computer during the execution
of a program. A run-time error occurs when the program directs the computer to
perform an illegal operation, such as dividing a number by zero. When a run-time
error occurs, the computer will stop executing your program and will display a diag-
nostic message that indicates the line where the error was detected.

The program in Fig. 2.16 compiles successfully, but cannot run to completion
if the first integer entered is greater than the second. In this case, integer division
causes the value assigned to temp in line 271 to be zero. Using temp as a divisor in
line 272 causes the divide by zero error shown.

Undetected Errors

Many execution errors may not prevent a C program from running to completion,
but they may simply lead to incorrect results. Therefore, it is essential that you
predict the results your program should produce and verify that the actual output
is correct.

A very common source of incorrect results in C programs is the input of a mix-
ture of character and numeric data. Errors can be avoided if the programmer always
keeps in mind scanf’s different treatment of the %c placeholder on the one hand

FIGURE 2.16 A Program with a Run-Time Error

111 #include <stdio.h>

262

263 int

264 main(void)

265 {

266 int first, second;

267 double temp, ans;

268

269 printf ("Enter two integers> ");
270 scanf ("%d%d", &first, &second);
271 temp = second / first;

272 ans = first / temp;

273 printf ("The result is %.3f\n", ans);
274

275 return (0);

276 }

Enter two integers> 14 3

Arithmetic fault, divide by zero at line 272 of routine main

F NSO U R W NS

N N = @ m m m = O
& © 0RO SUTE B EWENESEO

FIGURE 2.17

2.8 ¢« Common Programming Errors 97

and of the %d and $1£ placeholders on the other. We noted that scanf first skips
any blanks and carriage returns in the input when a numeric value is scanned. In
contrast, scanf skips nothing when it scans a character unless the $c placeholder is
preceded by a blank.

Figure 2.17 shows what appears to be a minor revision to the start of function
main for the supermarket coin processor program from Fig. 2.13. We have added
an integer variable year, and we ask for a value of year before getting the user’s
initials. If the user types in 2011 and then the letters BMc, we would expect the sec-
ond call to printf to display the message

BMC, please enter your coin information for 2011.
Instead, it displays a blank line followed by
BM, please enter your coin information for 2011.

To understand why, let’s examine the status of memory at the time of the call
to printf.

Revised Start of main Function for Supermarket Coin Value Program

int

main(void)

{

char first, middle, last; /* input - 3 initials */
int pennies, nickels; /* input - count of each coin type */
int dimes, quarters; /* input - count of each coin type */
int dollars; /* input - count of each coin type */
int change; /* output - change amount */
int total dollars; /* output - dollar amount */
int total_cents; /* total cents */
int year; /* input — year */

/* Get the current year. */

printf("Enter the current year and press return> ");

scanf ("%

d", &year);

/* Get and display the customer's initials. */

printf ("
scanf ("%
printf ("

£

Type in 3 initials and press return> ");

c%csc", &first, &middle, &last);

\n%c%c%c, please enter your coin information for %d.\n",
irst, middle, last, year);

98 Chapter 2 ¢ Overview of C

logic error an error
caused by following an
incorrect algorithm

year first middle last

2011 \n B M

The value of year is correct, but the three characters stored are not 'B*, "M,
'c',but '\n', 'B', and 'M'. The \n in first is the character that results from the
user pressing the <Enter> key after entering the number 2011. The scan of 2011
stopped at this character, so it was the first character processed by the statement

scanf ("%c%c%c", &first, &middle, &last);

Because the letter ¢ was not yet scanned, it will be scanned during the next
scanf call. This will lead to further problems. The statement

scanf("%d", &dollars);

does not copy a value into dollars because the next character to scan is c, which is
not a digit character. Consequently, dollars will retain whatever value it happens
to have. The same is true for variables quarters, dimes, nickels, and pennies,
and, therefore, the results displayed by the program will be meaningless.

One simple way to repair the program would be to insert a space before the
first sc placeholder. Then scanf will skip spaces (including carriage returns) before
scanning a character.

scanf (" %c%cs%c", &first, &middle, &last);

Figure 2.18 shows another error that does not cause the program to abort with
a run-time error message. The programmer has left out the & (address-of) operators
on the variables in the call to scanf. Because scanf does not know where to find
first and second, it is unable to store in them the values entered by the user. In
this instance, the program runs to completion using whatever “garbage” values were
originally in the memory locations named first and second.

Logic Errors

Logic errors occur when a program follows a faulty algorithm. Because logic
errors usually do not cause run-time errors and do not display error messages,
they are very difficult to detect. The only sign of a logic error may be incorrect
program output. You can detect logic errors by testing the program thoroughly,
comparing its output to calculated results. You can prevent logic errors by care-
fully desk checking the algorithm and the program before you type it in.

Because debugging can be time-consuming, plan your program solutions
carefully and desk check them to eliminate bugs early. If you are unsure of the
syntax for a particular statement, look it up in the text or in the syntax guide
printed on the inside back covers. Following this approach will save time and
avoid trouble.

. B T I S Y
DREN e ®E

ORI OBV R RIS

FIGURE 2.18 A Pr

Chapter Review 99

ogram That Produces Incorrect Results Due to & Omission

#include <stdio.h>

int
main(void)
{

int first,

second, sum;

printf ("Enter two integers> ");

scanf ("%dsd",

first, second); /* ERROR!! should be &first, &second */

sum = first + second;

printf("sd +

return (0);

2d = 2%d\n", first, second, sum);

Enter two integers> 14 3
5971289 + 5971297 = 11942586

Chapter Review

1.

2.

Every C program has preprocessor directives and a main function. The main
function contains variable declarations and executable statements.

Variable names must begin with a letter or an underscore (the latter not rec-
ommended) and consist of letters, digits, and underscore symbols. A reserved
word cannot be used as an identifier.

C’s data types enable the compiler to determine how to store a particu-

lar value in memory and what operations can be performed on that value.
Three standard data types are int, double, and char. The data type of each
variable must be declared.

The executable statements are derived from the algorithm and are trans-
lated into machine language. Assignment statements are used to perform
computations and store results in memory. Function calls are used to get
data (function scanf) and to display values stored in memory (function
printf).

100 Chapter 2 ¢ Overview of C

NEW C CONSTRUCTS

Construct

Effect

#include directive

#include <stdio.h>

Tells the preprocessor to give the program access to the header file
for standard I/0 library. This includes information about the print £
and scanf functions.

#define directive for naming constant macros

#define PI 3.14159

#define STAR '*'
main function heading
int

main(void)
variable declaration

double pct, wt;

int high, mid, low;

FILE *inp, *outp;

assignment statement

distance = speed * time;

calls to input functions

scanf("%$1f%d", &pct,

calls to output functions

printf("Percentage is %.3f\n", pct);

return statement
return (0);

&high);

Tells the preprocessor to use 3.14159 as the definition of the
name PI and '*' as the meaning of the identifier STAR.

Marks the start of the function where program execution begins.

Allocates memory cells named pct and wt for storage of double-
precision real numbers, cells named high, mid, and low for storage
of integers, and cells named inp and outp for storage of file pointers.

Stores the product of speed and time as the value of the variable
distance.

Copies input data from the keyboard into the type double variable
pct and the type int variable high.

Displays a line with the string "Percentage is" followed by the
value of pct rounded to three decimal places.

Final statement of function main.

Quick-Check Exercises

What value is assigned to the type double variable x by the statement
x = 25.0 * 3.0 / 2.5;

What value is assigned to x by the following statement, assuming x is 10.0?
x =x - 20.0;

Show the exact form of the output line displayed when x is 3. 456.

printf("Three values of x are %4.1f*%5.2f*%.3f\n",
X, X, X);

8.

9.

Review Questions 101

Show the exact form of the output line when n is 345.

printf("Three values of n are %4d*%5d*%d\n",
n, n, n);

What data types would you use to represent the following items: number of
children at school, a letter grade on an exam, the average number of school
days a child is absent each year?

In which step of the software development method are the problem inputs
and outputs identified?

If function scanf is getting two numbers from the same line of input, what
characters should be used to separate them?

How does the computer determine how many data values to get from the
input device when a scanf operation is performed?

In an interactive program, how does the program user know how many data
values to enter when the scanf function is called?

10. Does the compiler listing show syntax or run-time errors?

Answers to Quick-Check Exercises

—

L XN Uk Lo

30.0

-10.0

Three values of x are 03.5*03.46%3.456 (I = 1 blank)
Three values of n are 0345*0i345*345

int, char, double

analysis

blanks

It depends on the number of placeholders in the format string.
from reading the prompt

syntax errors

Review Questions

1.

2.

What type of information should be specified in the block comment at the
very beginning of the program?
Which variables below are syntactically correct?

income two fold
ltime c3po
int income#1l

Tom's item

102

Chapter 2 ¢ Overview of C

What is illegal about the following program fragment?

#include <stdio.h>
#define PI 3.14159

int

main(void)

{
double c, r;
scanf ("$1f%1f", c, r);
PI =c / (2 * r);

}

Stylistically, which of the following identifiers would be good choices for
names of constant macros?

gravity G MAX SPEED Sphere_Size

Write the data requirements, necessary formulas, and algorithm for
Programming Project 9 in the next section.

The average pH of citrus fruits is 2.2, and this value has been stored in the
variable avg_citrus_pH. Provide a statement to display this information in a
readable way.

List three standard data types of C.

Convert the program statements below to take input data and echo it in
batch mode.

printf("Enter two characters> ");

scanf("%c%c", &cl, &c2);

printf("Enter three integers separated by spaces> ");
scanf ("%d%dsd", &n, &m, &p);

Write an algorithm that allows for the input of an integer value, doubles it,
subtracts 10, and displays the result.

Programming Projects

1.

Write a program that calculates mileage reimbursement for a salesperson at
a rate of $.35 per mile. Your program should interact with the user in this
manner:

MILEAGE REIMBURSEMENT CALCULATOR

Enter beginning odometer reading=> 13505.2
Enter ending odometer reading=> 13810.6

You traveled 305.4 miles. At $0.35 per mile,
your reimbursement is $106.89.

Programming Projects 103

Write a program to assist in the design of a hydroelectric dam. Prompt
the user for the height of the dam and for the number of cubic meters of
water that are projected to flow from the top to the bottom of the dam each
second. Predict how many megawatts (LMW = 10°W) of power will be
produced if 90% of the work done on the water by gravity is converted to
electrical energy. Note that the mass of one cubic meter of water is 1000 kg.
Use 9.80 meters/second? as the gravitational constant g. Be sure to use
meaningful names for both the gravitational constant and the 90% efficiency
constant. For one run, use a height of 170 m and flow of 1.30 X 10°> m¥s.
The relevant formula (w = work, m = mass, g = gravity, h = height) is:
w = mgh.
Write a program that estimates the temperature in a freezer (in °C) given the
elapsed time (hours) since a power failure. Assume this temperature (T) is
given by
4P
t+ 2

— 20

where ¢ is the time since the power failure. Your program should prompt the
user to enter how long it has been since the start of the power failure in whole
hours and minutes. Note that you will need to convert the elapsed time into
hours. For example, if the user entered 2 30 (2 hours 30 minutes), you would
need to convert this to 2.5 hours.

Write a program to convert a temperature in degrees Fahrenheit to degrees
Celsius.

DATA REQUIREMENTS

Problem Input

int fahrenheit /* temperature in degrees Fahrenheit */

Problem Output

double celsius /* temperature in degrees Celsius */

Relevant Formula
celsius = 5/9 (fahrenheit - 32)

Hospitals use programmable pumps to deliver medications and fluids to intra-
venous lines at a set number of milliliters per hour. Write a program to output
information for the labels the hospital pharmacy places on bags of 1.V. medica-
tions indicating the volume of medication to be infused and the rate at which the
pump should be set. The program should prompt the user to enter the quantity
of fluid in the bag and the number of minutes over which it should be infused.
Output the VTBI (volume to be infused) in ml and the infusion rate in ml/hr.

104

Chapter 2 ¢ Overview of C

Sample run:

6.

10.

Volume to be infused (ml) => 100
Minutes over which to infuse => 20

VTBI: 100 ml
Rate: 300 ml/hr

Write a program that predicts the score needed on a final exam to achieve a
desired grade in a course. The program should interact with the user as follows:

Enter desired grade> B

Enter minimum average required> 79.5
Enter current average in course> 74.6
Enter how much the final counts

as a percentage of the course grade> 25

You need a score of 94.20 on the final to get a B.

In the example shown, the final counts 25 percent of the course grade.

Write a program that calculates how many BT Us of heat are delivered to a
house given the number of gallons of oil burned and the efficiency of the
house’s oil furnace. Assume that a barrel of oil (42 gallons) has an energy
equivalent of 5,800,000 BTU. (Note: This number is too large to represent as an
int on some personal computers.) For one test use an efficiency of 65 percent
and 100 gallons of oil.

Metro City Planners proposes that a community conserve its water supply by
replacing all the community’s toilets with low-flush models that use only 2
liters per flush. Assume that there is about 1 toilet for every 3 persons, that
existing toilets use an average of 15 liters per flush, that a toilet is flushed on
average 14 times per day, and that the cost to install each new toilet is $150.
Write a program that would estimate the magnitude (liters/day) and cost of the
water saved based on the community’s population.

Write a program that takes the length and width of a rectangular yard and the
length and width of a rectangular house situated in the yard. Your program
should compute the time required to cut the grass at the rate of two square
feet a second.

Write a program that outputs the equation of the perpendicular bisector of the
line segment between two points. Your program should

= prompt for and input the coordinates of the two points [for example, try the
points (2.0, -4.0) and (7.0, -2.0)];
compute the slope of the line between those two points;
compute the coordinates of the midpoint of the line segment between the
two points by averaging the two x coordinates and the two y coordinates;

= compute the slope of the perpendicular bisector by taking the negative
reciprocal of the slope of the line segment;

FIGURE 2.19

11.

Programming Projects 105

5 \ y=—-25x+825
0 \ E 10 ¢

\ %70, -20)
"

(2.0, —4.0)

= compute the y intercept of the perpendicular bisector (you now have
the slope m of the bisector and a point (x,,4, ¥,.¢) On the bisector, so the y
intercept is g — M X,4); and

= output with labels the original two points, and output in y = mx + b for-
mat the equation of the perpendicular bisector. Figure 2.19 illustrates the
sample line segment mentioned above and its perpendicular bisector.

Test your program to be sure it works on different pairs of points. However,
there will be some pairs of points for which you can’t make your program
work (at least not at this stage). Think about what points will cause your
program to fail, and write a paragraph describing which points fall in this
category.

The Pythagorean theorem states that the sum of the squares of the sides of

a right triangle is equal to the square of the hypotenuse. For example, if two
sides of a right triangle have lengths of 3 and 4, then the hypotenuse must
have a length of 5. Together the integers 3, 4, and 5 form a Pythagorean triple.
There are an infinite number of such triples. Given two positive integers, m
and n, where m > n, a Pythagorean triple can be generated by the following
formulas:

sidel = m?> — n?

side2 = 2mn

hypotenuse = m* + n?

The triple (sidel = 3, side2 = 4, hypotenuse = 5) is generated by this formula
when m = 2 and n = 1. Write a program that takes values for m and n as input
and displays the values of the Pythagorean triple generated by the formulas
above.

106 Chapter 2 ¢ Overview of C

12. Write a program that calculates the acceleration (m/s?) of a jet fighter
launched from an aircraft-carrier catapult, given the jet’s takeoff speed in
km/hr and the distance (meters) over which the catapult accelerates the
jet from rest to takeoff. Assume constant acceleration. Also calculate the
time (seconds) for the fighter to be accelerated to takeoff speed. When
you prompt the user, be sure to indicate the units for each input. For one
run, use a takeoff speed of 278 km/hr and a distance of 94 meters. Relevant
formulas (v = velocity, a = acceleration, ¢ = time, s = distance)

v = at

at®

o=

s =

CHAPTER

Top-Down Design
with Functions

CHAPTER OBJECTIVES

e To learn about functions and how to use them to write
programs with separate modules

e To understand the capabilities of some standard
functions in C

e To introduce structure charts as a system documentation
tool

e To understand how control flows between function
main and other functions

e To learn how to pass information to functions using
input arguments

e To learn how to return a value from a function

Programmers who use the software development method to solve problems
seldom tackle each new program as a unique event. Information contained in the
problem statement and amassed during the analysis and design phases helps the
programmer plan and complete the finished program. Programmers also use seg-
ments of earlier program solutions as building blocks to construct new programs.

In the first part of this chapter, we demonstrate how you can tap existing infor-
mation and code in the form of predefined functions to write programs. In addition
to using existing information, programmers can use top—down design techniques to
simplify the development of algorithms and the structure of the resulting programs.
To apply top-down design, the programmer starts with the broadest statement of the
problem solution and works down to more detailed subproblems. In the second part
of this chapter, we demonstrate top-down design and emphasize the role of modular
programming using functions.

3.1 Building Programs from Existing Information

Programmers seldom start off with a blank slate (or empty screen) when they
develop a program. Often some—or all—of the solution can be developed from
information that already exists or from the solution to another problem, as we dem-
onstrate in this section.

Carefully following the software development method generates important
system documentation before you even begin to code a program. This system docu-
mentation, consisting of a description of a problem’s data requirements (developed
during the Analysis phase) and its solution algorithm (developed during the Design
phase), summarizes your intentions and thought processes.

You can use this documentation as a starting point in coding your program. For
example, you can begin by editing the data requirements to conform to the C syntax
for constant macro definitions and variable declarations, as shown in Fig. 3.1 for the
miles-to-kilometers conversion program. This approach is especially helpful if the
documentation was created with a word processor and is in a file that you can edit.

To develop the executable statements in the main function, first use the ini-
tial algorithm and its refinements as program comments. The comments describe
each algorithm step and provide program documentation that guides your C code.
Figure 3.1 shows how the program will look at this point. After the comments are
in place in the main function, you can begin to write the C statements. Place the C
code for an unrefined step directly under that step. For a step that is refined, either
edit the refinement to change it from English to C or replace it with C code. We
illustrate this entire process in the next case study.

N N NN =2 @ 2 a0 20 2 a2
PP SN0

O O =

3.1 ¢ Building Programs from Existing Information

109

FIGURE 3.1 Edited Data Requirements and Algorithm for Conversion Program
/*

* Converts distance in miles to kilometers.

*/

#include <stdio.h> /* printf, scanf definitions */

#define KMS_PER MILE 1.609

int

main(void)

{

double miles; /* input - distance in miles.
double kms; /* output - distance in kilometers

/* Get the distance in miles.
/* Convert the distance to kilometers.
/* Distance in kilometers is
1.609 * distance in miles.

/* Display the distance in kilometers.

return (0);

/* conversion constant */

*/
*/

*/

*/

*/

*/

CASE STUDY Finding the Area and Circumference of

a Circle

PROBLEM

Get the radius of a circle. Compute and display the circle’s area and circumference.

ANALYSIS

Clearly, the problem input is the circle’s radius. Two outputs are requested: the
circle’s area and circumference. These variables should be type double because
the inputs and outputs may contain fractional parts. The geometric relationships of
a circle’s radius to its area and circumference are listed below, along with the data

requirements.

110 Chapter 3 e Top-Down Design with Functions

DATA REQUIREMENTS
Problem Constant
PI 3.14159

Problem Input

radius /* radius of a circle */

Problem Outputs

area /* area of a circle */
circum /* circumference of a circle */

Relevant Formulas

area of a circle = w X radius?
circumference of a circle = 2w X radius

DESIGN

After identifying the problem inputs and outputs, list the steps necessary to solve
the problem. Pay close attention to the order of the steps.

INITIAL ALGORITHM

1. Get the circle radius.

2. Calculate the area.

3. Calculate the circumference.

4. Display the area and the circumference.

ALGORITHM REFINEMENTS

Next refine any steps that do not have an obvious solution (steps 2 and 3).

Step 2 Refinement

2.1 Assign PI * radius * radius to area.

Step 3 Refinement
3.1 Assign 2 * PI * radius to circum.

IMPLEMENTATION

Figure 3.2 shows the C program so far. The main function lists the initial algorithm
and its refinements as comments. To write the final program, convert the refinements
(steps 2.1 and 3.1) to C and write C code for the unrefined steps (steps 1 and 4).
Figure 3.3 shows the final program.

N NN NNNNS2 @Q @Q @ @Q @ @ @ 2 =
SUAWN_OLINIURIWNDO W

G N &0 B B9

OFENEO U1 B SWE IV =

3.1 ¢ Building Programs from Existing Information 111

FIGURE 3.2 Outline of Program Circle

/*

* Calculates and displays the area and circumference of a circle

2/

#include <stdio.h> /* printf, scanf definitions */

#define PI 3.

int

main(void)

{
double
double
double

/* Get

/* Calculate
/* Assign

/* Calculate
/* Assign

14159

radius;
area;
circum;

/* input - radius of a circle
/* output - area of a circle
/* output - circumference

the circle radius */

the area */
PI * radius * radius to area. */

the circumference */
2 * PI * radius to circum */

/* Display the area and circumference */

return

(0);

2/
=/
=/

FIGURE 3.3 Calculating the Area and the Circumference of a Circle

/*

* Calculates and displays the area and circumference of a circle

*/

#include <stdio.h> /* printf, scanf definitions */

#define PI 3.

int
main(void)

14159

(continued)

112 Chapter 3 e Top-Down Design with Functions

FIGURE 3.3 (continued)

10. {

11. double radius; /* input - radius of a circle */
12. double area; /* output - area of a circle */
13. double circum; /* output - circumference */
14.

15. /* Get the circle radius */

16. printf("Enter radius> ");

17. scanf ("%1f", &radius);

18.

19. /* Calculate the area */

20. area = PI * radius * radius;

21.

22. /* Calculate the circumference */

23. circum = 2 * PI * radius;

24.

25. /* Display the area and circumference */

26. printf("The area is %.4f\n", area);

27. printf("The circumference is %.4f\n", circum);
28.

29. return (0);

30. 3

Enter radius> 5.0
The area is 78.5397
The circumference is 31.4159

TESTING

The sample output in Fig. 3.3 provides a good test of the solution because it is rela-
tively easy to compute by hand the area and the circumference for a radius value
of 5.0. The radius squared is 25.0 and is approximately 3, so the value of the area
appears to be correct. The circumference should be 10 times r, which is also an
easy number to compute by hand.

CASE STUDY Computing the Weight of a Batch of
Flat Washers

Another way in which programmers use existing information is by extending the
solution for one problem to solve another. For example, you can easily solve this
problem by building on the solution to the previous one.

FIGURE 3.4

Computing the
Rim Area of a Flat

Washer

3.1 e Building Programs from Existing Information 113

PROBLEM

You work for a hardware company that manufactures flat washers. To estimate ship-
ping costs, your company needs a program that computes the weight of a specified
quantity of flat washers.

ANALYSIS

A flat washer resembles a small donut. To compute the weight of a single flat
washer, you need to know its rim area, its thickness, and the density of the material
used in its construction. The last two quantities are problem inputs. However, the
rim area (see Fig. 3.4) must be computed from two measurements that are provided
as inputs: the washer’s outer diameter and its inner diameter (diameter of the hole).

In the following data requirements, we list the washer’s inner and outer radius
(half the diameter) as program variables. We also list the rim area and weight of one
washer (unit_weight) as program variables.

DATA REQUIREMENTS
Problem Constant

PI 3.14159

Problem Inputs

double hole diameter /* diameter of hole */
double edge_diameter /* diameter of outer edge */

double thickness /* thickness of washer */
double density /* density of material used */
double quantity /* number of washers made */

rim area = w(dy/2)? — w(d,/2)?

114

Chapter 3 e Top-Down Design with Functions

Problem Outputs
double weight /* weight of batch of washers */

Program Variables

double hole radius /* radius of hole */
double edge radius /* radius of outer edge */
double rim area /* area of rim */

double unit_weight /* weight of 1 washer */

Relevant Formulas

area of a circle = Xradius?

radius of a circle = diameter / 2

rim area = area of outer circle — area of hole
unit weight = rim area X thickness X density

DESIGN

We list the algorithm next, followed by the refinement of Steps 3 and 4.

INITIAL ALGORITHM

Get the washer’s inner diameter, outer diameter, and thickness.
Get the material density and quantity of washers manufactured.
Compute the rim area.

Compute the weight of one flat washer.

Compute the weight of the batch of washers.

Display the weight of the batch of washers.

© Otk o=

Step 3 Refinement

3.1 Compute hole_radius and edge_radius.
3.2 rim areais PI * edge radius * edge radius - PI * hole radius *
hole radius

Step 4 Refinement

4.1 unit weightisrim area * thickness * density

IMPLEMENTATION

To write this program, edit the data requirements to write the variable declarations
and use the initial algorithm with refinements as a starting point for the executable
statements. Figure 3.5 shows the C program.

W W W WwWwwwwwwNNNMNNNNNNMNNN D @Q @@ @ @ @ @ -
PRNONPWNSOOINOINRWNSSOCORINOINPWNSO®

O N =

FIGURE 3.5 Flat Washer Program

3.1 e Building Programs from Existing Information 115

/*

* Computes the weight of a batch of flat washers.

2/

#include <stdio.h> /* printf,

#define PI 3.

int

main(void)

{
double
double
double
double
double
double
double
double
double
double

/* Get the inner diameter,

14159

hole diameter;
edge diameter;
thickness;
density;
quantity;
weight;

hole radius;
edge radius;
rim area;

unit weight;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

input
input
input
input
input

scanf definitions */

diameter of hole
diameter of outer edge
thickness of washer
density of material used

- number of washers made

output - weight of washer batch

radius of hole

radius of outer edge

area of rim

weight of 1 washer

outer diameter,

printf("Inner diameter in centimeters> ");

scanf("%$1f", &hole diameter);

printf("Outer diameter in centimeters> ");

scanf("%$1f", &edge_diameter);

printf("Thickness in centimeters> ");

scanf ("%$1f",

&thickness);

/* Get the material density and quantity manufactured. */

=/
=/
=/
2/
=/
2
=/
=/
=/
=/

and thickness.*/

printf("Material density in grams per cubic centimeter> ");

scanf ("%$1f",

&density);

printf("Quantity in batch> ");

scanf ("%$1f",

&quantity);

/* Compute the rim area.

2/

hole radius = hole diameter / 2.

edge_radius = edge _diameter / 2.

’
’

(continued)

116 Chapter 3 e Top-Down Design with Functions

FIGURE 3.5 (continued)

B rim area = PI * edge_radius * edge_radius -

40. PI * hole radius * hole_radius;

41.

42. /* Compute the weight of a flat washer. */

43. unit _weight = rim area * thickness * density;

44, /* Compute the weight of the batch of washers. */
45, weight = unit_weight * quantity;

46.

47. /* Display the weight of the batch of washers. */
48. printf ("\nThe expected weight of the batch is %.2f", weight);
49, printf(" grams.\n");

50.

51. return (0);

52. }

Inner diameter in centimeters> 1.2

Outer diameter in centimeters> 2.4

Thickness in centimeters> 0.1

Material density in grams per cubic centimeter> 7.87
Quantity in batch> 1000

The expected weight of the batch is 2670.23 grams.

TESTING

To test this program, run it with inner and outer diameters such as 2 centimeters
and 4 centimeters that lead to easy calculations for rim area (3 * PI square cen-
timeters). You can verify that the program is computing the correct unit weight by
entering 1 for quantity, and then verify that the batch weight is correct by running
it for larger quantities.

Self-Check

1. Describe the problem inputs and outputs and write the algorithm for a pro-
gram that computes an employee’s gross salary given the hours worked and
the hourly rate.

3.2 o Library Functions 117

2. Write a preliminary version of the program from your solution to Self-Check
Exercise 1. Show the declaration part of the program and the program com-
ments corresponding to the algorithm and its refinements.

3. In computing gross salary, what changes should you make to extend the pay-
roll algorithm in Self-Check Exercise 1 to include overtime hours to be paid at
1.5 times an employee’s normal hourly rate? Assume that overtime hours are
entered separately.

Programming

1. Add refinements to the program outline that follows and write the final C program.

/*
* Compute the sum and average of two numbers.
*/

#include <stdio.h> /* printf, scanf definitions */

int
main(void)
{
double one, two, /* input - numbers to process */
sum, /* output - sum of one and two */
average; /* output - average of one and two */
/* Get two numbers. */
/* Compute sum of numbers. */
/* Compute average of numbers. */
/* Display sum and average. */
return (0);
}

o

Write a complete C program for Self-Check Exercise 1.

3. Write a complete C program for the revised payroll algorithm developed in
Self-Check Exercise 3.

4. Assume that flat washers are manufactured by stamping them out from a rectan-

gular piece of material of uniform thickness. Extend the washer program to com-

pute (a) the number of square centimeters of material needed to manufacture a

specified quantity of flat washers and (b) the weight of the leftover material.

3.2 Library Functions

Predefined Functions and Code Reuse

A primary goal of software engineering is to write error-free code. Code reuse, reus-
ing program fragments that have already been written and tested whenever possible,
is one way to accomplish this goal. Stated more simply, “Why reinvent the wheel?”

118 Chapter 3 e Top-Down Design with Functions

C promotes reuse by providing many predefined functions that can be used to
perform mathematical computations. C’s standard math library defines a function
named sqrt that performs the square root computation. The function call in the
assignment statement

function call
Yy = sqrt(x);

function argument
name

activates the code for function sqrt, passing the argument x to the function. You
activate a function by writing a function call. After the function executes, the func-
tion result is substituted for the function call. If x is 16. 0, the assignment statement
above is evaluated as follows:

1. xis 16.0, so function sqrt computes the V16.0 or 4.0.
2. The function result, 4.0, is assigned to y.

A function can be thought of as a “black box™ that has passed one or more input
values and automatically returns a single output value. Figure 3.6 illustrates this for
the call to function sqrt. The value of x (16.0) is the function input, and the func-
tion result, or output, is V16.0 (resultis 4.0).

Ifwis 9.0, the assignment statement

z = 5.7 + sqrt(w);
is evaluated as follows:

1. wis 9.0, so function sqrt computes the square root of 9.0, or 3.0.
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7, is stored in z.

EXAMPLE 3.1

FIGURE 3.6

Function sqrt as a
“Black Box"

The program in Fig. 3.7 displays the square root of two numbers provided as input
data (£irst and second) and the square root of their sum. To do so, it must call the
C function sqrt three times:

function sqrt

square root

. —> resultis4.0
computatlon

Xxis16.0—>

8 e N N - YU i N\ —" Y
O O OO R O RS RO

OO o0 Qe B9 Y

3.2 e Library Functions 119

first_sqrt = sqrt(first);
second_sqrt = sqrt(second);
sum_sqrt = sqrt(first + second);

For the first two calls, the function arguments are variables (first and second).
The third call shows that a function argument can also be an expression (first +
second). For all three calls, the result returned by function sqrt is assigned to a
variable. Because the definition of the standard sqrt function is found in the stand-
ard math library, the program begins with an additional #include directive.

If you look closely at the program in Fig. 3.7, you will see that each statement
contains a call to a library function (printf, scanf, sqrt)—we have used C’s pre-
defined functions as building blocks to construct a new program.

Use of Color to Highlight New Constructs

In Fig. 3.7, program lines that illustrate new constructs are in color, so that you
can find them easily. We will continue to use color for this purpose in figures that
contain programs.

FIGURE 3.7 Square Root Program

/*
* Performs three square root computations
*/

#include <stdio.h> /* definitions of printf, scanf */
#include <math.h> /* definition of sqrt */

int

main(void)

{
double first, second, /* input - two data values */
first_sqrt, /* output - square root of first */
second_sqrt, /* output - square root of second */
sum_sqgrt; /* output - square root of sum */

/* Get first number and display its square root. */

printf("Enter the first number> ");

scanf ("%1f", &first);

first sqrt = sqrt(first);

printf("The square root of the first number is %.2f\n", first sqrt);

(continued)

120

21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.

Chapter 3 e Top-Down Design with Functions

FIGURE 3.7 (continued)

/* Get second number and display its square root. */

printf("Enter the second number> ");

scanf ("%1f", &second);

second_sqrt = sqrt(second);

printf("The square root of the second number is %.2f\n", second_sqrt);

/* Display the square root of the sum of the two numbers. */

sum_sqrt = sqrt(first + second);

printf ("The square root of the sum of the two numbers is %.2f\n",
sum_sqrt);

return (0);

Enter the first number> 9.0

The square root of the first number is 3.00

Enter the second number> 16.0

The square root of the second number is 4.00

The square root of the sum of the two numbers is 5.00

C Library Functions

Table 3.1 lists the names and descriptions of some of the most commonly used
functions along with the name of the standard header file to #include in order to
have access to each function. A complete list of standard library functions appears
in Appendix B.

If one of the functions in Table 3.1 is called with a numeric argument that is
not of the argument type listed, the argument value is converted to the required
type before it is used. Conversions of type int to type double cause no prob-
lems, but a conversion of type double to type int leads to the loss of any frac-
tional part, just as in a mixed-type assignment. For example, if we call the abs
function with the type double value -3.47, the result returned is the type int
value 3. For this reason, the library has a separate absolute value function (fabs)
for type double arguments.

Most of the functions in Table 3.1 perform common mathematical computa-
tions. The arguments for log and 1og10 must be positive; the argument for sqrt
cannot be negative. The arguments for sin, cos, and tan must be expressed in
radians, not in degrees.

3.2 o Library Functions 121

TABLE 3.1 Some Mathematical Library Functions

Standard

Function Header File Purpose: Example Argument(s) Result

abs (x) <stdlib.h> Returns the absolute value of int int
its integer argument:
ifx is -5,abs(x)is5

ceil(x) <math.h> Returns the smallest integral double double
value that is not less than x:
if xis45.23,ceil(x) is46.0

cos (x) <math.h> Returns the cosine of angle x: double double
ifxis0.0,cos(x)is1l.0 (radians)

exp(x) <math.h> Returns exwheree = 2.71828...: double double
ifxis1.0, exp(x)is2.71828

fabs (x) <math.h> Returns the absolute value of double double
its type double argument:
if xis-8.432, fabs(x) is8.432

floor(x) <math.h> Returns the largest integral value double double
that is not greater than x:
if xis45.23, floor(x) is45.0

log(x) <math.h> Returns the natural logarithm double double
of x forx > 0.0:
if xis2.71828, log(x)is1l.0

logl0(x) <math.h> Returns the base-10 logarithm double double
of xforx > 0.0:
if xis100.0, logl0(x)is2.0

pow(x, V) <math.h> Returns x. If x is negative, y must double, double
be integral: if xis0.16 and y is double
0.5 pow(x,y)is0.4

sin(x) <math.h> Returns the sine of angle x: double double
ifxis1.5708,sin(x)is1.0 (radians)

sqgrt(x) <math.h> Returns the nonnegative square double double
root of x (Vx) forx > 0.0:
if xis2.25, sqrt(x)isl.5

tan(x) <math.h> Returns the tangent of angle x: double double
ifxis0.0, tan(x) is0.0 (radians)

EXAMPLE 3.2 We can use the C functions pow (power) and sqrt to compute the roots of a quad-

ratic equation in x of the form

a®+bx+c=0

122 Chapter 3 ¢ Top-Down Design with Functions

The two roots are defined as

—b + Vb* — 4ac b — Vb?> — 4dac

rooty =
2a 2 2a

when the discriminant (b* - 4ac) is greater than zero. If we assume that this is
the case, we can use these assignment statements to assign values to root_1 and
root_2.

rooty =

/* Compute two roots, root_ 1 and root 2, for disc > 0.0 */
disc = pow(b,2) - 4 * a * c;

root 1 = (-b + sqrt(disc)) / (2 * a);

root 2 = (-b - sqrt(disc)) / (2 * a);

In the first assignment statement above, the expression begins with pow(b, 2)
which calls function pow with b and 2 as arguments; the function result (b?) is sub-
stituted for the function call when the expression is evaluated.

EXAMPLE 3.3

FIGURE 3.8

Triangle with
Unknown Side a

If we know the lengths of two sides (b and ¢) of a triangle and the angle between
them in degrees (a), we can compute the length of the third side (@) using the fol-
lowing formula (see Fig. 3.8).

a®> = b% + ¢* — 2bc cos a

To use the math library cosine function (cos), we must express its argument
angle in radians instead of degrees. To convert an angle from degrees to radians,
we multiply the angle by /180. If we assume PI represents the constant 1, the C
assignment statement that follows computes the unknown side length:

a = sqrt(pow(b,2) + pow(c,2)
- 2 * b * ¢ * cos(alpha * PI / 180.0));

3.2 e Library Functions 123

A Look at Where We Are Heading

C also allows us to write our own functions. Let’s assume that we have already writ-
tenfhncﬁonsfind_areaﬁnuifind_circum:

Function find_area(r) returns the area of a circle with radius r.
Function find_circum(r) returns the circumference of a circle with radius r.

We can reuse these functions in two programs shown earlier in this chapter (see
Figs. 3.3 and 3.5). The program in Fig. 3.3 computes the area and the circumfer-
ence of a circle. The statements

area = find area(radius);
circum = find_circum(radius);

can be used to find these values. The expression part for each of the assignment
statements is a function call with argument radius (the circle radius). The result
returned by each function execution is stored in an output variable for the program
(area or circum).

For the flat washer program (Fig. 3.5), we can use the statement

rim area = find area(edge_radius) - find area(hole_radius);

to compute the rim area for a washer. This statement is clearer than the one shown
in the original program (lines 39-40).

Self-Check

1. Rewrite the following mathematical expressions using C functions:
a. Vu + o X w c. \/(x—y)3
b. log, (x¥) d |y — w/z|

2. Evaluate the following:

logl0(10000.0)

ceil(16.2)

floor(-7.5) * pow(3.0, 2.0)
floor(21.8 + 0.8)
sgrt(ceil(fabs(-7.4)))

o T

Programming

1. Write statements that compute and display the absolute difference of two type
double variables, x and y(jx - y|).

124 Chapter 3 e Top-Down Design with Functions

2. Write a complete C program that prompts the user for the coordinates of two
3-D points (xy, y;, z;) and (x,, Y, 2,) and displays the distance between them
computed using the following formula:

distance = \/(xl —x)? + (y, — y2>2 + (21 — 29)

3.3 Top-Down Design and Structure Charts

top-down design

a problem-solving
method in which you
first break a problem
up into its major
subproblems and then
solve the subproblems
to derive the solution to
the original problem

structure chart a
documentation tool that
shows the relationships
among the subproblems
of a problem

FIGURE 3.9

House and Stick
Figure

Often the algorithm needed to solve a problem is more complex than those we have
seen so far and the programmer must break up the problem into subproblems to
develop the program solution. In attempting to solve a subproblem at one level, we
introduce new subproblems at lower levels. This process, called top-down design,
proceeds from the original problem at the top level to the subproblems at each
lower level. The splitting of a problem into its related subproblems is analogous to
the process of refining an algorithm. The case study below introduces a documenta-
tion tool—the structure chart—that will help you to keep track of the relationships
among subproblems.

CASE STUDY Drawing Simple Diagrams

PROBLEM

You want to draw some simple diagrams on your printer or screen. Two examples
are the house and female stick figure in Fig. 3.9.

ANALYSIS

The house is formed by displaying a triangle without its base on top of a rectangle.
The stick figure consists of a circular shape, a triangle, and a triangle without its
base. We can draw both figures with these four basic components:

a circle parallel lines
a base line intersecting lines
.
7\ * *
// \\ . x
7 N
LD /N
| | VAN
| | /7 N\
7 N
_______ | /N
7\
7/ AN
/7 AN

FIGURE 3.10

Structure Chart for
Drawing a Stick
Figure

3.3 ¢ Top-Down Design and Structure Charts 125

DESIGN

To create the stick figure, you can divide the problem into three subproblems.

INITIAL ALGORITHM

1. Draw a circle.
2. Draw a triangle.
3. Draw intersecting lines.

ALGORITHM REFINEMENTS

Because a triangle is not a basic component, you must refine step 2, generating the
following subproblems:

Step 2 Refinement

2.1 Draw intersecting lines.
2.2 Draw a base.

You can use a structure chart to show the relationship between the original
problem and its subproblems, as in Fig. 3.10, where the original problem (level 0)
is in the darker color and its three subordinate subproblems are shown at level 1.
The subproblem Draw a triangle is also in color because it has its own subproblems
(shown at level 2).

The subproblems appear in both the algorithm and the structure chart. The
algorithm, not the structure chart, shows the order in which you carry out each step
to solve the problem. The structure chart simply illustrates the subordination of
subproblems to each other and to the original problem.

Original Draw a
problem figure Level 0
Draw
Draw a Draw a .)
Subproblems il triangle :;:]tggsectlng Level 1
. Draw

Detailed intersecting Dl & Level 2
subproblems i base

126 Chapter 3 ¢ Top-Down Design with Functions

|

Self-Check

1. In which phase of the software development method do you apply top-down
design to break the problem into suitable subproblems?

2. Draw the structure chart for the problem of drawing the house shown in
Fig. 3.9.

3.4 Functions without Arguments

One way that programmers implement top-down design in their programs is by
defining their own functions. Often, a programmer will write one function subpro-
gram for each subproblem in the structure chart. In this section, we show how to
use and define your own functions, focusing on simple functions that have no argu-
ments and return no value.

As an example of top-down design with functions, you could use the main
function in Fig. 3.11 to draw the stick figure of a person. In Fig. 3.11, the three
algorithm steps are coded as calls to three function subprograms. For example, the
statement

draw_circle();

calls a function (draw_circle) that implements the algorithm step Draw a circle.

We call function draw_circle just like we call function printf. The empty
parentheses after the function name indicate that draw_circle requires no
arguments.

Function Call Statement (Function without Arguments)
SYNTAX: fname () ;
EXAMPLE: draw_circle();

INTERPRETATION: The function fname is called. After fname has finished execution, the
program statement that follows the function call will be executed.

Function Prototypes

Just like other identifiers in C, a function must be declared before it can be refer-
enced. One way to declare a function is to insert a function prototype before the

3.4 ¢ Functions without Arguments 127

FIGURE 3.11 Function Prototypes and Main Function for Stick Figure

1. /+*
2. * Draws a stick figure
3. */
4
5. #include <stdio.h> /* printf definition */
6.
7. /* function prototypes */
8.
9. void draw_circle(void); /* Draws a circle */
10.
11. void draw_intersect(void); /* Draws intersecting lines */
12.
13. void draw_base(void); /* Draws a base line */
14.
15. void draw_triangle(void); /* Draws a triangle */
16.
17. int
18. main(void)
19. {
20. /* Draw a circle. */
21. draw_circle();
22.
23. /* Draw a triangle. */
24, draw_triangle();
25.
26. /* Draw intersecting lines. */
27. draw_intersect();
28.
29. return (0);
30. }
main function. A function prototype tells the C compiler the data type of the func-
tion, the function name, and information about the arguments that the function
expects. The data type of a function is determined by the type of value returned by
void function the function. The functions declared in Fig. 3.11 are void functions (that is, their
a function that does type is void) because they do not return a value. In the function prototype

not return a value
void draw_circle(void); /* Draws a circle */

the second void indicates that draw_circle expects no arguments.

128 Chapter 3 ¢ Top-Down Design with Functions

-

© ©wNOOUAWN=2

Function Prototype (Function without Arguments)
FORM: ftype fname (void) ;
EXAMPLE: void draw_circle(void);

INTERPRETATION: The identifier fname is declared to be the name of a function. The identifier
ftype specifies the data type of the function result.

Note: ftype is void if the function does not return a value. The argument list (void) indi-
cates that the function has no arguments. The function prototype must appear before the
first call to the function.

Function Definitions

Although the prototype specifies the number of arguments a function takes and the
type of its result, it does not specify the function operation. To do this, you need to
provide a definition for each function subprogram similar to the definition of the
main function. Figure 3.12 shows the definition for function draw_circle.

The function heading is similar to the function prototype in Fig. 3.11 except
that it is not ended by the symbol ;. We have adopted a style that places the func-
tion type on a separate line. (Industrial C developers often use this style to make
function definitions easy to find in long source files.) The function body, enclosed in
braces, consists of three calls to function print£ that cause the computer to display
a circular shape. We omit the return statement because draw_circle does not
return a result.

FIGURE 3.12 Function draw_circle

/*
* Draws a circle
*/
void
draw_circle(void)
{
printf (" * \n");
printf(" * *\n");
printf("™ * * \n");

3.4 ¢ Functions without Arguments 129

The function call statement
draw_circle();

causes these printf statements to execute. Control returns to the main function
after the circle shape is displayed.

Function Definition (Function without Arguments)

SYNTAX: ftype
fname (void)
{
local declarations
executable statements

}
EXAMPLE: /*
* Displays a block-letter H
*/
void
print_h(void)
{
printf("** **\n");
printf("** **\n");
printf("***xx*\n");
printf("** **\n");
printf("** **\n");
}

INTERPRETATION: The function fname is defined. In the function heading, the identifier ftype
specifies the data type of the function result. Notice that there are no semicolons after the
lines of the function heading. The braces enclose the function body. Any identifiers that are
declared in the optional local declarations are defined only during the execution of the func-
tion and can be referenced only within the function. The executable statements of the func-
tion body describe the data manipulation to be performed by the function.

Note: ftype is void if the function does not return a value. The argument list (void) indi-
cates that the function has no arguments. You can omit the void and write the argument
listas ().

Each function body may contain declarations for its own variables. These vari-
ables are considered local to the function; in other words, they can be referenced
only within the function. There will be more on this topic later.

The structure chart in Fig. 3.10 shows that the subproblem Draw a triangle
(level 1) depends on the solutions to its subordinate subproblems Draw intersecting

130 Chapter 3 ¢ Top-Down Design with Functions

FIGURE 3.13 Function draw_triangle

1. /*

2. * Draws a triangle

3. */

4. void

5. draw_triangle(void)

6. {

7. draw_intersect();

8. draw_base();

9. }
lines and Draw a base (both level 2). Figure 3.13 shows how you can use top-down
design to code function draw_triangle. Instead of using printf statements to
display a triangular pattern, the body of function draw_triangle calls functions
draw_intersectanddraw_basetodnnvatﬁangb.
Placement of Functions in a Program
Figure 3.14 shows the complete program with function subprograms. The subpro-
gram prototypes precede the main function (after any #include or #define direc-
tives) and the subprogram definitions follow the main function. The relative order of
the function definitions does not affect their order of execution; that is determined
by the order of execution of the function call statements.

FIGURE 3.14 Program to Draw a Stick Figure

1. /* Draws a stick figure */

2.

3. #include <stdio.h> /* printf definition */

4

5. /* Function prototypes */

6. void draw_circle(void); /* Draws a circle */

7.

8. void draw_intersect(void); /* Draws intersecting lines */

9.

10. void draw_base(void); /* Draws a base line */

11.

12. void draw_triangle(void); /* Draws a triangle */

13.

(continued)

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43,
44,
45,
46.
47.
48.
49,
50.
51.

FIGURE 3.14 (continued)

3.4 ¢ Functions without Arguments

131

int
main(void)

{
/* Draw a circle.
draw_circle();
/* Draw a triangle.
draw_triangle();
/* Draw intersecting lines.
draw_intersect();
return (0);
}
/*
* Draws a circle
* /
void
draw_circle(void)

{
\n");
* \n");
\n");

printf(" *
printf(" *
printf(" * %

/*
* Draws intersecting lines
*/

void

draw_intersect(void)

{
printf(" / \\ \n");
printf(" / \\ \n");
printf("/ \\\n");
}

*/

*/

*/

/* Use 2 \'s to print 1 */

(continued)

132 Chapter 3 ¢ Top-Down Design with Functions

FIGURE 3.14 (continued)

52. /*

53. * Draws a base line
54. =/

55. void

56. draw_base(void)

57. {

58. printf("----—-- \n");
59. 3

60.

61. /=

62. * Draws a triangle

63. =/

64. void

65. draw_triangle(void)

66. {

67. draw_intersect();
68. draw_base();

69. }

If you look closely at function draw_intersect, you will notice that the symbol
pair \\ represents a single backslash character in a format string. This convention
enables C to differentiate the backslash character from the escape symbol (just \).

Program Style Use of Comments in a Program with Functions

Figure 3.14 includes several comments. Each function begins with a comment that
describes its purpose. If the function subprograms were more complex, we would
include comments on each major algorithm step just as we do in function main.
From now on throughout this text, the block comment and heading of each function
definition are in color to help you locate functions in the program listing.

Order of Execution of Function Subprograms and
Main Function

Because the prototypes for the function subprograms appear before the main func-
tion, the compiler processes the function prototypes before it translates the main
function. The information in each prototype enables the compiler to correctly
translate a call to that function. The compiler translates a function call statement as
a transfer of control to the function.

FIGURE 3.15

Flow of Control
Between the
main Function
and a Function
Subprogram

3.4 e Functions without Arguments 133

After compiling the main function, the compiler translates each function sub-
program. During translation, when the compiler reaches the end of a function body,
it inserts a machine language statement that causes a transfer of control back from
the function to the calling statement.

Figure 3.15 shows the main function and function draw_circle of the stick
figure program in separate areas of memory. Although the C statements are shown
in Fig. 3.15, it is actually the object code corresponding to each statement that is
stored in memory.

When we run the program, the first statement in the main function is the
first statement executed (the call to draw_circle in Fig. 3.15). When the com-
puter executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15). The computer allocates
any memory that may be needed for variables declared in the function and then
performs the statements in the function body. After the last statement in function
draw_circle is executed, control returns to the main function (indicated by the
black line in Fig. 3.15), and the computer releases any memory that was allocated
to the function. After the return to the main function, the next statement is exe-
cuted (the call to draw_triangle).

Advantages of Using Function Subprograms

There are many advantages to using function subprograms. Their availability
changes the way in which an individual programmer organizes the solution to a
programming problem. For a team of programmers working together on a large
program, subprograms make it easier to apportion programming tasks: Each pro-
grammer will be responsible for a particular set of functions. Finally, they simplify
programming tasks because existing functions can be reused as the building blocks
for new programs.

Procedural Abstraction Function subprograms allow us to remove from the

main function the code that provides the detailed solution to a subproblem. Because
these details are provided in the function subprograms and not in the main function,

computer memory

in main function > /* Draw a circle. */
void
draw_circle(); ——————— draw_circle (void)
] {
draw_triangle(); printf(" \n");
printf ("x *\n");
draw_intersect(); printf(" + % \n");

return to calling program

}

134 Chapter 3 e Top-Down Design with Functions

procedural
abstraction

a programming tech-
nique in which a main
function consists of a
sequence of function
calls and each function
is implemented
separately

we can write the main function as a sequence of function call statements as soon
as we have specified the initial algorithm and before we refine any of the steps.
We should delay writing the function for an algorithm step until we have finished
refining that step. With this approach to program design, called procedural
abstraction, we defer implementation details until we are ready to write an
individual function subprogram. Focusing on one function at a time is much easier
than trying to write the complete program all at once.

Reuse of Function Subprograms Another advantage of using function
subprograms is that functions can be executed more than once in a program.
For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function). Each time draw_intersect is
called, the list of output statements shown in Fig. 3.14 is executed and a pair of
intersecting lines is drawn. Without functions, the printf statements that draw
the lines would be listed twice in the main function, thereby increasing the main
function’s length and the chance of error.

Finally, once you have written and tested a function, you can use it in other
programs or functions. For example, the functions in the stick figure program could
easily be reused in programs that draw other diagrams.

Displaying User Instructions

The simple functions introduced in this section have limited capability. Without
the ability to pass information into or out of a function, we can use functions only to
display multiple lines of program output, such as instructions to a program user or a
title page or a special message that precedes a program’s results.

EXAMPLE 3.4

Let’s write a function (Fig. 3.16) that displays instructions to a user of the program
that computes the area and the circumference of a circle (see Fig. 3.3). This simple
function demonstrates one of the benefits of separating the statements that display
user instructions from the main function body: Editing these instructions is simpli-
fied when they are separated from the code that performs the calculations.

If you place the prototype for function instruct

void instruct(void);

just before the main function, you can insert the function call statement
instruct();

as the first executable statement in the main function. The rest of the main function
consists of the executable statements shown earlier. Figure 3.16 shows the output
displayed by calling function instruct.

-—) -
Me e

e o =

3.4 ¢ Functions without Arguments

FIGURE 3.16 Function instruct and the Output Produced by a Call

135

/*
* Displays instructions to a user of program to compute
* the area and circumference of a circle.
*/

void

instruct(void)

{
printf("This program computes the areal\n");
printf("and circumference of a circle.\n\n");
printf("To use this program, enter the radius of\n");
printf("the circle after the prompt: Enter radius>\n");
}

This program computes the area
and circumference of a circle.

To use this program, enter the radius of
the circle after the prompt: Enter radius>

L]

Self-Check

1. Assume that you have functions print_h, print_i, print_m, and print_o,
each of which draws a large block letter (for example, print_o draws a block

letter 0). What is the effect of executing the following main function?

int

main(void)

{
print_h();
print_i();
printf("\n\n\n");
print _m();
print_o();
print m();
return (0);

}

2. Draw a structure chart for a program with three function subprograms that

displays DOLL in a vertical column of block letters.

136 Chapter 3 ¢ Top-Down Design with Functions

Programming

1. Write a function draw_parallel that draws parallel lines and a function draw_
rectangle that uses draw_parallel and draw_base to draw a rectangle.

2. Write a complete program for the problem described in Self-Check
Exercise 2.

3. Rewrite the miles-to-kilometers conversion program shown in Fig. 2.1, so that
it includes a function that displays instructions to its user.

4. Show the revised program that calls function instruct for the circle area and
circumference problem.

3.5 Functions with Input Arguments

Programmers use functions like building blocks to construct large programs.
Functions are more like Lego® blocks (Fig. 3.17) than the smooth-sided wooden
blocks you might have used as a young child to demonstrate your potential as a
budding architect. Your first blocks were big and did not link together, so buildings
over a certain size would topple over. Legos, in contrast, have one surface with lit-
tle protrusions and one surface with little cups. By placing the protrusions into the
cups, you could build rather elaborate structures.

What does this have to do with programming? Simple functions like draw_circle
and instruct are like wooden blocks. They can display information on the screen,
but they are not particularly useful. To be able to construct more interesting pro-
grams, we must provide functions with “protrusions” and “cups” so they can be easily
interconnected.

FIGURE 3.17

Lego® Blocks

input arguments
arguments used to
pass information into a
function subprogram

output arguments
arguments used to
return results to the
calling function

3.5 e Functions with Input Arguments 137

The arguments of a function are used to carry information into the function
subprogram from the main function (or from another function subprogram) or to
return multiple results computed by a function subprogram. Arguments that carry
information into the function subprogram are called input arguments; arguments
that return results are called output arguments. We can also return a single result
from a function by executing a return statement in the function body. We study
functions with input arguments in this section and functions with output arguments
in Chapter 6.

The use of arguments is a very important concept in programming. Arguments
make function subprograms more versatile because they enable a function to manip-
ulate different data each time it is called. For example, in the statement

rim_area = find area(edge_radius) - find area(hole_area);

each call to function £ind_area calculates the area of a circle with a different radius.

void Functions with Input Arguments

In the last section, we used void functions like instruct and draw circle to
display several lines of program output. Recall that a void function does not return
a result. We can use a void function with an argument to “dress up” our program
output by having the function display its argument value in a more attractive way.

EXAMPLE 3.5 Function print_rboxed (Fig. 3.18) displays the value of its argument, a real
number, in a box. The real number is displayed on the third line starting at the posi-
tion of the placeholder %7.2£. When function print_rboxed is called, the value

FIGURE 3.18 Function print_rboxed and Sample Run

1. /*

2. * Displays a real number in a box.
3. */

4.

5. void

6. print_rboxed(double rnum)

7. ¢

8. printf (" x*kkkkkkkkk\n");

9. printf("* *\n");
10. printf("* %7.2f *\n", rnum);
11. printf("* *\n");
12. printf("***********\n");

-
w
[

(continued)

138 Chapter 3 ¢ Top-Down Design with Functions

FIGURE 3.18 (continued)

kkkkkhkhkkikkk*k

* *
* 135.68 *
* *

kkkkkhkhkkhkk*k

actual argument an of its actual argument (135.68) is passed into the function and substituted for its

expression used inside) .
the parentheses of a formal parameter rnum. Because rnum appears only in the third call to printf,

function call the real number 135.68 is displayed once inside the box. Figure 3.19 shows the

formal parameter an effect of the function call

identifier that represents
a corresponding actual
argument in a function
definition

print_rboxed(135.68);

Functions with Input Arguments and a Single Result

Next we show how to write functions with input arguments that return a single result,
as diagrammed in Fig. 3.20. We can call or reference these functions in expressions
just like the library functions described in Section 3.2. For example, if we write our
own function £ that has 2 type double inputs, we can reference it in an expression
such asw + £(2.5, 4.0). This expression means execute function £ with a first
argument of 2.5 and a second argument of 4.0. Add the function result to w.

Let’s reconsider the problem of finding the area and circumference of a circle
using functions with just one argument. Section 3.2 described functions £ind_cir-
cum and £ind_area, each of which has a single input argument (a circle radlus) and
returns a s1ngle result (the circle circumference or area). Figure 3.21 shows these
functions.

FIGURE 3.19 Call print_rboxed with rnum = 135.68
print_rboxed(135.68);

Effect of Executing
print_ rboxed
(135.68);

void 17
print_rboxed(double rnum)
{

Printf ("H*kkkxkkxk*k\n");

printf ("* *\n");
printf("* $7.2f *\n", rnum);
printf("* *\n");

printf("***********\n");

3.5 e Functions with Input Arguments 139

FIGURE 3.20 i —

Function with n — >

Input Arguments

and One Result P : P result

unction —>

u . value
t -
S —>

N NN = = o o o =3 = = =
NE=S O OF ENT OV S IV S OO

FIGURE 3.21 Functions find_circum and find_area

O e B e B9 Y =

/*
* Computes the circumference of a circle with radius r.
* Pre: r is defined and is > 0.

* PI is a constant macro representing an approximation of pi.
* /
double
find circum(double r)
{
return (2.0 * PI * r);
}
/*

* Computes the area of a circle with radius r.
* Pre: r is defined and is > 0.

* PI is a constant macro representing an approximation of pi.
* Library math.h is included.
* /

double

find_area(double r)

{

return (PI * pow(r, 2));

Each function heading begins with the word double, indicating that the func-
tion result is a real number. Both function bodies consist of a single return state-
ment. When either function executes, the expression in its return statement is
evaluated and returned as the function result. If P is the constant macro 3.14159,
calling function £ind_circum causes the expression 2.0 * 3.14159 * r to be

140 Chapter 3 e Top-Down Design with Functions

FIGURE 3.22

Effect of Executing
circum = find_
circum(radius);

Call find_circumwithr = 10.0
circum = find circum(radius);

A

double 17
find_circum(double r)

{

return (2.0 * PI * r);

Return result of 62.8318

evaluated. To evaluate this expression, C substitutes the actual argument used in the
function call for the formal parameter r.
For the function call below

radius = 10.0;
circum = find circum(radius);

the actual argument, radius, has a value of 10. 0, so the function result is 62.8318
(2.0 * 3.14159 * 10.0). The function result is assigned to circum. Figure 3.22
illustrates the function execution.

The function call to find_area

area = find_area(radius);

causes C to evaluate the expression 3.14159 * pow(r, 2), where pow is a library
function (part of math.h) that raises its first argument to the power indicated by its
second argument (pow(r, 2) computes r?). When radius is 10.0, pow returns
100.0 and find_area returns a result of 314.59, which is assigned to area. This
example shows that a user-defined function can call a C library function.

Function Definition (Input Arguments and Single Result)

SYNTAX: function interface comment
ftype
fname (formal parameter declaration list)
{
local variable declarations
executable statements

(continued)

precondition

a condition assumed
to be true before a
function call

postcondition

a condition assumed to
be true after a function
executes

3.5 e Functions with Input Arguments 141

EXAMPLE: /*

* Finds the cube of its argument.
* Pre: n is defined.
*/

int

cube(int n)

{

return (n * n * n);

}

INTERPRETATION: The function interface comment is described in the next Program Style
display. The next two lines are the function heading, which specifies the function name,
fname, and the type of the result returned, ftype. It also indicates the names and types of the
formal parameters in the formal parameter declaration list. Note that the lines of the heading
do not end in semicolons. The braces enclose the function body. The type of any additional
variables needed should be declared in the local variable declarations. The executable state-
ments describe the data manipulation that the function performs on the parameters and local
variables in order to compute the result value. Execution of a return statement causes the
function to return control to the statement that called it. The function returns the value of
the expression following return as its result.

Note: Use void as the formal parameter declaration list to indicate that a function has no
arguments. The parentheses around the expression that follows return are not required.

Program Style Function Interface Comment

The block comment and heading that begin each function in Fig. 3.21 contain all
the information required in order to use the function. The function interface block
comment begins with a statement of what the function does. Then the line

* Pre: n is defined.

describes the condition that should be true before the function is called; this con-
dition is known as the precondition. You will also want to include a statement
describing the condition that must be true after the function completes execution,
if some details of this postcondition are not included in the initial statement of the
function’s purpose.

We recommend that you begin all function definitions in this way. The function
interface comment combined with the heading (or prototype) provides valuable
documentation to other programmers who might want to reuse your functions in a
new program without reading the function code.

142 Chapter 3 e Top-Down Design with Functions

Functions with Multiple Arguments

Functions find_area and £ind_circum each have a single argument. We can also
define functions with multiple arguments.

EXAMPLE 3.6

Function scale (Fig. 3.23) multiplies its first argument (a real number) by 10 raised
to the power indicated by its second argument (an integer). For example, the func-
tion call

scale(2.5, 2)

returns the value 250.0 (2.5 x 102). The function call
scale(2.5, -2)

returns the value 0.025 (2.5 x 1072).

In function scale, the statement

scale_factor = pow(10, n);

calls function pow to raise 10 to the power specified by the second formal para-
meter n. Local variable scale factor, defined only during the execution of the
function, stores this value. The return statement defines the function result as the
product of the first formal parameter, x, and scale_factor.

Figure 3.24 shows a very simple main function written to test function scale. The
prototype for function scale is

double scale(double x, int n);

FIGURE 3.23 Function scale

1. /*
2.

3.

4

5. =/
6. double
7

8. {
9.

10.

11.

12.

-
w
-

* Multiplies its first argument by the power of 10 specified
* by its second argument.
* Pre : x and n are defined and math.h is included.

scale(double x, int n)

double scale_ factor; /* local variable */
scale_factor = pow(10, n);

return (x * scale_factor);

O O S =

3.5 e Functions with Input Arguments

FIGURE 3.24 Testing Function scale

143

/*

* Tests function scale.

*/

#include <stdio.h> /* printf, scanf definitions */
#include <math.h> /* pow definition */

/* Function prototype */
double scale(double x, int n);
int

main(void)

{
double num_1;
int num_2;
/* Get values for num_1 and num 2 */
printf("Enter a real number> ");
scanf ("%1f", &num 1);
printf("Enter an integer> ");
scanf("%d", &num_2);
/* Call scale and display result. */
printf ("Result of call to function scale is %f\n",
scale(num 1, num 2)); actual arguments
return (0);
}
information flow
double
scale(double x, int n) formal parameters
{
double scale_factor; /* local variable - 10 to power n */
scale_factor = pow(1l0, n);
return (X * scale_ factor);
}

Enter a real number> 2.5
Enter an integer> -2
Result of call to function scale is 0.025

144

Chapter 3 e Top-Down Design with Functions

The printf statement calls function scale and displays the function result after it is
returned. The arrows drawn in Fig. 3.24 show the information flow between the two
actual arguments and formal parameters. To clarify the information flow, we omitted
the function interface comment. The argument list correspondence is shown below.

Actual Argument corresponds to Formal Parameter
num 1 X
num_2 n

Argument List Correspondence

When using multiple-argument functions, you must be careful to include the
correct number of arguments in the function call. Also, the order of the actual
arguments used in the function call must correspond to the order of the formal
parameters listed in the function prototype or heading.

Finally, if the function is to return meaningful results, assignment of each actual
argument to the corresponding formal parameter must not cause any loss of infor-
mation. Usually, you should use an actual argument of the same data type as the
corresponding formal parameter, although this is not always essential. For example,
the <math.h> library description indicates that both parameters of the function
pow are of type double. Function scale calls pow with two actual arguments of
type int. This call does not cause a problem because there is no loss of information
when an int is assigned to a type double variable. If you pass an actual argument
of type double to a formal parameter of type int, loss of the fractional part of the
actual argument would likely lead to an unexpected function result. Next, we sum-
marize these constraints on the number, order, and type (not) of input arguments.

Argument List Correspondence

The number of actual arguments used in a call to a function must be the same
as the number of formal parameters listed in the function prototype.

The order of arguments in the lists determines correspondence. The first
actual argument corresponds to the first formal parameter, the second actual
argument corresponds to the second formal parameter, and so on.

Each actual argument must be of a data type that can be assigned to the cor-
responding formal parameter with no unexpected loss of information.

The Function Data Area

Each time a function call is executed, an area of memory is allocated for storage
of that function’s data. Included in the function data area are storage cells for its
formal parameters and any local variables that may be declared in the function. The
function data area is always lost when the function terminates; it is recreated empty
(all values undefined) when the function is called again.

FIGURE 3.25

Data Areas After
Call scale(num 1,

num_2);

driver ashort
function written to test
another function by
defining its arguments,
calling it, and displaying
its result

L]

3.5 e Functions with Input Arguments 145

Function main Function scale
Data Area Data Area
num_1 X
205 2.5
num_2 n
=% -2

scale factor

?

Figure 3.25 shows the main function data area and the data area for function
scale after the function call scale(num 1, num 2) executes. The values 2.5 and
-2 are passed into the formal parameters x and n, respectively. The local variable,
scale_factor, is initially undefined; the execution of the function body changes
the value of this variable to 0.01.

The local variable scale_factor can be accessed only in function scale.
Similarly, the variables num_1 and num_2 declared in function main can be accessed
only in function main. If you want a function subprogram to use the value stored in
num_1, you must provide num_1 as an actual argument when you call the function.

Testing Functions Using Drivers

A function is an independent program module, and as such, it can be tested sepa-
rately from the program that uses it. To run such a test, you should write a short
driver function that defines the function arguments, calls the function, and displays
the value returned. For example, the function main in Fig. 3.24 acts as a driver to
test function scale.

Self-Check
1. Evaluate each of the following:

a. scale(3.14159, 3)
b. find circum(5.0)

146 Chapter 3 e Top-Down Design with Functions

Cc. print_rboxed(find circum(5.0))
d. find_area(1.0)
e. scale(find_area(10.0), -2)

2. Explain the effect of reversing the function arguments in the call to scale

shown in Example 3.6—that is, scale(num_2, num_1).
3. How does the use of function arguments make it possible to write larger, more
useful programs?

Programming

1. Revise the flat-washer program (Fig. 3.5) to use function subprograms
find_area, find_rim _area, find_unit_weight, and instruct. Show the
complete program.

2. Write a function that computes the time one must leave in order to reach a
certain destination by a designated time. You need to deal only with arrivals
occurring later in the same day as the departure. Function inputs include the
arrival time as an integer on a 24-hour clock (8:30 p.M. = 2030), the distance to
the destination in kilometers, and the speed you plan to average in km/h. The
function result should be the required departure time (rounded to the nearest
minute) as an integer on a 24-hour clock. Also, write a driver program to test
your function.

3.6 Introduction to Computer Graphics (Optional)

text mode A display
mode in which a C
program displays only
characters

graphics mode A
display mode in which
a C program draws
graphics patterns and
shapes in an output
window

In normal computer display mode (called text mode), we use printf to display
lines of characters to the standard output device, or console. In Section 3.3, we
showed how to write C functions for drawing simple stick figures using text mode.
In several optional sections beginning with this one, we discuss another display
mode (called graphics mode) that enables a C program to draw pictures or graphi-
cal patterns in an output window. To write graphics programs, you must learn how
to use special graphics functions that enable you to draw lines and various geometric
shapes (for example, rectangles, circles, ellipses) anywhere on your screen and color
and shade them in different ways.

Several programming languages include graphics libraries. Although there is
no standard graphics library for C, several libraries have been developed for use
with C. We will study a simple graphics library called WinBGIm which is based on
Borland Turbo Pascal Graphics, with the addition of mouse control. This library
was developed by Professor Michael Main of the Computer Science Department,
University of Colorado, Boulder. The principles we study will apply to other graph-
ics libraries you may use in the future.

pixel A picture
element on a computer
screen

FIGURE 3.26

Referencing pixels
in @ window

3.6 ¢ Introduction to Computer Graphics (Optional) 147

Composition of a Window

In text mode, you don’t pay much attention to the position of each line of charac-
ters displayed on the screen. In graphics programming, you control the location of
each line or shape that you draw in a window. Consequently, you must know your
window size and how to reference the individual picture elements (called pixels)
in a window.

You can visualize a window as an x-y grid of pixels. Assume that your window
has the dimensions 400 X 300. Figure 3.26 shows the coordinates for the four pixels
at the corners. The pixel at the top-left corner has x-y coordinates (0, 0), and the
pixel at the top-right corner has x-y coordinates (400, 0).

Notice the pixels in the y-direction are numbered differently from how we are
accustomed. The pixel (0, 0) is at the top-left corner of the screen, and the y-coor-
dinate values increase as we move down the screen. In a normal x-y coordinate
system, the point (0, 0) is at the bottom-left corner.

Some Common Graphics Functions

A graphics program is a sequence of statements that call graphics functions to
do the work. Figure 3.27 is a program that uses several key functions. The func-
tions getmaxwidth and getmaxheight return the position of the last pixel in the
X and Y-directions on your computer screen. Some typical screen dimensions are
640 X 480 for 14-inch screens and 1366 X 768 for 15-inch screens, but the largest
window will be slightly smaller. Therefore, the statements

bigx = getmaxwidth(); /* get largest x-coordinate. */
bigy = getmaxheight(); /* get largest y-coordinate. */
initwindow(bigx, bigy,

"Full screen window - press a character to close window");

pixel pixel
(0, 0) e — (400, 0)
® ®

M.~

@ L
pixel pixel
(0, 300) (400, 300)

148

O NOowARWN 2

FIG

Chapter 3 e Top-Down Design with Functions

URE 3.27 Drawing intersecting lines

/*

#in

int

mai

{

}

Displays screen size and draws intersecting lines */

clude <graphics.h>

n(void)

int bigX; /* largest x-coordinate */

int bigy; /* largest y-coordinate */
bigX = getmaxwidth(); /* get largest x-coordinate */
bigY = getmaxheight(); /* get largest y-coordinate */

initwindow(bigX, bigy,
"Full screen window - press a key to close");

/* Draw intersecting lines */

/* Draw white line from (0, 0) to (bigX, bigY) */
line(0, 0, bigX, bigY);

setcolor (BLUE); /* Change color to blue */
/* Draw blue line from (bigX, 0) to (0, bigY) */
line(bigX, 0, 0, bigY);

/* Display window size in console */
printf("Window size is %d X %d", bigX, bigY);

/* Close screen when ready */
getch(); /* pause until user presses a key */

closegraph(); /* close the window */

return(0);

Window size is 1018 X 736

pop up a window of maximum width and height with the third argument as the
window label (see Fig. 3.28). The window position is set by the optional fourth and
fifth arguments. If they are missing, the top-left corner of the window is at (0, 0).

In the statements
line(0, 0, bigX, bigY¥); /* Draw white line from(0, 0) to

(bigX, bigy) */

setcolor (BLUE); /* Change color to blue */
line(bigX, 0, 0, bigY); /* Draw blue line from (bigX, 0) to (0, bigY¥) */

3.6 ¢ Introduction to Computer Graphics (Optional) 149

FIG U R E 3 .28 - Full screen window - press a key to close

Window drawn by

lines.c

the two calls to function line draw a pair of intersecting lines in this window.
Method setcolor changes the drawing color from white (the default color) to blue
for the second line. Then, the statements

getch(); /* pause until user presses a key */
closegraph(); /* close the window */

call the getch function (also part of graphics.h) to pause the program until the
user presses a key. Once a key is pressed, or the user clicks on the close icon on the
top right , the closegraph function closes the window. Finally, the statement
beginning with printf displays the window size in the console window as normal
text output.

Program Style Camelback Notation

In the optional graphics sections, we use CamelBack notation for variable names
rather than the usual C naming convention. This means that we will capitalize the
start of each new word in a variable name rather than use the underscore symbol
between words. For example, bigx instead of big_x and myLastName instead of
my last name.

150 Chapter 3 e Top-Down Design with Functions

background color

The default color for all
of the pixels in a display
window

foreground color
The new color of
pixels that are part of
a graphics object in a
display window

Background Color and Foreground Color

In graphics mode, the computer displays all pixels continuously in one of 16
colors. The default color used to display a pixel is called the background color.
Consequently, your initial display window appears empty because all its pixels are
displayed in the background color. When you draw a line or a shape, the pixels it
contains stand out because they are changed to the foreground color.

Black and white are the default values for the background and foreground
colors, respectively. The statements

setbkcolor (GREEN); /* GREEN is the background color. */
setcolor (RED); /* RED is the foreground color. */

reset the background color to ereen and the foreground color to rep where GREEN
and Rep are color constants defined in graphics.h. You select a color constant from
the list shown in Table 3.2, using either the constant name or its numeric value as a
parameter (for example, rep or 4). Once you change the foreground or background
color, it retains its new value until you change it again.

Drawing Rectangles
We use function rectangle to draw a rectangle in a window. The statement
rectangle(xl, yl, x2, y2);

draws a rectangle that has one diagonal with end points (x1, y1) and (x2, y2).

EXAMPLE 3.7

The program in Fig. 3.29 draws a house (Fig. 3.30). The program begins by
defining the corner points of the house, where the roof is a pair of lines intersecting

TABLE 3.2 Color Constants

Constant Value Constant Value
BLACK 0 DARKGRAY 8
BLUE 1 LIGHTBLUE 9
GREEN 2 LIGHTGREEN 10
CYAN 3 LIGHTCYAN 11
RED 4 LIGHTRED 12
MAGENTA 5 LIGHTMAGENTA 13
BROWN 6 YELLOW 14
LIGHTGRAY 7 WHITE 15

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

O O S =

3.6 ¢ Introduction to Computer Graphics (Optional)

FIGURE 3.29 Drawing a house

151

/* Draws a house */

#include <graphics.h>

int

main(void)

{

initwindow (640, 500,
"House - press a key to close", 100, 50);

/* Define corners of house */
int x1 = 100; int yl = 200; /* top-left corner */
int %2 = 300; int y2 = 100; /* roof peak */
int x3 = 500; int y3 = 200; /* top-right corner */
int x4 = 500; int y4 = 400; /* bottom-right corner */
int x5 = 325; int y5 = 400; /* bottom-right corner of door */
int x6 = 275; int y6 = 325; /* top-left corner of door */
/* Draw roof. */
line(xl, yl, x2, y2); /* Draw line from (x1, yl) to (x2, y2) */
line(x2, y2, x3, y3); /* Draw line from (x2, y2) to (x3, y3) */
/* Draw rest of house. */
rectangle(xl, yl, x4, v4);
/* Draw door. */
rectangle (x5, y5, x6, y6);
getch(); /* pause until user presses a key */
closegraph(); /* close the window */
return(0);

}

at point (x2, y2). The first call to rectangle draws the rest of the house, and
the second call to rectangle draws the door. We drew the house in a window of
size 640 X 500, with the top-left corner of the window at point (100, 50) of the

screen.

152 Chapter 3 e Top-Down Design with Functions

FIGURE 3.30

House drawn by
house.c

M House - press a key to close

Drawing Circles, Ellipses, and Arcs
We use function circle to draw a circle. The function call statement
circle(x, y, radius);

draws a circle whose center is at (x, y). The third parameter is the circle radius.
Function arc draws an arc, or part of a circle. To draw an arc, you must specify
its starting angle and ending angle in degrees. The statement

arc(x, y, 0, 180, radius);

draws the top half a circle with center at (x, y). If you imagine a clock on the
screen, 0 degrees is at 3 o’clock (horizontal direction), 30 degrees is at 2 o’clock,
60 degrees is at 1 o’clock, 90 degrees is at 12 o’clock (vertical direction), and so on.
Function ellipse draws an ellipse or a portion of an ellipse: the third argu-
ment is the start angle, the fourth argument is the end angle, the fifth argument is
the horizontal radius, and the sixth argument is the vertical radius. The statement

ellipse(x, y, 0, 360, radius, 2 * radius);

draws a complete ellipse that is twice as high as it is wide.

3.6 ¢ Introduction to Computer Graphics (Optional) 153

EXAMPLE 3.8

W W W W INNMNNNDNNNMNNNSDQQ@Q @@ @D @ 2 -
WNS SOOI NOURWNSCOLINDIIPWNZD®

ORI

The program in Fig. 3.31 draws a happy face (Fig. 3.32). It begins by completing
an outer circle (radius headrRadius), then it draws three smaller circles (radius
eyeNoseRadius) representing the eyes and nose. Finally, it draws the smile as an

FIGURE 3.31 Program to draw a happy face

/* Draws a happy face */

#include <graphics.h>

int

main(void)

{
int midX, midy, /* coordinates of center point */

leftEyeX, rightEyeX, eyeY, /* eye center points */
noseX, noseyY, /* nose center point */
headRadius, /* head radius */
eyeNoseRadius, /* eye/nose radius */
smileRadius, /* smile radius */
stepX, stepY; /* x and y increments */

initwindow (500, 400,

"Happy Face - press key to close", 200, 150);

/* draw head */

midX = getmaxx() / 2; /* center head in x-direction */
midY = getmaxy() / 2; /* center head in y-direction */
headRadius = getmaxy() / 4; /* head will fill half the window */

circle(midX, midY, headRadius); /* draw head */

/* draw eyes */

stepX = headRadius / 4; /* x-offset for eyes */

stepY = stepX; /* y-offset for eyes and nose */
leftEyeX = midX - stepX; /* x-coordinate for right eye */
eyeY = midY - stepY; /* y-coordinate for both eyes */
eyeNoseRadius = headRadius / 10;

circle(leftEyeX, eyeY, eyeNoseRadius); /* draw left eye. */
circle(rightEyeX, eyeY, eyeNoseRadius); /* draw right eye. */

(continued)

154 Chapter 3 e Top-Down Design with Functions

FIGURE 3.31 (continued)

34. /* draw nose */

35. noseX = midX; /* nose is centered in x direction. */
36. noseY = midY + stepY;

37. circle(noseX, noseY, eyeNoseRadius);

38.

39. /* draw smile */

40. smileRadius = (int)(0.75 * headRadius + 0.5);
41. arc(midX, midy, 210, 330, smileRadius);

42.

43. getch();

44, closegraph();

45,

46. return(0);

47. 3

FIGURE 3.32

B Happy Face - press key to close

Happy face drawn
by happyFace.c

3.6 ¢ Introduction to Computer Graphics (Optional) 155

arc from 210 degrees (8 o’clock) to 330 degrees (4 o’clock). The arc has the same
center as the outer circle, but its radius is 75 percent as large:

smileRadius = int(0.75 * headRadius + 0.5);
/* 3/4 of head radius */
arc(midX, midy, 210, 330, smileRadius);

Note that this program uses functions getmaxx and getmaxy to determine the width
and height of the drawing window, instead of getmaxwidth and getmaxheight
which return the screen width and height. The statements

midX = getmaxx() / 2; /* center head in x-direction */
midY = getmaxy() / 2; /* center head in y-direction */

use these functions to find the coordinates of the center of the window.

Program Style Writing General Graphics Programs

The program in Fig. 3.31 is general and bases the happy face position and dimen-
sions on the window dimensions as determined by getmaxx and getmaxy. If
you change the window dimensions, the happy face will expand or shrink to fit.
Conversely, the size of the house drawn by the program in Fig. 3.29 is fixed and is
independent of the window size. If the window is too small, part of the house may
be missing. It is generally easier to draw figures with fixed dimensions; however,
with a little practice you should be able to draw general graphics figures. To gener-
alize the program in Fig. 3.29, you could base the coordinates of the house corners
on the window dimensions as follows (see Self-Check Exercise 4).

x1 = getmaxx() / 4; yl = getmaxy() / 2; /* top-left corner */
x2 getmaxx() / 2; y2 getmaxy() / 4; /* roof peak */

Drawing Filled Figures So far, all our graphics figures have been line drawings.
To fill in sections of the screen using different colors and patterns, you would
use function setfillstyle to specify the pattern and color. The function call
statement

setfillstyle(SLASH_FILL, RED);

sets the fill pattern to red slashes until you change it through another call to
setfillstyle. Table 3.3 shows the options for the first parameter in a call to
setfillstyle. Use either the constant name or its value (for example, SLASH_FILL
or 4) and any color constant in Table 3.2 as the second parameter.

Use function £lood£ill to actually fill in a portion of a diagram. The function
call statement

floodfill(x, y, WHITE);

156 Chapter 3 e Top-Down Design with Functions

TABLE 3.3 Fill Pattern Constants

Constant Value Fill Pattern Constant Value Fill Pattern
EMPTY_ FILL 0 Background color LTBKSLASH_FILL 6 \ \\ (light)
SOLID_FILL 1 Solid color HATCH_FILL 7 Hatch (light)
LINE_FILL 2 --- XHATCH_FILL 8 Crosshatch
LTSLASH_FILL 3 / 1/ (light) INTERLEAVE_FILL 9 Interleaving line
SLASH_FILL 4 /11 (heavy) WIDE DOT_FILL 10 Dots (light)
BKSLASH_FILL 5 \\\ (heavy) CLOSE_DOT_FILL 11 Dots (heavy)

fills with the current fill pattern an area on the screen that contains the point (x, y)
and is bounded by white lines. If the point (x, y) is outside an area bounded by
white lines, the exterior of the bounded figure is filled.

The floodfill function sometimes gives unexpected results and is a bit ineffi-
cient. As an alternative to drawing a rectangle and then filling it, function bar draws
a filled rectangle. The function call statement

setfillstyle(SOLID FILL, GREEN);
bar(xl, yl, x2, y2);

draws a green rectangle that has a diagonal with end points (x1, y1) and (x2, y2).

EXAMPLE 3.9 We can insert the following program fragment at the end of the program in
Fig. 3.29 to paint the house (Fig. 3.33).

/* Paint the house
Setfillstyle(HATCH_FILL, LIGHTGRAY) ;

floodfill(x2, y2 + 10, WHITE); /* Paint the roof */
setfillstyle(LINE_FILL, WHITE) ;
floodfill(x2, yl + 10, WHITE); /* Paint the house front */

In the two calls to flood£ill, we use x2, the midpoint in the X-direction, as the
first parameter. The second parameter (the Y-coordinate) determines which section
(roof or house front) to fill in. All boundary lines for the house are white (the default
foreground color), so the third parameter is warte. The roof is painted in a gray
hatch pattern, the house itself is painted in a white lined pattern.

The call to function bar below paints the door blue. It replaces the earlier call to func-
tion rectangle with the same arguments. Figure 3.34 shows the complete program.

setfillstyle(SOLID FILL, BLUE);
bar (x5, y5, x6, y6); /* Draw blue door */

FIGURE 3.33

Painted house
drawn by
paintedHouse.c

11.
12.
13.
14.
15.

0N e a9

3.6 ¢ Introduction to Computer Graphics (Optional)

M Painted house - press a key to close

FIGURE 3.34 Program to paint a house

157

/* Paints a house */
#include <graphics.h>

int

main(void)

{
/* Define corners
int x1 = 100; int
int x2 = 300; int
int x3 = 500; int
int x4 = 500; int
int x5 = 325; int
int x6 = 275; int

of
yl
y2
y3
y4
y5
y6

house */

= 200; /*
= 100; /*
= 200; /*
= 400; /*

top-left corner */
roof peak */
top-right corner */
bottom-right corner

= 400; /* bottom-right corner of door

= 325; /* top-left corner of door

*/
*/
*/

(continued)

158 Chapter 3 e Top-Down Design with Functions

FIGURE 3.34 (continued)

16. initwindow(640, 500,

17. "Painted house - press a key to close", 100, 50);
18.

19. /* Draw roof */

20. line(x1l, yl, x2, y2);

21. line(x2, y2, x3, y3);

22.

23. /* Draw rest of house */

24, rectangle(xl, yl, x4, y4);

25.

26. /* Paint the house */

27. setfillstyle(HATCH FILL, LIGHTGRAY);

28. floodfill(x2, y2 + 10, WHITE); /* Paint the roof */
29. setfillstyle(LINE FILL, WHITE);

30. floodfill(x2, yl + 10, WHITE); /* Paint the house */
31.

32. setfillstyle(SOLID FILL, BLUE);

33. bar (x5, y5, x6, y6); /* Draw blue door */

34.

35. getch();

36. closegraph();

37.

38. return(0);

39. 3

Program Pitfall Incorrect Order of Function Calls Draws Over
Earlier Results

The order of statement execution is critical in all programs, but an incorrect order can
cause strange results in graphics program. If you call function bar to paint the door
blue before calling £1ood£ill to paint the house front, f£lood£ill will change the
color of the pixels in the door to white, and it will not appear in the window.

Pie Slices and Filled Ellipses

Function pieslice draws a filled pie slice (section of a circle) and £illellipse
draws a filled ellipse or circle. Insert the statement below at the end of Fig. 3.31 to
change the happy face smile to a frown (replaces the original call to function arc).

FIGURE 3.35

Pirate drawn by
pirate.c

3.6 ¢ Introduction to Computer Graphics (Optional) 159

The last statement below calls pieslice to draw an eyepatch over the pirate’s right
eye (Fig. 3.35).

arc(midX, midY + headRadius, 65, 115, smileRadius / 2);
/* Draw frown */
Setfillstyle(CLOSE_DOT_FILL, WHITE) ;
pieslice(midX, midY, 10, 60, smileRadius);
/* Draw eye patch */

The eye patch is a pie slice with radius smileRadius centered at point (midx,
midy). The pie slice goes from 10 degrees to 60 degrees. The final program is
shown in Fig. 3.36.

You can use the pieslice and bar functions to draw pie charts and bar graphs
(see Programming Projects 16 and 17 at the end of the chapter). We describe how
to display the message shown under the happy face next.

Il Pirate - press key to close

PIRATE WITH AN EYE PATCH

160

O R

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
S8
34.
S5t
36.
37.
38.
39.
40.
41.

Chapter 3 e Top-Down Design with Functions

FIGURE 3.36 Program to draw a pirate

/* Draws a pirate */

#include <graphics.h>

int

main(void)

{
int midX, midy; /* coordinates of center point */
int leftEyeX, rightEyeX, eyeY; /* eye center points */
int noseX, noseY; /* nose center point */
int headRadius; /* head radius */
int eyeNoseRadius; /* eye/nose radius */
int smileRadius; /* smile radius */
int stepX, stepY; /* x and y increments */
initwindow (500, 400,

"Pirate - press key to close", 200, 150);

/* Draw head. */
midX = getmaxx() / 2; /* center head in x-direction. */
midY = getmaxy() / 2; /* center head in y-direction. */
headRadius = getmaxy() / 4;
circle (midX, midY, headRadius); /* draw head. */
/* Draw eyes. */
stepX = headRadius / 4; /* x-offset for eyes */
stepY = stepX; /* y-offset for eyes and nose */
leftEyeX = midX - stepX; /* x-coordinate for left eye */
rightEyeX = midX + stepX; /* x-coordinate for right eye */
eyeY = midY - stepY; /* y-coordinate for both eyes */
eyeNoseRadius = headRadius / 10;
circle(leftEyeX, eyeY, eyeNoseRadius); /* draw left eye. */
circle(rightEyeX, eyeY, eyeNoseRadius); /* draw right eye. */
/* Draw nose. */
noseX = midX; /* nose is centered in x direction.
noseY = midY + stepY;
circle(noseX, noseY, eyeNoseRadius);
/* Draw smile -- use 3/4 of head radius. */
smileRadius = (int)(0.75 * headRadius + 0.5);

*/

3.6 ¢ Introduction to Computer Graphics (Optional) 161

FIGURE 3.36 (continued)

42, /* Draw frown */

43. arc(midX, midY + headRadius, 65, 115, smileRadius / 2);
44,

45, setfillstyle(CLOSE _DOT FILL, WHITE);

46. pieslice(midX, midy, 10, 60, smileRadius); /* Draw eye patch */
47.

48. outtextxy(getmaxx() / 3, getmaxy() - 20,

49, "PIRATE WITH AN EYE PATCH");

50.

51. getch();

52. closegraph();

53.

54, return(0);

55. }

Adding Text to Drawings

In graphics mode, you cannot use printf to display characters, but you must
instead draw characters just as you draw other shapes. Fortunately, the graphics
library provides a function that does this. The function call statement

outtextxy(getmaxx() / 3, getmaxy() - 20,
"PIRATE WITH AN EYE PATCH");

draws each character in a string (its third parameter) starting at the pixel whose X-Y
coordinates are specified by its first two parameters (see Fig. 3.35). You may see a
warning message associated with outtextxy during program compilation, but you
can ignore it.

Table 3.4 shows the functions in the graphics library. With the exception of
label (in init) and textString (in outtextxy), all arguments are type int. We
will pass string “literals” as arguments corresponding to label and textString.

TABLE 3.4 Functions in Graphics Library

Function Effect

arc(x, y, stAng, endAng, r) draws an arc from angle stAng to endAng with center at (x, y)
and radius r

bar(x1l, yl, x2, y2) draws a filled rectangle with a diagonal through points (x1, y1)

and (x2, y2)

(continued)

162

Function

Chapter 3 e Top-Down Design with Functions

Effect

circle(x, y, r)
closegraph()

ellipse(x, Yy,
xRad, yRad)

stAng, endAng,

fillellipse(x, y, xRad, yRad)

floodfill(x, y, border)

getch()
getmaxheight ()
getmaxwidth ()

getmaxx ()

draws a circle with center at (x, y) and radius r
closes graphics mode

Draws an ellipse with center at (x, y) from stAng to endAng with
xRad as horizontal radius and yRad as vertical radius

Draws a filled ellipse with center at (x, y) with xRad as horizontal
radius and yRad as vertical radius

fills with the current fill pattern the figure containing the point (x, y)
and bounded by lines with color border

pauses the program until the user enters a character
returns the position of the last pixel in the y-direction in the screen
returns the position of the last pixel in the x-direction in the screen

returns the window width in pixels

getmaxy () returns the window height in pixels
initgraph(x, y, label) displays a window x pixels wide and y pixels high with the given Label
and top-left corner at (0, 0)
initgraph(x, y, label, x0, yO0) displays a window x pixels wide and y pixels high with the given 1abel
and top-left corner at (x0, yO0)
line(x1l, yl, x2, y2) draws a line with end points (x1, y1l) and (x2, y2)
outtextxy(x, y, textString) draws the characters for textString starting at point (x, y)
pieslice(x, y, stAng, endAng, r) draws a filled pie slice with center at (x, y) from angle stAng to
endAng with radius r
rectangle(xl, yl, x2, y2) draws a rectangle with a diagonal through points (x1, y1) and
(x2, y2)
setbkcolor (backColor) sets the background color to backColor
setcolor (foreColor) sets the foreground color to foreColor
setfillstyle(filPat, filcCol) sets the fill pattern to £i1Pat and the fill color to £i1Col
Self-Check
1. In Fig. 3.36, what is the reason for basing the head radius on getmaxy and not
getmaxx?
2. Describe or show the drawing produced by the following fragment. Assume a
640 X 480 window.
circle(200, 50, 25);
line (200, 75, 100, 100);

3.7 ¢« Common Programming Errors 163

line(200, 75, 300, 100);
pieslice(200, 75, 245, 295, 100);
line(200, 150, 100, 250);
line(200, 150, 300, 250);

bar (50, 250, 350, 300)

3. Write statements to add two windows to the second floor of the house in
Fig. 3.30.

4. Modify the program in Fig. 3.34 so that it draws the house in the center of
the screen and with the same relative size regardless of the actual palette
dimensions.

Programming

1. Write the statements to draw a tennis racket in the appropriate place in the
figure for Self-Check Exercise 2. At the end of a thin bar, draw a circle and fill
it with a green crosshatch pattern.

2. Write a graphics program that draws a rocket ship consisting of a triangle (the
cone) on top of a rectangle (the body). Draw a pair of intersecting lines under
the rectangle. Fill the cone with a blue hatch pattern and the body with a red
solid pattern.

3. Write a program that draws a pair of nested rectangles at the center of the
screen, filling the inner rectangle in red and the outer rectangle in white. The
outer rectangle should have a width 1/4 of the X-dimension and a height 1/4
of the Y-dimension of the screen. The height and width of the inner rectangle
should be half that of the outer rectangle.

4. Write a program that draws a male and a female stick figure side-by-side.

3.7 Common Programming Errors

Remember to use a #include preprocessor directive for every standard library from
which you are using functions. Place prototypes for your own function subprograms
in the source file preceding the main function; place the actual function definitions
after the main function.

Syntax or run-time errors may occur when you use functions. The acronym
not summarizes the requirements for argument list correspondence. Provide the
required number of arguments and make sure the order of arguments is correct.
Make sure that each function argument is the correct type or that conversion to the
correct type will lose no information. For user-defined functions, verify that each
argument list is correct by comparing it to the formal parameter list in the function
heading or prototype.

Also, be careful in using functions that are undefined on some range of values.
For example, if the argument for function sqrt, log, or 1ogl0 is negative, a run-
time error will occur.

164

Chapter 3 e Top-Down Design with Functions

Chapter Review

1.

=

Develop your program solutions from existing information. Use the system
documentation derived from applying the software development method as
the initial framework for the program.

Edit the data requirements to obtain the main function declarations.
Use the refined algorithm as the starting point for the executable state-
ments in the main function.

If a new problem is an extension of a previous one, modify the previous pro-
gram rather than starting from scratch.

Use C’s library functions to simplify mathematical computations through the
reuse of code that has already been written and tested. Write a function call
(consisting of the function name and arguments) to activate a library func-
tion. After the function executes, the function result is substituted for the
function call.

Use a structure chart to show subordinate relationships between subproblems.
Utilize modular programming by writing separate function subprograms to
implement the different subproblems in a structure chart. Ideally, your main
function will consist of a sequence of function call statements that activate the
function subprograms.

You can write functions without arguments and results to display a list of
instructions to a program user or to draw a diagram on the screen. Use a func-
tion call consisting of the function name followed by an empty pair of paren-
theses () to activate such a function.

Write functions that have input arguments and that return a single result to
perform computations similar to those performed by library functions. When
you call such a function, each actual argument value is assigned to its corre-
sponding formal parameter.

Place prototypes (similar to function headings) for each function subpro-
gram before the main function, and place the function definitions after the
main function in a source file. Use (void) to indicate that a function has
no parameters.

NEW C CONSTRUCTS

Construct Effect

Function Prototype (void function without arguments)

void star_line(void); Describes star_1line as a function with no result

and no arguments

(continued)

Quick-Check Exercises 165

NEW C CONSTRUCTS (continued)

Construct Effect

Function Prototype (function with arguments and a result)

double ave(int n, double x); Describes ave as a function with a type double
result and two arguments, one type int and one
type double

Function Call Statement (void function without arguments)

star_line(); Calls function star_1line and causes it to begin
execution

Function Call (function with arguments and a result)

money = ave(num_kids, funds); Calls function ave to compute a result that is

stored in money

Function Definition (void function without arguments)

void Defines star_1line as a function that prints a

star_line(void) vertical line of four asterisks

{

printf("*\n*\n*\n*\n");

}

Function Definition (function with arguments and a result)

/* Defines ave as a function that returns the result of
* Returns the ave of dividing its second argument by its first argument
* its 2 arguments.

* Pre : x and n are

* defined, x >= 0,
* n > 0.

* Post: result is x / n
*/

double

ave(int n, double x);

{

return (x / n);

}

Quick-Check Exercises

1. Developing a program from its documentation means that every statement in
the program has a comment. True or false?

2. The principle of code reuse states that every function in your program must be
used more than once. True or false?

166

Chapter 3 e Top-Down Design with Functions

3.

“

© >

10.

11.

Write this equation as a C statement using functions exp, log, and pow:

y = <en In h)2

What is the purpose of a function argument?

Each function is executed in the order in which it is defined in the source file.
True or false?

How is a function in a C program executed?

What is a formal parameter?

Explain how a structure chart differs from an algorithm.

What does the following function do?

void

nonsense (void)

{
printf("**x*x\n");
printf("* *\n");
printf("**x**\n");

}

What does the following main function do?

int

main(void)

{
nonsense();
nonsense();
nonsense();
return (0);

}

If an actual argument of -35.7 is passed to a type int formal parameter, what
will happen? If an actual argument of 17 is passed to a type double formal
parameter, what will happen?

Answers to Quick-Check Exercises

GUk Lo

Sk

False

False

y = pow(exp(n * log(b)), 2);

A function argument is used to pass information into a function.

False

It is called into execution by a function call, that is, the function name fol-
lowed by its arguments in parentheses.

A formal parameter is used in a function definition to represent a correspond-
ing actual argument.

10.
11.

Programming Projects 167

A structure chart shows the subordinate relationships between subproblems;
an algorithm lists the sequence in which subproblem solutions are carried out.
It displays a rectangle of asterisks.

It displays three rectangles of asterisks on top of each other.

The formal parameter’s value will be -35. The formal parameter’s value will
be 17.0.

Review Questions

Lo =

*®

Define top-down design and structure charts.

What is a function prototype?

When is a function executed, and where should a function prototype and func-
tion definition appear in a source program?

What are three advantages of using functions?

Is the use of functions a more efficient use of the programmer’s time or the
computer’s time? Explain your answer.

Write a program that prompts the user for the two legs of a right triangle and
makes use of the pow and sqrt functions and the Pythagorean theorem to
compute the length of the hypotenuse.

Write a program that draws a rectangle made of a double border of asterisks.
Use two functions: draw_sides and draw line.

Draw a structure chart for the program described in Review Question 7.

Write the prototype for a function called script that has three input parameters.
The first parameter will be the number of spaces to display at the beginning of a
line. The second parameter will be the character to display after the spaces, and
the third parameter will be the number of times to display the second parameter
on the same line.

Programming Projects

1.

You have saved $500 to use as a down payment on a car. Before beginning
your car shopping, you decide to write a program to help you figure out what
your monthly payment will be, given the car’s purchase price, the monthly
interest rate, and the time period over which you will pay back the loan. The
formula for calculating your payment is
. iP
payment -1+

where

P = principal (the amount ?/ou borrow)

i = monthly interest rate (15 of the annual rate)

n = total number of payments

168

Chapter 3 e Top-Down Design with Functions

Your program should prompt the user for the purchase price, the down pay-
ment, the annual interest rate and the total number of payments (usually 36,
48, or 60). It should then display the amount borrowed and the monthly pay-
ment including a dollar sign and two decimal places.

Write two functions, one that displays a triangle and one that displays a rectangle.
Use these functions to write a complete C program from the following outline:
int

main(void)

{
/* Draw triangle. */
/* Draw rectangle. */
/* Display 2 blank lines. */
/* Draw triangle. */
/* Draw rectangle. */
}

Add the functions from Fig. 3.14 to the ones for Programming Project 2. Use
these functions in a program that draws a rocket ship (triangle over rectangles
over intersecting lines), a male stick figure (circle over rectangle over intersect-
ing lines), and a female stick figure (circle over triangle over intersecting lines)
standing on the head of a male stick figure. Write function skip_5_lines and
call it to place five blank lines between drawings.

For any integer n >0, n! is defined as the productn Xn —1Xn - 2 ... X2X1.0!
is defined to be 1. It is sometimes useful to have a closed-form definition instead;
for this purpose, an approximation can be used. R.W. Gosper proposed the fol-
lowing such approximation formula:

n! = n"e ", /| 2n + 1 o
3

Create a program that prompts the user to enter an integer n, uses Gosper’s
formula to approximate n!, and then displays the result. The message display-
ing the result should look something like this:

5! equals approximately 119.97003

Your program will be easier to debug if you use some intermediate values
instead of trying to compute the result in a single expression. If you are not
getting the correct results, then you can compare the results of your inter-
mediate values to what you get when you do the calculations by hand. Use at
least two intermediate variables—one for 2n + § and one for V(2n +).
Display each of these intermediate values to simplify debugging. Be sure to
use a named constant for PI, and use the approximation 3.14159265. Test the
program on nonnegative integers less than 8.

Write a program that takes a positive number with a fractional part and rounds
it to two decimal places. For example, 32.4851 would round to 32.49, and

Programming Projects 169

32.4431 would round to 32.44. (Hint: See “Rounding a number” in Table 2.12
and function scale in Fig. 3.23.)

Four track stars have entered the mile race at the Penn Relays. Write a pro-
gram that scans in the race time in minutes (minutes) and seconds (seconds)
for a runner and computes and displays the speed in feet per second (£ps) and
in meters per second (mps). (Hints: There are 5,280 feet in one mile, and one
kilometer equals 3,282 feet.) Write and call a function that displays instruc-
tions to the program user. Run the program for each star’s data.

Minutes Seconds
3 52.83
3 59.83
4 00.03
4 16.22

In shopping for a new house, you must consider several factors. In this prob-
lem the initial cost of the house, the estimated annual fuel costs, and the
annual tax rate are available. Write a program that will determine the total cost
of a house after a five-year period and run the program for each of the follow-
ing sets of data.

Initial House Cost Annual Fuel Cost Tax Rate
67,000 2,300 0.025
62,000 2,500 0.025
75,000 1,850 0.020

To calculate the house cost, add the initial cost to the fuel cost for five years,
then add the taxes for five years. Taxes for one year are computed by multi-
plying the tax rate by the initial cost. Write and call a function that displays
instructions to the program user.
A cyclist coasting on a level road slows from a speed of 10 mi/hr to 2.5 mi/hr
in one minute. Write a computer program that calculates the cyclist’s constant
rate of acceleration and determines how long the cyclist will take to come to
rest, given an initial speed of 10 mi/hr. (Hin¢: Use the equation

Df - U

t

where a is acceleration, ¢ is time interval, v, is initial velocity, and vy is final
velocity.) Write and call a function that displays instructions to the program
user and a function that computes a, given ¢, v, and v,
A manufacturer wishes to determine the cost of producing an open-top cylin-
drical container. The surface area of the container is the sum of the area of the

a

170

Chapter 3 e Top-Down Design with Functions

10.

11.

12.

13.

circular base plus the area of the outside (the circumference of the base times
the height of the container). Write a program to take the radius of the base,
the height of the container, the cost per square centimeter of the material
(cost), and the number of containers to be produced (quantity). Calculate
the cost of each container and the total cost of producing all the containers.
Write and call a function that displays instructions to the user and a function
that computes surface area.

Write a program to take a depth (in kilometers) inside the earth as input data;
compute and display the temperature at this depth in degrees Celsius and
degrees Fahrenheit. The relevant formulas are

Celsius = 10 (depth) + 20 (Celsius temperature at depth in km)
Fahrenheit = 1.8 (Celsius) + 32

Include two functions in your program. Function celsius_at_depth should
compute and return the Celsius temperature at a depth measured in kilometers.
Function fahrenheit should convert a Celsius temperature to Fahrenheit.
The ratio between successive speeds of a six-speed gearbox (assuming that the
gears are evenly spaced to allow for whole teeth) is

/M /m

where M is the maximum speed in revolutions per minute and m is the mini-
mum speed. Write a function speeds_ratio that calculates this ratio for
any maximum and minimum speeds. Write a main function that prompts for
maximum and minimum speeds (rpm), calls speeds_ratio to calculate the
ratio, and displays the results in a sentence of the form

The ratio between successive speeds of a six-speed gearbox
with maximum speed rpm and minimum speed

rpm is

Write a program that calculates the speed of sound (@) in air of a given tem-
perature T (°F). Formula to compute the speed in {t/sec:

5T + 297

247
Be sure your program does not lose the fractional part of the quotient in the
formula shown. As part of your solution, write and call a function that displays
instructions to the program user.
After studying the population growth of Gotham City in the last decade of the
20th century, we have modeled Gotham’s population function as

P(t) = 52.966 + 2.184¢

= 1086

where ¢ is years after 1990, and P is population in thousands. Thus, P(0) rep-
resents the population in 1990, which was 52.966 thousand people. Write a

Programming Projects 171

program that defines a function named population that predicts Gotham’s
population in the year provided as an input argument. Write a program that
calls the function and interacts with the user as follows:

Enter a year after 1990> 2015

Predicted Gotham City population for 2010 (in thousands):
107.566

Graphics Projects

14.

15.

16.

17.

18.

Use graphics functions in programs that draw a rocket ship (triangle over
rectangle over intersecting lines), a male stick figure (circle over rectangle
over intersecting lines), and a female stick figure standing on the head of a
male stick figure.

Write a graphics program that draws your first and last initials as block letters
in different colors. Write separate functions that draw each letter. The posi-
tion of each letter and its color should be function arguments.

Read in five values that represent the monthly amount spent on budget catego-
ries: food, clothing, transportation, entertainment, and rent. Write a program
that displays a bar graph showing these values. In a bar graph, the height of each
bar is proportional to the value it represents. Use a different color for each bar.
(Hint: Multiply each value by the scale factor getmaxy () /maxExpense, where
maxExpense is the largest possible expense.)

Redo Programming Project 16 using a pie chart. For the pie chart, the arc
length of each section should be proportional to the amount it represents. Use
a different fill pattern and color for each section.

Redo Programming Project 16 drawing a line graph. The first line should
begin at the height representing the first budget category value and end at the
height representing the second budget category value; the second line should
begin at the height representing the second budget category value and end at
the height representing the third budget category value; and so on.

This page intentionally left blank

Selection Structures:

CHAPTER

if and switch
Statements

CHAPTER OBJECTIVES

To become familiar with the three kinds of control
structures: sequence, selection, and repetition

To understand compound statements
To learn how to compare numbers and characters

To learn how to use the relational, equality, and logical
operators to write expressions that are true or false

To learn how to write selection statements that choose
between two alternatives in a program using the it
statement

To learn how to implement decisions in algorithms using
the it statement

To understand how to select among more than two
alternatives by nesting it statements

To learn how to use the switch statement as another
technique for selecting among multiple alternatives

4.1

control structure

a combination of
individual instructions
into a single logical unit
with one entry point
and one exit point

compound statement
a group of statements
bracketed by { and

} that are executed
sequentially

selection control
structure a control
structure that chooses
among alternative
program statements

This chapter begins your study of statements that control the flow of program
execution. You will learn to use if and switch statements to select one statement
group to execute from many alternatives. First, the chapter discusses conditions and
logical expressions because the if statement relies on them.

The case studies in this chapter emphasize reusing solutions to prior problems
to speed up the problem-solving process. You will also learn how to trace an algo-
rithm or program to verify that it does what you expect.

Control Structures

Control structures control the flow of execution in a program or function. The C
control structures enable you to combine individual instructions into a single logical
unit with one entry point and one exit point.

Instructions are organized into three kinds of control structures to control
execution flow: sequence, selection, and repetition. Until now we have been using
only sequential flow. A compound statement, written as a group of statements
bracketed by { and }, is used to specify sequential flow.

statement ;
statement,;

statement,;

}

Control flows from statement, to statement,, and so on. You have been using
compound statements all along—a function body consists of a single compound
statement.

This chapter describes the C control structures for selection, and Chapter 5
covers the control structures for repetition. Some problem solutions require steps
with two or more alternative courses of action. A selection control structure
chooses which alternative to execute.

4.2 * Conditions 175

4.2 Conditions

condition an
expression that is

either false (represented
by 0) or true (usually
represented by 1)

A program chooses among alternative statements by testing the value of key vari-
ables. For example, one indicator of the health of a person’s heart is the resting
heart rate. Generally a resting rate of 75 beats per minute or less indicates a healthy
heart, but a resting heart rate over 75 indicates a potential problem. A program that
gets a person’s resting heart rate as data should compare that value to 75 and display
a warning message if the rate is over 75.

If rest_heart_rate is a type int variable, the expression

rest_heart rate > 75

performs the necessary comparison and evaluates to 1 (true) when rest_heart_
rate is over 75; the expression evaluates to 0 (false) if rest_heart_rate is not
greater than 75. Such an expression is called a condition because it establishes a
criterion for either executing or skipping a group of statements.

Relational and Equality Operators

Most conditions that we use to perform comparisons will have one of these forms:

variable relational-operator variable
variable relational-operator constant
variable equality-operator variable
variable equality-operator constant

Table 4.1 lists the relational and equality operators.

TABLE 4.1 Relational and Equality Operators

Operator Meaning Type

< less than relational
> greater than relational
<= less than or equal to relational
>= greater than or equal to relational
== equal to equality

1= not equal to equality

176 Chapter 4 o Selection Structures: If and Switch Statements

EXAMPLE 4.1

logical expression

an expression that uses
one or more of the
logical operators &&
(and), | | (or), ! (not)

Table 4.2 shows some sample conditions in C. Each condition is evaluated assuming
these variable and constant macro values:

X power MAX_POW y item MIN_ITEM mom_or_dad num SENTINEL

BEE e B B B

TABLE 4.2 Sample Conditions

Operator Condition English Meaning Value

<= X <=0 x less than or equal to 0 1 (true)
< power < MAX POW power less than MAX_POW 0 (false)
>= X >=y x greater than or equal to y 0 (false)
> item > MIN_ITEM item greater than MIN_ITEM 1 (true)
== mom_or_dad == 'M' mom_or_dad equal to 'M' 1 (true)
1= num != SENTINEL num not equal to SENTINEL 0 (false)

Logical Operators

With the three logical operators—ss (and), || (or), ! (not)—we can form more
complicated conditions or logical expressions. Examples of logical expressions
formed with these operators are

salary < MIN SALARY || dependents > 5
temperature > 90.0 && humidity > 0.90
n>0 && n <= 100
0 <=n && n <= 100

The first logical expression determines whether an employee is eligible for special
scholarship funds. It evaluates to 1 (true) if either the condition

salary < MIN_SALARY
or the condition
dependents > 5

is true. The second logical expression describes an unbearable summer day, with
temperature and humidity both in the nineties. The expression evaluates to true
only when both conditions are true. The last two expressions are equivalent and
evaluate to true if n lies between 0 and 100 inclusive.

logical complement
(negation) the
complement of a
condition has the value
1 (true) when the
condition’s value is 0
(false); the complement
of a condition has the
value 0 (false) when
the condition’s value is
nonzero (true)

4.2 * Conditions 177

The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation, of its operand (that is, if the variable positive is
nonzero (true), !positive is 0 (false) and vice versa). The logical expression

(0 <= n && n <= 100)

is the complement of the last expression in the list above. It evaluates to 1 (true)
when n does not lie between 0 and 100 inclusive.

Table 4.3 shows that the && operator (and) yields a true result only when
both its operands are true. Table 4.4 shows that the || operator (or) yields a
false result only when both its operands are false. Table 4.5 shows the !
operator (not).

Tables 4.3 through 4.5 show that the result is always 0 or 1 when C evaluates a
logical expression. However, C accepts any nonzero value as a representation of true.
For now, we will always use the integer 1 when we need the value true, but knowing
how C really views logical expressions will help you understand why some common
mistakes that you may make will not be seen by the C compiler as syntax errors.

TABLE 4.3 The && Operator (and)

operand1 operand2 operand1 && operand2

nonzero (true) nonzero (true) 1 (true)

nonzero (true) 0 (false) 0 (false)
0 (false) nonzero (true) 0 (false)
0 (false) 0 (false) 0 (false)

TABLE 4.4 The || Operator (or)

operand1 operand?2 operand1 | | operand2
nonzero (true) nonzero (true) 1 (true)
nonzero (true) 0 (false) 1 (true)
0 (false) nonzero (true) 1 (true)
0 (false) 0 (false) 0 (false)

TABLE 4.5 The ! Operator (not)

operand1 loperand1

nonzero (true)
0 (false)

0 (false)
1 (true)

178 Chapter 4 o Selection Structures: If and Switch Statements

unary operator an
operator that has one
operand

Operator Precedence

An operator’s precedence determines its order of evaluation. Table 4.6 lists the
precedence of all C operators so far, from highest to lowest.

The table shows that function calls are evaluated first. The unary operators, !
(not), + (plus sign), - (minus sign), and & (address of), which have a single operand,
are evaluated second. Next come all the binary operators in the sequence: arithme-
tic, relational, equality, and logical (s& and then | |). The assignment operator (=) is
evaluated last. Notice that the precedence of operators + and - depends on whether
they have one operand or two. In the expression

-X -y * z

the unary minus is evaluated first (-x), then *, and then the second -.
You can use parentheses to change the order of operator evaluation. In the
expression

(x <y || x<wz) && x >0.0

C evaluates II before &&.

If you remove the parentheses from the expression, C would evaluate && before
| |, thereby changing the meaning of the expression.

You can also use parentheses to clarify the meaning of expressions. If x, min,
and max are type double, the C compiler will interpret the expression

x + y < min + max
correctly as
(x + y) < (min + max)

because + has higher precedence than <, but the second expression is clearer.

TABLE 4.6 Operator Precedence

Operator Precedence

function calls highest
! + - & (unary operators)

* /%

N 7
= lowest

4.2 * Conditions 179

EXAMPLE 4.2

FIGURE 4.1

Evaluation Tree
and Step-by-Step
Evaluation for
'flag ||

(y + 2 > x - 2)

Expressions 1 to 4 below contain different operands and operators. Each expres-
sion’s value is given in the corresponding comment, assuming x, y, and z are type
double, flag is type int and the variables have the values

X y z flag

3.0 4.0 2.0 0
1. !flag /* 10 is 1 (true) */
2. x+y/ z <= 3.5 /* 5.0 <= 3.5 is 0 (false) */
3. !flag || (y + 2 >= x - z) /* 1 || 1 is 1 (true) */
4. l(flag || (y + 2z >= x - z)) /* 1(0 || 1) is 0 (false) */

Figure 4.1 shows the evaluation tree and step-by-step evaluation for expression 3.

Short-Circuit Evaluation

Although Fig. 4.1 shows the evaluation of the entire logical expression, C evaluates
only part of the expression. An expression of the form @ || b must be true if a is
true. Consequently, C stops evaluating the expression when it determines that the
value of 1 flagis 1 (true).

Similarly, an expression of the form a s&& b must be false if a is false, so C
would stop evaluating such an expression if its first operand evaluates to 0. This

I flag I (y+z>=x-2) flag y z X
0 4.0 2.0 3.0
lflag || (v + =z >= X - z)
0 4.0 2.0 3.0 2.0

180 Chapter 4 o

FIGURE 4.2

Range of True
Values for
min <= x &&

X <= max

short-circuit
evaluation stopping
evaluation of a logical
expression as soon

as its value can be
determined

Selection Structures: If and Switch Statements

1

min max X

technique of stopping evaluation of a logical expression as soon as its value can be
determined is called short-circuit evaluation.

We can use short-circuit evaluation to prevent potential run-time errors. The
condition

(num % div == 0)

tests whether div is a divisor of num. For example, if num is 6 and div is 2, the
remainder is 0 so the condition is true. If num is 6 and div is 4, the remainder is 2
so the condition is false.

What if div is 0P In this case, the remainder calculation would cause a division by
zero run-time error. However, we can prevent this error by using the revised condition

(div != 0 && (num % div == 0))

The remainder would not be calculated when div is 0 because div != 0 is false.

Writing English Conditions in C

To solve programming problems, you must convert conditions expressed in English
to C. Many algorithm steps require testing to see if a variable’s value is within a
specified range of values. For example, if min represents the lower bound of a range
of values and max represents the upper bound (min is less than max), the expression

min <= x && x <= max

tests whether x lies within the range min through max, inclusive. In Fig. 4.2 this
range is shaded. The expression is 1 (true) if x lies within this range and o (false) if
x is outside the range.

EXAMPLE 4.3

Table 4.7 shows some English conditions and the corresponding C expressions.
Each expression is evaluated assuming x is 3.0, yis 4.0, and z is 2. 0.

TABLE 4.7 English Conditions as C Expressions

English Condition

Logical Expression Evaluation

x and y are greater than z

xisequaltol.0o0r 3.0

x is in the range z to y, inclusive

x is outside therange z to y

X >z && y >z 1 && 1is1 (true)
x == 1.0 || x == 3.0 0 || 1is1 (true)
z <= X && X <=y 1 && 1lis1 (true)
1(z <= X && X <=1Y) 1(1 && 1)is 0 (false)
z>x || x>y 0 || 0iso (false)

FIGURE 4.3

Range of True
Values for

zZ > X

X

>

y

4.2 ¢ Conditions 181

The first logical expression shows the C code for the English condition “x and y
are greater than z.” You may be tempted to write this as

X && y > 2 /* invalid logical expression */

However, if we apply the precedence rules to this expression, we quickly see that it
does not have the intended meaning. Also, the type double variable x is an invalid
operand for the logical operator &s.

The third logical expression shows the C code for the mathematical relationship
z =x =y. The boundary values, 2.0 and 4.0, are included in the range of x values
that yield a true result.

The last table entry shows a pair of logical expressions that are true when x is
outside the range bounded by z and y. We get the first expression in the pair by
complementing the expression just above it. The second expression states that x is
outside the range if z is larger than x or x is larger than y. In Fig. 4.3 the shaded
areas represent the values of x that yield a true result. Both y and z are excluded
from the set of values that yield a true result.

Comparing Characters

We can also compare characters in C using the relational and equality operators.
Table 4.8 shows some examples of these comparisons.

The first three lines of Table 4.8 show that the digit, characters, and letters are
ordered as expected (thatis, '0'<'1'<'2'< ... <'8'<'9' and 'a'<'b'<'c'...
<'y'<'z"). The next two lines show that the lowercase and uppercase form of

TABLE 4.8 Character Comparisons

Expression Value

9" >= Q"' 1 (true)

'a' < 'e' 1 (true)

'B' <= 'A' 0 (false)

'z == 'z' 0 (false)

'a' <= 'A' system dependent

'a' <= ch && <ch <= 'z' 1 (true) if ch is a lowercase letter

182 Chapter 4 o Selection Structures: If and Switch Statements

the same letter have different values and their order is system dependent. The
expression 'a' <= 'A' is false for ASCII (See Table 2.7). The last entry shows an
expression that is true if ch is a lowercase letter. (On some systems, this expression
also will be true for some characters that are not lowercase letters.)

Logical Assignment

The simplest form of a logical expression in C is a single type int value or variable
intended to represent the value true or false. We can use assignment statements to
set such variables to true (a nonzero value) or false (0).

EXAMPLE 4.4

Given the declarations

int age; /* input - a person's age */
char gender; /* input - a person's gender */
int senior citizen; /* logical - indicates senior status */

Assume that a value of 1 for senior_citizen indicates that the person is a senior citi-
zen (65 years old or over). You can use the assignment statement

senior citizen = 1; /* Set senior status */
to set senior_citizen to true.

A more likely scenario is to set the value of senior citizen based on the value
scanned into age:

scanf("%d", &age); /* Read the person's age */
senior_citizen = (age >= 65); /* Set senior status */

In the assignment above, the condition in parentheses evaluates first. Its
value is 1 (true) if the value scanned into age is 65 or greater. Consequently,
the value of senior_citizen is true when age satisfies the condition and false
otherwise.

The logical operators &&, ||, and ! can be applied to senior_citizen. The
expression

!senior_citizen
is 1 (true) if the value of age is less than 65. Finally, the logical expression
senior_citizen && gender == 'M’

is 1 (true) if senior citizen is 1 (true) and the character in gender is M.

4.2 * Conditions 183

EXAMPLE 4.5

The following assignment statements assign values to two type int variables,
in_range and is_letter. Variable in_range gets 1 (true) if the value of n is
between -10 and 10 excluding the endpoints; is_letter gets 1 (true) if ch is an
uppercase or a lowercase letter.

in_range = (n > -10 && n < 10);
is_letter = ('A' <= ch && ch <= 'z') ||
('a' <= ch && ch <= 'z");

The expression in the first assignment statement is true if n satisfies both the condi-
tions listed (n is greater than -10 and n is less than 10); otherwise, the expression
is false.

The expression in the second assignment statement uses the logical operators &&, | |.
The subexpression before | | is true if ch is an uppercase letter; the subexpression after
| | is true if ch is a lowercase letter. Consequently, is_letter gets 1 (true) if either
subexpression is true (that is, ch is a letter); otherwise, is_letter gets 0 (false). You
can delete the parentheses without affecting the order of operator evaluation.

EXAMPLE 4.6

The statement below assigns the value 1 (true) to even (type int) if n is an even
number:

even = (n % 2 == 0);

Because all even numbers are divisible by 2, the remainder of n divided by 2 (n & 2
in C) is 0 when n is an even number. The expression in parentheses compares the
remainder to 0, so its value is 1 (true) when the remainder is 0 and its value is 0 (false)
when the remainder is nonzero.

Complementing a Condition

You have seen how to complement a logical expression by preceding it with the
symbol . You can also complement a simple condition by just changing its operator.

EXAMPLE 4.7

Two forms of the complement of the condition

item == SENT
are
! (item == SENT) item != SENT

The form on the right is obtained by changing the equality operator (that is, chang-
ing == to I=).

184 Chapter 4 o Selection Structures: If and Switch Statements

Usually changing the equality or relational operator to complement a simple
condition is easy to do. The relational operator <= should be changed to >, < should
be changed to >=, and so on. Use the t operator with more complicated expressions.

EXAMPLE 4.8

The condition
status == 'S' && age > 25
is true for a single person over 25. The complement of this condition is

!(status == 'S' && age > 25)

DeMorgan’s Theorem DeMorgan’s theorem gives us a way of simplifying the
logical expression above. DeMorgan’s theorem states

The complement of expr; & expr, is written as comp, | | comp,, where comp,
is the complement of expr,, and comp, is the complement of exprs.
The complement of expr, | | expr, is written as comp, && comp,, where comp,
is the complement of expr,, and comp, is the complement of exprs.

Using DeMorgan’s theorem, we can write the complement of

age > 25 && (status == 'S' || status == 'D')
as
age <= 25 || (status != 'S' && status != 'D')

The original condition is true for anyone who is over 25, and is either single or
divorced. The complement would be true for anyone who is 25 or younger, or for
anyone who is currently married.

Self-Check

1. Assuming x is 15.0 and y is 25. 0, what are the values of the following conditions?

X =y

X < X

X >y - X

X =y + X -Y

2. Evaluate each of the following expressions if a is 6, b is 9, c is 14, and flag
is 1. Which parts of these expressions are not evaluated due to short-circuit
evaluation?

4.3 o The if Statement 185

a. c==a+b || I!flag

b. a =7 &s& flag || c >=6
c. 1(b<=12) && a % 2 == 0
d 1(a>5 || c<a+b)

@

Show step-by-step evaluation of expression 4 in Example 4.2.

4. Complement each expression in Exercise 2. Use DeMorgan’s theorem if
applicable.

5. What value is assigned to the type int variable ans in this statement if the

value of pis 100 and g is 507

ans = (p > 95) + (g < 95);

This statement is not shown as an example of a reasonable assignment state-
ment; rather, it is a sample of a statement that makes little sense to the reader.
The statement is still legal and executable in C, however, because C uses
integers to represent the logical values true and false.

Programming
1. Write an expression to test for each of the following relationships.

age is from 18 to 21 inclusive.

water is less than 1.5 and also greater than 0. 1.
year is divisible by 4. (Hin¢: Use %.)

speed is not greater than 55.

y is greater than x and less than z.

w is either equal to 6 or not greater than 3.

mo e TR

2. Write assignment statements for the following:

a. Assign a value of 0 to between if n is less than -k or greater than +k; other-
wise, assign 1.

b. Assign a value of 1 to divisor if digit is a divisor of num; otherwise,
assign a value of 0.

c. Assign a value of 1 to lowercase if ch is a lowercase letter; otherwise,
assign a value of 0.

4.3 The if Statement

You now know how to write a C expression that is the equivalent of a question such
as “Is resting heart rate more than 56 beats per minute?” Next, we need to investi-
gate a way to use the value of the expression to select a course of action. In C, the
if statement is the primary selection control structure.

186 Chapter 4 o Selection Structures: If and Switch Statements

flowchart a diagram
that shows the step-
by-step execution of a
control structure

if Statement with Two Alternatives
The if statement

if (rest_heart rate > 56)

printf ("Keep up your exercise program!\n");
else

printf("Your heart is in excellent health!\n");

selects one of the two calls to printf. It selects the statement following the paren-
thesized condition if the condition evaluates to 1 (true) (that is, if rest_heart rate
is greater than 56), or it selects the statement following else if the condition evalu-
ates to 0 (false) (if rest_heart_rate is not greater than 56).

Figure 4.4a is a flowchart of the preceding if statement. A flowchart is a
diagram that uses boxes and arrows to show the step-by-step execution of a control
structure. A diamond-shaped box in a flowchart represents a decision. There is
always one path into a decision and there are two paths out (labeled true and false).
A rectangular box represents an assignment statement or a process.

Figure 4.4a shows that the condition (rest_heart_rate > 56) is evaluated
first. If the condition is true, program control follows the arrow labeled true, and
the assignment statement in the right rectangle is executed. If the condition is false,
program control follows the arrow labeled false, and the assignment statement in
the left rectangle is executed.

Figure 4.5 shows a program that uses this if statement.

FIGURE 4.4 Flowcharts of if Statements with (a) Two Alternatives and
(b) One Alternative

rest_heart_
rate > 56
A

Display

"Keep up your

Display

"Your heart is in

product =
product * x;

exercise program" excellent condition"

(a) (b)

4.3 e The if Statement

FIGURE 4.5 Program Using an if Statement for Selection

187

O O =

/*
* Displays message about heart rate.

#include <stdio.h>

int main(void)

{

int pulse; /* resting pulse rate for 10 secs */
int rest_heart_rate; /* resting heart rate for 1 minute */

/* Enter your resting pulse rate */

printf ("Take your resting pulse for 10 seconds.\n");
printf ("Enter your pulse rate and press return> ");
scanf ("%d", &pulse);

/* Calculate resting heart rate for minute */
rest_heart rate = pulse * 6;
printf("Your resting heart rate is %d.\n", rest_heart rate);

/* Display message based on resting heart rate */
if (rest_heart_rate > 56)

printf ("Keep up your exercise program!\n");
else

printf("Your heart is in excellent health!\n");

return (0);

Sample Run 1
Take your resting pulse for 10 seconds.

Enter your pulse rate and press return> 12

Your resting heart rate is 72.

Keep up your exercise program!

Sample Run 2
Take your resting pulse for 10 seconds.

Enter your pulse rate and press return> 9

Your resting heart rate is 54.

Your heart is in excellent health!

188 Chapter 4 o Selection Structures: If and Switch Statements

if Statement with One Alternative

The if statement in the last section has two alternatives but executes only one for
a given value of rest_heart_rate. You also can write if statements with a single
alternative that executes only when the condition is true.

The if statement diagrammed in Fig. 4.4b

/* Multiply Product by a nonzero x */
if (x != 0.0)
product = product * x;

has one alternative, which is executed only when x is not zero. It causes product
to be multiplied by x and the new value to be saved in product, replacing the old
value. If x is zero, the multiplication is not performed.

A Comparison of One and Two Alternative if Statements

EXAMPLE 4.9

The if statement below has two alternatives.

if (crsr_or_ frgt == 'C'")
printf("Cruiser\n");
else
printf("Frigate\n");

It displays either cruiser or Frigate, depending on the character stored in the
type char variable crsr_or_frgt.

EXAMPLE 4.10

The if statement that follows has one alternative; it displays the message cruiser
only when crsr_or_frgt has the value 'c'. Regardless of whether cruiser is
displayed or not, the message combat ship is displayed.

if (crsr_or_frgt == 'C'")
printf("Cruiser\n");
printf("Combat ship\n");

EXAMPLE 4.11

The program fragment
if crsr_or_ frgt == 'C' /* error - missing parentheses */

printf("Cruiser\n");
printf("Combat ship\n");

is an incorrect version of the if statement in Example 4.10. The missing paren-
theses around the condition is a syntax error that will be detected (and possibly
corrected) by the compiler.

4.3 o The if Statement 189

The extra semicolon in the first line below

if (crsr_or frgt == 'C'); /* error - improper placement of ;*/
printf("Cruiser\n");
printf("Combat ship\n");

does not cause a violation of C syntax rules because the compiler translates the first
line as a single-alternative if statement with an empty statement implying no action
if the condition is true. The first printf loses its dependency on the value of the
condition, so both calls to print£ are executed unconditionally.

if Statement (One Alternative)

FORM: if (condition)
statement;;

EXAMPLE: if (x > 0.0)
pos_prod = pos_prod * Xx;

INTERPRETATION: If condition evaluates to true (a nonzero value), then statement; is
executed; otherwise, statement; is skipped.

if Statement (Two Alternatives)

FORM: if (condition)
statement;;
else
statement;;
EXAMPLE: if (x >= 0.0)
printf("positive\n");
ellise
printf("negative\n");

INTERPRETATION: If condition evaluates to true (a nonzero value), then statement; is exe-
cuted and statement; is skipped; otherwise, statement; is skipped and statement; is executed.

Program Style format of the if Statement

All if statement examples in this text indent statement, and statementy. The word
else is typed without indentation on a separate line. The format of the if statement
makes its meaning apparent and is used solely to improve program readability; the
format makes no difference to the compiler.

190 Chapter 4 o Selection Structures: If and Switch Statements

.

Self-Check

1. What do these statements display?

a.

if (12 < 12)
printf("less");
else
printf("not less");
varl = 25.12;
var2 = 15.00;
if (varl <= var2)
printf("less or equal");
else
printf("greater than");

2. What value is assigned to x when y is 10.0?

a.

x = 25.0;
if (y != (x - 10.0))
x =x - 10.0;
else
x =x/ 2.0;
if (y < 15.0)
if (y >= 0.0)
X =5 % y;
else
X =2 *y;

x=3*y;
if (y < 15.0 && y >= 0.0)
X =5*y;

X =2*y;

Programming

1.

Write C statements to carry out the following steps.

a. If item is nonzero, then multiply product by item and save the result
in product; otherwise, skip the multiplication. In either case, print the
value of product.

b. Store the absolute difference of x and y in y, where the absolute differ-
ence is (x - y) or (y - x), whichever is positive. Do not use the abs or
fabs function in your solution.

4.4 o if Statements with Compound Statements 191

c. Ifxiso, addiltozero count. Ifxlsnegahve add x to minus _sum. If x
is greater than 0, add x to plus_sum.

4.4 if Statements with Compound Statements

This section describes if statements having compound statements after the condi-
tion or the keyword else. When the symbol { follows the condition or else, the C
compiler either executes or skips all statements through the matching 3.

EXAMPLE 4.12

Suppose you are a biologist studying the growth rate of fruit flies. The if statement

if (pop_today > pop_yesterday) {
growth = pop today - pop_yesterday;
growth pct = 100.0 * growth / pop_ yesterday;
printf("The growth percentage is %.2f\n", growth pct);

computes the population growth from yesterday to today as a percentage of
yesterday’s population. The compound statement after the condition executes only
when today’s population is larger than yesterday’s. The first assignment computes
the increase in the fruit fly population, and the second assignment converts it to a
percentage of the original population, which is displayed.

EXAMPLE 4.13

As manager of a company’s automobile fleet, you keep records of the safety
ratings of the fleet cars. In the if statement that follows, the true task makes
a record of an automobile (auto_id) whose crash test rating index (ctri) is at
least as low (good) as the cutoff you have established for acceptably safe cars
(Max_saFE_cTRI). The false task records an auto whose ctri does not meet your
standard. In either case, an appropriate message is displayed, and one is added
to the count of safe or unsafe cars. Both the true and false tasks are compound
statements.

if (ctri <= MAX SAFE CTRI) {
printf("Car #%d: safe\n", auto_id);
safe = safe + 1;

} else {
printf("Car #%d: unsafe\n", auto_id);
unsafe = unsafe + 1;

192 Chapter 4 o Selection Structures: If and Switch Statements

hand trace (desk
check) step-by-
step simulation of an
algorithm’s execution

If you omit the braces enclosing the compound statements, the if statement would
end after the first printf call. The assignment to safe would be translated as an
unconditional statement (always executed), and the compiler would mark the key-
word else as an error because a statement cannot begin with else.

Program Style Writing if Statements with Compound True
or False Statements

We enclose a compound statement that is a true task or a false task in braces. The
placement of the braces is a matter of personal preference. We use the form shown
in Example 4.13. Some programmers prefer to type each brace on its own line and
to align the braces:

if (condition)

{

true task
}
else
{

false task
}

Some programmers prefer to use braces around all true and false tasks whether
compound or not, so that all if statements in a program have a consistent style. We
recommend enclosing both the true and the false tasks in braces if either is a com-
pound statement. Whichever style you choose, make sure you apply it consistently.

Tracing an if Statement

A critical step in program design is to verify that an algorithm or C statement is
correct before you spend extensive time coding or debugging it. Often a few extra
minutes spent in verifying the correctness of an algorithm saves hours of coding and
testing time.

A hand trace, or desk check, is a careful, step-by-step simulation on paper of
how the computer executes the algorithm or statement. The results of this simula-
tion should show the effect of each step’s execution using data that are relatively
easy to process by hand.

EXAMPLE 4.14

In many programming problems you must order a pair of data values in memory
so that the smaller value is stored in one variable (say, x) and the larger value in
another (say, y). The if statement in Fig. 4.6 rearranges any two values stored in

4.4 o if Statements with Compound Statements 193

FIGURE 4.6 if Statement to Order x and y

if (x > y) { /* Switch x and y */
temp = x; /* Store old x in temp */
X = y; /* Store old y in x */

y = temp; /* Store old x in y */

x and y so that the smaller number is in x and the larger number is in y. If the two
numbers are already in the proper order, the compound statement is not executed.

Variables x, y, and temp should all be the same data type. Although the values of x
and y are being switched, an additional variable, temp, is needed to store a copy of
one of these values.

Table 4.9 traces the execution of this if statement when x is 12.5 and y is
5.0. The table shows that temp is initially undefined (indicated by ?). Each line of
the table shows the part of the if statement that is being executed, followed by its
effect. If any variable gets a new value, its new value is shown on that line. If no new
value is shown, the variable retains its previous value. The last value stored in x is
5.0, and the last value stored in y is 12.5.

The trace in Table 4.9 shows that 5.0 and 12.5 are correctly stored in x and
y when the condition is true. To verify that the if statement is correct, you would
need to select other data that cause the condition to evaluate to false. Also, you
should verify that the statement is correct for special situations. For example, what
would happen if x were equal to y? Would the statement still provide the correct
result? To complete the hand trace, you would need to show that the algorithm
handles this special situation properly.

In tracing each case, you must be careful to execute the statement step-by-step
exactly as the computer would execute it. Often programmers assume how a par-
ticular step will be executed and don’t explicitly test each condition and trace each
step. A trace performed in this way is of little value.

TABLE 4.9 Trace of if Statement

Statement Part X y temp Effect
12.5 5.0 ?
if (x > y) { 12.5 > 5.0 is true.
temp = x; 12.5 Store old x in temp.
X = y; 5.0 Store old y in x.

y = temp; 12.5 Store old x in y.

selects one of several
actions

194 Chapter 4 o Selection Structures: If and Switch Statements

.

Self-Check

1.

Insert braces where they are needed so the meaning matches the indentation.

if (x > y)
X = x + 10.0;
printf("x Bigger\n");
else
printf("x Smaller\n");
printf("y is %.2f\n", y);

Correct the following if statement; assume the indentation is correct.

if (deduct < balance);
balance = balance - deduct;
printf("New balance is %.2f\n", balance);
else;
printf("Deduction of %.2f refused.\n", deduct);
printf("Would overdraw account.\n");
printf("Deduction = %.2f Final balance = %.2f",
deduct, balance);

Revise the style of the following if statement to improve its readability.

if (engine_type == 'J') {printf("Jet engine");
speed_category = 1;}
else{printf("Propellers"); speed_category

= 2;}

Programming

1.

Write an if statement that might be used to compute and display the aver-
age of a set of n numbers whose sum is stored in variable total. This average
should be found only if n is greater than 0; otherwise, an error message should
be displayed.

Write an interactive program that contains an if statement that may be used
to compute the area of a square (area = side?) or a circle (area = m X radius?)
after prompting the user to type the first character of the figure name (S or C).

4.5 Decision Steps in Algorithms

decision step an Algorithm steps that select from a choice of actions are called decision steps. The

algorithm step that

algorithm in the next problem contains decision steps to compute and display a cus-
tomer’s water bill based on usage. The decision steps are coded as if statements.

4.5 ¢ Decision Steps in Algorithms 195

CASE STUDY Water Bill Problem

PROBLEM

Write a program that computes a customer’s water bill. The bill includes a $35 water
demand charge plus a consumption (use) charge of $1.10 for every thousand gallons
used. Consumption is figured from meter readings (in thousands of gallons) taken
recently and at the end of the previous quarter. If the customer’s unpaid balance is
greater than zero, a $2 late charge is assessed as well.

ANALYSIS

The total water bill is the sum of the demand and use charges, the unpaid balance,
and a possible late charge. The demand charge is a program constant ($35), but the
use charge must be computed. To do this, we must know the previous and current
meter readings (the problem inputs). After obtaining these data, we can compute
the use charge by multiplying the difference between the two meter readings by the
charge for 1000 gallons, the problem constant $1.10. Next, we can determine the
applicable late charge, if any, and finally compute the water bill by adding the four
components. The data requirements and initial algorithm follow.

DATA REQUIREMENTS

Problem Constants

DEMAND CHG 35.00 /* basic water demand charge */
PER_1000_CHG 1.10 /* charge per thousand gallons used */
LATE CHG 2.00 /* surcharge on an unpaid balance */

Problem Inputs

int previous /* meter reading from previous quarter

in thousands of gallons */
int current /* meter reading from current quarter */
double unpaid /* unpaid balance of previous bill */
Problem Outputs
double bill /* water bill */
double use_charge /* charge for actual water use */
double late charge /* charge for nonpayment of part
of previous balance */

Relevant Formulas

water bill = demand charge + use charge + unpaid balance
+ applicable late charge

196 Chapter 4 o Selection Structures: If and Switch Statements

DESIGN

INITIAL ALGORITHM

1. Display user instructions.

Get data: unpaid balance, previous and current meter readings.
Compute use charge.

Determine applicable late charge.

Figure bill amount.

Display the bill amount and charges.

o GLk W

The structure chart in Fig. 4.7 includes data flow information that shows the
inputs and the outputs of each individual algorithm step. The structure chart shows
that step 2, “Get data,” provides values for unpaid, previous, and current as its
outputs (data flow arrow points up). Similarly, step 3, “Compute use charge,” uses
previous and current as its inputs (data flow arrow points down) and provides
use_charge as its output. We will discuss the relevance of the data flow information
after we complete the problem solution.

FIGURE 4.7 Structure Chart for Water Bill Problem

Create
water
bill
I I
previous use_charge bill
current unpaid late_charge
unpaid unpaid late_charge unpaid
previous use_ bill
current charge late_charge l l
Display Get Compute Determine Figure Print
user in- data use late bill bill
structions charge charge

comp_use_charge

comp_late charge

display bill

4.5 o Decision Steps in Algorithms 197

As shown in the structure chart, we use functions to implement all but steps 2
and 5. Each function name appears below the subproblem it solves. Next, we turn
our attention to the function subprograms. We will discuss each function except
instruct_water, which is straightforward.

ANALYSIS AND DESIGN OF COMP_USE_CHARGE

The structure chart shows that function comp_use_charge computes a value for
use_charge based on data stored in previous and current. The data require-
ments and algorithm follow.

DATA REQUIREMENTS FOR COMP_USE_CHARGE

Input Parameters

int previous /* meter reading from previous quarter
in thousands of gallons */

int current /* meter reading from current quarter */

Return Value

double use charge /* charge for actual water use */

Program Variable
int used /* thousands of gallons used this quarter */
Relevant Formulas
used = current meter reading - previous meter reading
use charge = used x charge per thousand gallons
ALGORITHM FOR COMP_USE_CHARGE

1. usedis current - previous
2. use chargeisused * PER 1000 CHG

ANALYSIS AND DESIGN OF COMP_LATE_CHARGE

Function comp_late charge returns a late charge of $2.00 or $0.00 depending
on the unpaid balance. Consequently, it requires a decision step as shown in the
algorithm that follows.

DATA REQUIREMENTS FOR COMP_LATE_CHARGE
Input Parameter
double unpaid /* unpaid balance of previous bill */

Return Value

double late charge /* charge for nonpayment of part
of previous balance */

198 Chapter 4 o Selection Structures: If and Switch Statements

pseudocode

a combination of
English phrases and C
constructs to describe
algorithm steps

ALGORITHM FOR COMP_LATE_CHARGE

1. ifunpaid > 0
assess late charge
else
assess no late charge

The decision step above is expressed in pseudocode, which is a mixture of
English and C used to describe algorithm steps. The indentation and reserved words
if and else show the logical structure of each decision step. Each decision step has
a condition (following i£) that can be written in English or C; similarly, the true and
false tasks can be written in English or C.

ANALYSIS AND DESIGN OF DISPLAY_BILL

The void function display bill displays the bill amount and the late charge and
unpaid balance if any. The values of bill, late charge, and unpaid are passed to
the function as input arguments; display bill displays these values on the screen.

DATA REQUIREMENTS FOR DISPLAY_BILL

Input Parameters

double late charge /* charge for nonpayment of

part of previous balance */
double bill /* bill amount */
double unpaid /* unpaid balance */

ALGORITHM FOR DISPLAY_BILL

1. if late charge > 0
display late charge and unpaid balance
2. Display the bill amount.

IMPLEMENTATION

Follow the approach described in Section 3.1 to write the program (Fig. 4.8). Begin
by writing #define directives for the problem constants. In the main function,
declare all variables from the problem data requirements that appear in the struc-
ture chart. Next, write each step of the initial algorithm as a comment in the main
function body. To complete the main function, code each algorithm step in-line (as
part of the main function code) or as a function call. For each function call, refer to
the structure chart to determine the names of the input arguments and the variable
receiving the function result.

Follow a similar approach to write each function subprogram (Fig. 4.8). Declare
all identifiers listed in the function data requirements as either formal parameters

4.5 o Decision Steps in Algorithms

FIGURE 4.8 Program for Water Bill Problem

199

A W W W W WwWwwwww WNNNNNNNNNNDNDQQQ@QQ @ @Q @ @
CPWNOUVPAWNSROCOLINDOURWNSCLINOURWN=O®

O L

/*

* Computes and prints a water bill given an unpaid balance and previous and

* current meter readings. Bill includes a demand charge of $35.00,

* charge of $1.10 per thousand gallons, and a surcharge of $2.00 if there is

* an unpaid balance.
*/

#include <stdio.h>

#define DEMAND CHG 35.00 /* basic water demand charge
#define PER_1000_CHG 1.10 /* charge per thousand gallons used
#define LATE_CHG 2.00 /* surcharge assessed on unpaid balance

/* Function prototypes
void instruct water(void);

double comp use charge(int previous, int current);
double comp late charge(double unpaid);
void display bill(double late charge, double bill, double unpaid);

int
main(void)

a use

{

int previous; /* input - meter reading from previous quarter
in thousands of gallons */

int current; /* input - meter reading from current quarter */

double unpaid; /* input - unpaid balance of previous bill */

double bill; /* output - water bill */

int used; /* thousands of gallons used this quarter */

double use_charge; /* charge for actual water use */

double late_charge; /* charge for nonpayment of part of previous
balance */

/* Display user instructions. */

instruct_water();

/* Get data: unpaid balance, previous and current meter

readings. */

(continued)

*/
*/
*/

*/

200 Chapter 4 ¢ Selection Structures: If and Switch Statements

FIGURE 4.8 (continued)

41. printf ("Enter unpaid balance> $");

42. scanf ("%1f", &unpaid);

43. printf("Enter previous meter reading> ");

44, scanf ("%d", &previous);

45. printf ("Enter current meter reading> ");

46. scanf ("%d", ¤t);

47.

48. /* Compute use charge. */
49. use_charge = comp_use_charge(previous, current) ;

50.

51. /* Determine applicable late charge */
52. late charge = comp late charge(unpaid);

53.

54. /* Figure bill. */
55. bill = DEMAND CHG + use_charge + unpaid + late_charge;

56.

57. /* Print bill. */
58. display bill(late charge, bill, unpaid);

59.

60. return (0);

61. }

62.

63. /*

64. * Displays user instructions

65. =/

66. void

67. instruct water(void)

68. {

69. printf ("This program figures a water bill ");

70. printf ("based on the demand charge\n");

71. printf("($%.2f) and a $%.2f per 1000 ", DEMAND CHG, PER 1000 _CHG);

72. printf("gallons use charge.\n\n");

73. printf("A $%.2f surcharge is added to ", LATE_CHG);

74. printf("accounts with an unpaid balance.\n");

75. printf("\nEnter unpaid balance, previous ");

76. printf("and current meter readings\n");

77. printf("on separate lines after the prompts.\n");

78. printf ("Press <return> or <enter> after ");

79. printf("typing each number.\n\n");

80. }

81. (continued)

82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.

4.5 o Decision Steps in Algorithms 201

FIGURE 4.8 (continued)

/*
* Computes use charge
* Pre: previous and current are defined.
*/
double
comp use charge(int previous, int current)
{
int used; /* gallons of water used (in thousands) */
double use_charge; /* charge for actual water use */

used = current - previous;
use_charge = used * PER_1000_CHG;

return (use_charge);

/ *

* Computes late charge.

* Pre : unpaid is defined.

2/
double
comp late charge(double unpaid)

{

double late charge; /* charge for nonpayment of part of previous balance */

if (unpaid > 0)
late charge = LATE CHG; /* Assess late charge on unpaid balance. */
else

late charge = 0.0;

return (late_charge);

¥

/*
* Displays late charge if any and bill.
* Pre : late charge, bill, and unpaid are defined.
*/

void

display bill(double late charge, double bill, double unpaid)

(continued)

202 Chapter 4 o Selection Structures: If and Switch Statements

FIGURE 4.8 (continued)

121. {

122. if (late_charge > 0.0) {

123. printf("\nBill includes $%.2f late charge", late_charge);
124. printf(" on unpaid balance of $%.2f\n", unpaid);

125. }

126. printf("\nTotal due = $%.2f\n", bill);

127. 3

FIGURE 4.9 Sample Run of Water Bill Program

This program figures a water bill based on the demand charge
($35.00) and a $1.10 per 1000 gallons use charge.

A $2.00 surcharge is added to accounts with an unpaid balance.
Enter unpaid balance, previous and current meter readings

on separate lines after the prompts.

Press <return> or <enter> after typing each number.

Enter unpaid balance> $71.50

Enter previous meter reading> 4198

Enter current meter reading> 4238

Bill includes $2.00 late charge on unpaid balance of $71.50

Total due = $152.50

or local variables, depending on how the identifier is used by the function. Make
sure that the order of parameters in the function heading corresponds to the order
of arguments in the function call. After you write each function heading, copy it into
the function prototype area preceding function main.

TESTING

To test this program, run it with data sets that cause each branch of the two deci-
sion steps to execute. For example, one data set should have a positive unpaid
balance, and another should have an unpaid balance of zero. Figure 4.9 shows a
sample run.

cohesive function
a function that
performs a single
operation

4.5 o Decision Steps in Algorithms 203

Program Style Consistent Use of Names in Functions

Notice that we use the same identifier, 1ate_charge, to refer to the customer’s late
charge in the main function and in two function subprograms. We declare late_
charge as a local variable in functions main and comp_late charge and as a formal
parameter in function display_bill. Although C does not require that we use the
same name for the customer’s late charge in all three functions, it is perfectly per-
missible to do so. Using the same name avoids the confusion that would result from
using different names to reference the same information.

Program Style Cohesive Functions

Function comp_late_charge only computes the late charge—it does not display
it. That task is left to function display_bill. Functions that perform a single
operation are called cohesive functions. Writing cohesive functions is good pro-
gramming style, because cohesive functions are easier to read, write, debug, and
maintain, and are more likely to be reusable.

Program Style Using Constant Macros to Enhance Readability
and Ease Maintenance

The function subprograms in Fig. 4.8 reference the constant macros DEMAND_CHG,
PER_1000_CHG, and LATE_CHG. It is perfectly permissible to reference such names
in any function body that appears in the same source file as the constant macro
definitions.

We could just as easily have placed the values that these names represent
(35.00, 1.10, and 2.00) directly in the statements where they are needed. The
resulting statements would be

printf("This program figures a water bill ");

printf("based on the demand charge\n");

printf("($%.2f) and a $%.2f per 1000 ",

35.00, 1.10);

printf("gallons use charge.\n\n");

printf("A $%.2f surcharge is added to ", 2.00);

printf("accounts with an unpaid balance.\n");

use_charge = used * 1.10;

late_charge = 2.00; /* Assess late charge on unpaid
balance. */

bill = 35.00 + use_charge + unpaid + late_charge;

However, use of constant macro names rather than actual values has two advan-
tages. First, the original statements are easier to understand because they use the
descriptive names DEMAND_CHG, PER_1000_CHG, and LATE_CHG rather than num-
bers, which have no intrinsic meaning. Second, a program written using constant

204 Chapter 4 o Selection Structures: If and Switch Statements

macros is much easier to maintain than one written with constant values. For exam-
ple, if we want to use different constant values in the water bill program in Fig. 4.8,
we need to change only the constant macro definitions. However, if we inserted
constant values directly in the statements, we would need to change any statements
that manipulate the constant values.

Self-Check

1. Change the algorithm for function comp_use_charge assuming the fee is
doubled for any gallons used in excess of 100,000. The basic fee is assessed for
the first 100,000 gallons used.

2. Revise the flat-washer problem from Section 3.1 so that the user can com-
pute the weight of a batch of circular or square washers. Give the algorithm
with refinements. Draw a structure chart with data flow information for the
new problem showing the relationship between the main program and its
subproblems. Assume that the user can specify whether the washer type is
circular or square.

Programming

1. Write function comp_use_charge described in Self-Check Exercise 1.

4.6 More Problem Solving

Data Flow Information in Structure Charts

In Fig. 4.7 the data flow information in the structure chart shows the inputs and
outputs of each individual algorithm step. Data flow information is an important
part of system documentation because it shows what program variables are proc-
essed by each step and the manner in which those variables are processed. If a
step gives a new value to a variable, then the variable is considered an output of the
step. If a step displays a variable’s value or uses a variable in a computation without
changing its value, the variable is considered an input to the step.

Figure 4.8 shows that a variable may have different roles for different subprob-
lems in the algorithm. In the context of the original problem statement, previous
and current are problem inputs (data supplied by the program user). However, in
the context of the subproblem “Get data,” the subproblem’s task is to deliver values
for previous and current to the main program; thus, previous and current
are considered outputs from this step. In the context of the subproblem “Compute

4.6 * More Problem Solving 205

use charge,” the subproblem’s task is to use previous and current to compute
use_charge, so they are inputs to this step. In the same way, the role of the other
variables changes as we go from step to step in the problem.

Modifying a Program with Function Subprograms

Often what appears to be a new problem will turn out to be a variation of one that
you have already solved. Consequently, an important skill in problem solving is the
ability to recognize that one problem is similar to another solved earlier. As you
progress through this course, you will start to build up your own personal library of
programs and functions. Whenever possible, you should try to adapt or reuse parts
of successful programs.

Writing programs that can be easily changed or modified to fit other situ-
ations is advisable; programmers and program users will often want to make
slight improvements to a program after they use it. If the original program is well
designed and modular, the programmer will be able to accommodate changing
specifications with a minimum of effort. As you will find by working through the
next problem, when changes are needed it may be possible to modify one or two
functions rather than rewriting the entire program.

CASE STUDY Water Bill with Conservation Requirements

PROBLEM

We need to modify the water bill program so that customers who fail to meet
conservation requirements are charged for all their water use at twice the rate of
customers who meet the guidelines. Residents of this water district are required
to use no more than 95 percent of the amount of water they used in the same
quarter last year in order to qualify for the lower use rate of $1.10 per thousand
gallons.

ANALYSIS

This problem is a modification of the water bill problem solved in the last sec-
tion. Customers who meet the conservation guidelines should be charged the
basic use rate of $1.10 per thousand gallons; those who do not should be charged
at twice this rate. We can solve this problem by adding the use figure from last
year to our problem inputs and modifying function comp_use_charge. The addi-
tions to the data requirements and revised algorithm for function comp_use_
charge follow.

206

Chapter 4 o Selection Structures: If and Switch Statements

ADDITIONS TO DATA REQUIREMENTS

Problem Constants

OVERUSE_CHG_RATE 2.0 /* double use charge as non-conservation
penalty */
CONSERV_RATE 95 /* percent of last year's use
allowed this year */

Problem Inputs

int use_last_year /* use for same quarter
last year */

ALGORITHM FOR COMP_USE_CHARGE

1. usedis current - previous
2. if guidelines are met
use_charge is used * PER_1000_CHARGE
else
notify customer of overuse
use_charge is used * overuse_chg_rate *
PER_1000_CHG

Figure 4.10 shows the revised function. If the condition
(used <= CONSERV_RATE / 100.0 * use_ last_year)

is true, the conservation guidelines are met and the use charge is computed as
before; otherwise, the customer is notified of the overuse, and the overuse charge
rate is factored into the computation of the use charge.

FIGURE 4.10 Function comp_use_charge Revised

0N o0 a9 2

—))
N =S

/*
* Computes use charge with conservation requirements
* Pre: previous, current, and use_last year are defined.
*/
double
comp_use_charge(int previous, int current, int use_last_ year)

{

int used; /* gallons of water used (in thousands) */
double use charge; /* charge for actual water use */
used = current - previous;

if (used <= CONSERV_RATE / 100.0 * use_ last year) {
/* conservation guidelines met */

(continued)

4.7 o Nested if Statements and Multiple-Alternative Decisions 207

FIGURE 4.10 (continued)
13. use charge = used * PER_1000_CHG;
14. } else {
15. printf("Use charge is at %.2f times ", OVERUSE_CHG_RATE);
16. printf ("normal rate since use of\n");
17. printf("%d units exceeds %d percent ", used, CONSERV_RATE);
18. printf("of last year's %d-unit use.\n", use_ last year);
19. use charge = used * OVERUSE CHG _RATE * PER 1000 CHG;
20. }
21.
22. return (use_charge);
23. 3}

We must change the prototype for function comp_use_charge to match its
heading and replace the call to function comp_use_charge in Fig. 4.8 with

use _charge = comp_use charge(previous, current,
use_last_year);

To complete the program revision, change function instruct_water to display
the new user instructions. Also, modify the main function to prompt for and get the
value of use_last_year.

Programming

1. Provide the complete program for the water bill problem with conservation
requirements.

4.7 Nested if Statements and Multiple-Alternative Decisions

nested if statement
an if statement with
another if statement
as its true task or its
false task

Until now we have used if statements to code decisions with one or two alter-
natives. In this section we use nested if statements (one if statement inside
another) to code decisions with multiple alternatives.

EXAMPLE 4.15

The following nested if statement has three alternatives. It increases one of three
variables (num_pos, num_neg, or num_zero) by 1, depending on whether x is greater
than zero, less than zero, or equal to zero, respectively. The boxes show the logical
structure of the nested if statement: The second if statement is the false task (fol-
lowing else) of the first if statement.

208 Chapter 4 ¢ Selection Structures: If and Switch Statements

/* increment num_pos, num neg, or num_ zero depending on x */

if (x > 0)
num _pos = num pos + 1;
else

if (x < 0)
num neg = num neg + 1;
else /* x equals 0 */
num_zero = num_zero + 1;

The execution of the nested if statement proceeds as follows: the first condition
(x > 0) is tested; if it is true, num_pos is incremented and the rest of the if state-
ment is skipped. If the first condition is false, the second condition (x < 0) is tested;
if it is true, num_neg is incremented; otherwise, num_zero is incremented. It is
important to realize that the second condition is tested only when the first condi-
tion is false. Table 4.10 traces the execution of this statement when x is -7. Because
x > 0 is false, the second condition (x < 0) is tested.

Comparison of Nested if and Sequence of ifs

Beginning programmers sometimes prefer to use a sequence of if statements
rather than a single nested if statement. For example, the nested if statement in
Example 4.15 is rewritten as a sequence of if statements.

if (x > 0)

num _pos = num pos + 1;
if (x < 0)

num _neg = num _neg + 1;
if (x == 0)

num_zero = num_zero + 1;

Although this sequence is logically equivalent to the original, it is neither as
readable nor as efficient. Unlike the nested if statement, the sequence does not
clearly show that exactly one of the three assignment statements is executed for a

TABLE 4.10 Trace of if Statement in Example 4.15 for x = -7

Statement Part Effect
if (x > 0) -7 > 0isfalse.
if (x < 0) =7 < 0istrue.

num_neg = num _neg + 1 Add 1 to num_neg.

4.7 * Nested if Statements and Multiple-Alternative Decisions 209

particular x. It is less efficient because all three of the conditions are always tested.
In the nested if statement, only the first condition is tested when x is positive.

Multiple-Alternative Decision Form of Nested if

Nested if statements can become quite complex. If there are more than three alter-
natives and indentation is not consistent, it may be difficult for you to determine the
logical structure of the if statement. In situations like Example 4.15 in which each
false task (except possibly the last) is followed by an if-then-else statement, you
can code the nested if as the multiple-alternative decision described next.

Multiple-Alternative Decision

SYNTAX: if (condition;)
statement,

else if (condition,)
statement,

else if (condition,)
statement,
else
statement,
EXAMPLE: /* increment num pos, num neg, or num_zero depending
on x */
if (x > 0)
num_pos = num_pos + 1;
else if (x < 0)
num neg = num_neg + 1;
else /* x equals 0 */

num_zero = num_zero + 1;

INTERPRETATION: The conditions in a multiple-alternative decision are evaluated in sequence
until a true condition is reached. If a condition is true, the statement following it is executed,
and the rest of the multiple-alternative decision is skipped. If a condition is false, the state-
ment following it is skipped, and the next condition is tested. If all conditions are false, then
statement, following the final else is executed.

Notes: In a multiple-alternative decision, the words else and if the next condition appear
on the same line. All the words else align, and each dependent statement is indented under
the condition that controls its execution.

210 Chapter 4 o Selection Structures: If and Switch Statements

EXAMPLE 4.16

Suppose you want to associate noise loudness measured in decibels with the effect
of the noise. The following table shows the relationship between noise levels and
human perceptions of noises.

Loudness in Decibels (db) Perception
50 or lower quiet

51-70 intrusive
71-90 annoying
91-110 very annoying
above 110 uncomfortable

The multiple-alternative decision in the following displays the perception of
noise according to this table. If the noise were measured at 62 decibels, the last
three conditions would be true if evaluated; however, the perception 62-decibel
noise is intrusive. would be displayed because the first true condition is
noise_db <= 70.

/* Display perception of noise loudness */

if (noise_db <= 50)

printf("%$d-decibel noise is quiet.\n", noise _db);
else if (noise_db <= 70)

printf("%d-decibel noise is intrusive.\n", noise_db);
else if (noise_db <= 90)

printf("%d-decibel noise is annoying.\n", noise_db);
else if (noise_db <= 110)

printf("%$d-decibel noise is very annoying.\n", noise_db);
else

printf("%d-decibel noise is uncomfortable.\n", noise_db);

Order of Conditions in a Multiple-Alternative Decision

When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes. Therefore, the order of the condi-
tions can affect the outcome.

Writing the decision as follows would be incorrect. All but the loudest sounds
(above 110 db) would be categorized as “very annoying” because the first condition
would be true and the rest would be skipped.

/* incorrect perception of noise loudness */

if (noise_db <= 110)
printf("%d-decibel noise is very annoying.\n", noise_db);
else if (noise_db <= 90)

4.7 o Nested if Statements and Multiple-Alternative Decisions 211

printf("%d-decibel noise is annoying.\n",
noise_db);
else if (noise_db <= 70)
printf("%d-decibel noise is intrusive.\n",
noise_db);
else if (noise_db <= 50)
printf("%d-decibel noise is quiet.\n",
noise_db);
else
printf("%d-decibel noise is uncomfortable.\n", noise_db);

The order of conditions can also have an effect on program efficiency. If we know
that loud noises are much more likely than soft ones, it would be more efficient to test
first for noise levels above 110 db, next for levels between 91 and 110 db, and so on.

EXAMPLE 4.17

You could use a multiple-alternative if statement to implement a decision table that
describes several alternatives. For instance, let’s say you are an accountant setting
up a payroll system based on Table 4.11, which shows five different ranges for sala-
ries up to $150,000.00. Each table line shows the base tax amount (column 2) and
tax percentage (column 3) for a particular salary range (column 1). Given a person’s
salary, you can calculate the tax due by adding the base tax to the product of the
percentage times the excess salary over the minimum salary for that range.

For example, the second line of the table specifies that the tax due on a salary of
$20,000.00 is $2,250.00 plus 18 percent of the excess salary over $15,000.00 (that is,
18 percent of $5000.00, or $900.00). Therefore, the total tax due is $2,250.00 plus
$900.00, or $3,150.00.

The if statement in function comp_tax (Fig. 4.11) implements the tax table. If the
value of salary is within the table range (0.00 to 150,000.00), exactly one of the
statements assigning a value to tax will execute. Table 4.12 shows a trace of the if
statement when salary is $25,000.00. You can see that the value assigned to tax,
$4,050.00, is correct.

TABLE 4.11 Decision Table for Example 4.17

Salary Range (%) Base Tax ($) Percentage of Excess
0.00-14,999.99 0.00 15
15,000.00-29,999.99 2,250.00 18
30,000.00-49,999.99 5,400.00 22
50,000.00-79,999.99 11,000.00 27

80,000.00-150,000.00 21,600.00 33

212 Chapter 4 o Selection Structures: If and Switch Statements

FIGURE 4.11 Function comp_tax

1. /*

2. * Computes the tax due based on a tax table.

3. * Pre : salary is defined.

4. * Post: Returns the tax due for 0.0 <= salary <= 150,000.00;

5. * returns -1.0 if salary is outside the table range.

6. */

7. double

8. comp_tax(double salary)

9. {

10. double tax;

11.

12. if (salary < 0.0)

13. tax = -1.0;

14. else if (salary < 15000.00) /* first range
15. tax = 0.15 * salary;

16. else if (salary < 30000.00) /* second range
17. tax = (salary - 15000.00) * 0.18 + 2250.00;

18. else if (salary < 50000.00) /* third range
19. tax = (salary - 30000.00) * 0.22 + 5400.00;
20. else if (salary < 80000.00) /* fourth range
21. tax = (salary - 50000.00) * 0.27 + 11000.00;
22. else if (salary <= 150000.00) /* f£ifth range
23. tax = (salary - 80000.00) * 0.33 + 21600.00;
24, else
25. tax = -1.0;
26.
27. return (tax);
28. }

*/

*/

*/

*/

*/

TABLE 4.12 Trace of if Statement in Fig. 4.11 for salary = $25000.00

Statement Part salary tax Effect
25000.00 ?

if (salary < 0.0) 25000.0 < 0.0 is false.
else if (salary < 15000.00) 25000.0 < 15000.0 is false.
else if (salary < 30000.00) 25000.0 < 30000.0 is true.
tax = (salary - 15000.00) Evaluates to 10000.00

* 0.18 Evaluates to 1800.00.

+ 2250.00; 4050.00 Evaluates to 4050.00

4.7 o Nested if Statements and Multiple-Alternative Decisions 213

Program Style \Validating the Value of Variables

If you validate the value of a variable before using it in a computation, you can avoid
processing invalid or meaningless data. Instead of computing an incorrect tax amount,
function comp_tax returns -1.0 (an impossible tax amount) if the value of salary is
outside the range covered by the table (0.0 to 150,000.00). The first condition sets tax
to -1.0 if salary is negative. All conditions evaluate to false if salary is greater than
$150,000.00, so the task following else also sets tax to -1.0. The function calling
comp_tax should display an error message if the value returned to it is -1.0.

Nested if Statements with More Than One Variable

In most of our examples, we have used nested if statements to test the value of a
single variable; consequently, we have been able to write each nested if statement
as a multiple-alternative decision. If several variables are involved in the decision,
we cannot always use a multiple-alternative decision. Example 4.18 contains a situa-
tion in which we can use a nested if statement as a “filter” to select data that satisfy
several different criteria.

EXAMPLE 4.18

The Department of Defense would like a program that identifies single males
between the ages of 18 and 26, inclusive. One way to do this is to use a nested if
statement whose conditions test the next criterion only if all previous criteria tested
were satisfied. In the following nested if statement, assume that all variables have
values. The call to printf executes only when all conditions are true.

/* Print a message if all criteria are met. */
if (marital_ status == 'S')
if (gender == 'M')
if (age >= 18 && age <= 26)
printf("All criteria are met.\n");

An equivalent statement that uses a single 1f with a compound condition follows.

if (marital_ status == 'S' && gender == 'M'
&& age >= 18 && age <= 26)
printf("All criteria are met.\n");

EXAMPLE 4.19

You are developing a program to control the warning signs at the exits of major tun-
nels. If roads are slick (road_status is 's'), you want to advise drivers that stopping
times are doubled or quadrupled, depending on whether the roads are wet or icy. Your
program will also have access to the current temperature in degrees Celsius (temp), so
a check as to whether the temperature is above or below freezing would allow you to

214 Chapter 4 o Selection Structures: If and Switch Statements

FIGURE 4.12

Flowchart of Road
Sign Decision
Process

road_status true

is 's’

Wet
roads
message

Drive
carefully
message

Icy roads
message

I

choose the correct message. The nested if statement below summarizes the decision
process you should follow; the flowchart in Fig. 4.12 diagrams the process.

if (road_status == 'S')

if (temp > 0) {
printf ("Wet roads ahead\n");
printf ("Stopping time doubled\n");
} else {
printf("Icy roads ahead\n");
printf("Stopping time quadrupled\n");

else
printf("Drive carefully!\n");

To verify that the nested if statement in Example 4.19 is correct, we trace its
execution for all possible combinations of road status values and temperatures. The
flowchart’s rightmost output is executed only when both conditions are true. The
leftmost output is always executed when the condition involving road_status is
false. The output in the middle occurs when the condition involving road_status
is true but the condition involving temp is false.

When you are writing a nested if statement, you should know that C associates
an else with the most recent incomplete if. For example, if the first else of the
road sign decision were omitted, the following would be left:

/* incorrect interpretation of nested if */
if (road_status == 'S')
if (temp > 0) {
printf("Wet roads ahead\n");
printf("Stopping time doubled\n");

else
printf("Drive carefully!\n");

4.7 o Nested if Statements and Multiple-Alternative Decisions 215

Although the indentation would lead you to believe that the else remains
the false branch of the first i£, the C compiler actually sees it as the false branch
of the second if. Indentation like this would match the actual meaning of the
statement.

/* correct interpretation of nested if */

if (road_status == 'S"')

if (temp > 0) {
printf("Wet roads ahead\n");
printf ("Stopping time doubled\n");
} else

printf("Drive carefully!\n");

To force the else to be the false branch of the first 1 £, we place braces around
the true task of this first decision.

/* interpretation with braces around first true task */

if (road_status == 'S') {

if (temp > 0) {
printf("Wet roads ahead\n");
printf("Stopping time doubled\n");
}

} else
printf("Drive carefully!\n");

Note that we could not use a multiple-alternative decision statement to imple-
ment the flowchart in Fig. 4.12 because the second decision (temp > 0) falls on the
true branch of the first decision. However, if we were to change the initial condition
so the branches were switched, a multiple-alternative structure would work. We

could do this simply by checking if the road is dry.

if (road_status == 'D') {
printf("Drive carefully!\n");

} else if (temp > 0) {
printf("Wet roads ahead\n");
printf("Stopping time doubled\n");

} else {
printf("Icy roads ahead\n");
printf("Stopping time quadrupled\n");

The first condition is true only if the road is dry. The second condition is tested
only when the first condition fails, so its dependent statement executes only when
the road is not dry and the temperature is above freezing. Finally, the else clause
executes only when the two conditions fail; then we know that the roads are not dry
and the temperature is not above freezing.

216

Chapter 4 o Selection Structures: If and Switch Statements

.

Self-Check

1. Trace the execution of the nested if statement in Fig. 4.11 for a salary of
$23,500.00.

2. What would be the effect of reversing the order of the first two conditions in
the if statement in Fig. 4.117

3. Write a nested if statement for the decision diagrammed in the accompany-

ing flowchart. Use a multiple-alternative if for intermediate decisions where

possible.
false /\ true

A

"Alkaline"
"Very
alkaline"

"Neutral”

"Acidic"

"Very
acidic"

Programming

1.

2.

Rewrite the if statement for Example 4.16 using only the relational operator
> in all conditions.

Implement the following decision table using a nested if statement. Assume
that the grade point average is within the range 0.0 through 4.0.

Grade Point Average Transcript Message

0.0-0.99 Failed semester—registration suspended
1.0-1.99 On probation for next semester
2.0-2.99 (no message)

3.0-3.49 Dean’s list for semester

3.5-4.00 Highest honors for semester

4.8 ¢ The switch Statement 217

3. Implement the following decision table using a multiple-alternative if state-
ment. Assume that the wind speed is given as an integer.

Wind Speed (mph) Category

below 25 not a strong wind
25-38 strong wind
39-54 gale

55-72 whole gale

above 72 hurricane

4. Write a multiple-alternative if statement to implement the following decision
table that categorizes a systolic blood pressure reading (pressure as ventricles
contract) as “normal,” “pre-hypertension,” or “hypertension.” Assume that the
systolic blood pressure has been input as an integer.

Systolic Blood Pressure Category

140 and higher Hypertension
120-139 Pre-hypertension
Under 120 Normal

4.8 The switch Statement

The switch statement may also be used in C to select one of several alternatives.
The switch statement is especially useful when the selection is based on the value
of a single variable or of a simple expression (called the controlling expression). The
value of this expression may be of type int or char, but not of type double.

EXAMPLE 4.20

Figure 4.13 shows a program that reads a ship’s serial number and displays the class
of the ship. Each ship serial number begins with a letter indicating the class of the
ship. The program first reads the first letter of a ship’s serial number into the char
variable class and then displays that character.

The switch statement displays a message indicating the class of the ship. It imple-
ments the following decision table.

Class ID Ship Class
Borb Battleship
Corc Cruiser
Dord Destroyer

Forf Frigate

218

OO O

H W W W Wwwwwww wWNNNMNNNNMNNNNNSDQ@QQ@Q@Q Q2222
CPPWNOUVARWNSAOOINPURWNS2OLOINOMWAWNROL

Chapter 4 o Selection Structures: If and Switch Statements

FIGURE 4.13 Program Using a switch Statement for Selection

/*
* Reads serial number and displays class of ship
*/

#include <stdio.h>

int
main(void)

{
char class; /* input - character indicating class of ship */
/* Read first character of serial number */
printf("Enter ship serial number> ");
scanf ("%c", &class); /* scan first letter */
/* Display first character followed by ship class */
printf("Ship class is %c: ", class);
switch (class) {
case 'B':
case 'b':
printf("Battleship\n");
break;
case 'C':
case 'c':
printf("Cruiser\n");
break;
case 'D':
case 'd':
printf("Destroyer\n");
break;
case 'F':
case 'f':
printf("Frigate\n");
break;
default:
printf ("Unknown\n");
}
return (0);
}

(continued)

FIGURE 4.13

4.8 o The switch Statement 219

(continued)

Sample Run 1

Enter ship serial number> £3456

Ship class is f: Frigate

Sample Run 2

Enter ship serial number> P210

Ship class is P: Unknown

The switch statement displays a message that depends on the value of the control-
ling expression, that is, the value of the variable class (type char). First, this expres-
sion is evaluated; then, the list of case labels (case 'B':, case 'b':, case 'C':,
etc.) is searched until one label that matches the value of the controlling expression
is found. Statements following the matching case label are executed until a break
statement is encountered. The break causes an exit from the switch statement, and
execution continues with the statement that follows the closing brace of the switch
statement body. If no case label matches the value of the switch statement’s con-
trolling expression, the statements following the default label are executed, if there
is a default label. If not, the entire switch statement body is skipped.

Using a string such as "Cruiser" or "Frigate" as a case label is a common
error. It is important to remember that type int and char values may be used as case
labels, but strings and type double values cannot be used. Another common error is
the omission of the break statement at the end of one alternative. In such a situation,
execution “falls through” into the next alternative. We recommend using a blank line
after each break statement to emphasize the fact that there is no “fall-through.”

Forgetting the closing brace of the switch statement body is also easy to do. If
the brace is missing and the switch has a default label, the statements following
the switch statement become part of the default case.

The following syntax display shows the form of the switch statement as a
multiple-alternative decision structure.

switch Statement

SYNTAX: switch (controlling expression) {
label set,
statements,

break;
(continued)

220

Chapter 4 o Selection Structures: If and Switch Statements

label set,
statements,
break;

label set,
statements,
break;

default:
statementsy
}
EXAMPLE: /* Determine life expectancy of a standard light
bulb */
switch (watts) {
case 25:
life = 2500;
break;

case 40:

case 60:
life = 1000;
break;

case 75:

case 100:
life = 750;
break;

default:
life = 0;
}

INTERPRETATION: The controlling expression, an expression with a value of type int or type
char, is evaluated and compared to each of the case labels in the /abel sets until a match is
found. A label set is made of one or more labels of the form case followed by a constant
value and a colon. When a match between the value of the controlling expression and a
case label value is found, the statements following the case label are executed until a
break statement is encountered. Then the rest of the switch statement is skipped.

Notes: The statements following a case label may be one or more C statements, so you do
not need to make multiple statements into a single compound statement using braces. If no
case label value matches the controlling expression, the entire switch statement body is
skipped unless it contains a default label. If so, the statements following the default
label are executed when no other case label value matches the controlling expression.

4.8 ¢ The switch Statement 221

Comparison of Nested if Statements and the

switch Statement

You can use a nested if statement, which is more general than the switch state-
ment, to implement any multiple-alternative decision. The switch as described in
the syntax display is more readable in many contexts and should be used whenever
practical. Case labels that contain type double values or strings are not permitted.

You should use the switch statement when each label set contains a reason-
able number of case labels (a maximum of ten). However, if the number of values
is large, use a nested if statement. You should include a default label in switch
statements wherever possible. The discipline of trying to define a default will help
you to consider what will happen if the value of your switch statement’s controlling
expression falls outside your set of case label values.

The UNIX Connection

The language in which the fundamental components
of UNIX systems are written and the base language
for most other operating systems, C, is an outgrowth
of the development of the first UNIX operating system
created by Ken Thompson and Dennis Ritchie.

At the time of its development, UNIX was crucial
to making computers more accessible. Until the late
1960s, only a few organizations had the luxury of
owning computers, and even then, these computers
were sprawling, monolithic systems like IBM’s 0S/360.
It was not until the next generation of computers,
mini-computers, that time-sharing made it possible
for users to connect to and use a computer interac-
tively via terminals. This interactive computer usage,
pioneered by operating systems such as UNIX, made
computers far more accessible.

When Thompson and Ritchie built the first UNIX
system in 1969, they were inspired by the interactive
feel of the Multics system, then being developed at
MIT (as a joint project of MIT, General Electric, and
Bell Laboratories). When the developers rewrote the
UNIX kernel, the heart of the operating system, in
1973, they used the C language to do it. Ever since
then, the UNIX system calls that programs use to
request services from the kernel have been defined

as C functions. The use of these system calls made it
very natural to write application programs in C, and
later in C++. Many UNIX user programs also follow C’s
syntactic conventions.

The connection between C and UNIX runs in both
directions. Any C program you may write is going to
call upon functions in the C library either implicitly
or explicitly. Even the simplest do-nothing program
implicitly calls the exit function, which in turn calls
upon the operating environment to terminate the
program. Many of the other functions in the stand-
ard C library such as getc and time also require
support from the operating system, and that support
is modeled on UNIX. The code for those functions
involves a request to the operating system for system
services. Although there are many flavors of UNIX,
they all include a “Programmer’s Library” contain-
ing functions closely resembling the C library. Those
functions are themselves defined in terms of a C
interface.

In the other direction, many UNIX utilities that
include programming facilities have borrowed C syntax
and semantics. The best example is the “shell script”
facility, usually just called the “shell.” A simple shell
script is a text file containing operating system com-
mands to execute along with some logic to control the
order of execution. A good example of C syntax in the

i

CIN FOCUS

r

]

shell is the use of the && and || operators. In C, they
perform short-circuit evaluation of a logical expres-
sion. In the shell, they behave similarly and can provide
conditional execution of a program. Evaluating the
shell expression a && b, where a and b are programs,
executes the program a. If the execution succeeds,
then b is executed; if it fails, b is not executed. Similarly,
a || b executes a and then executes b only if the execu-
tion of a failed.

The connection between C and UNIX was more
obvious to the average user in the days when most
computer interfaces were text-based. The rise of
graphical user interfaces has hidden the connection
from most users, except systems programmers. With
a graphical interface, user-level programs have very
little syntax in the usual sense: most input is provided
by moving and clicking a mouse rather than by typing
text. The C syntax that manifests itself in many UNIX
utilities is irrelevant to these programs.

Many of the user-level programs available under
UNIX systems are now written in languages such as Perl,

L]

Self-Check

Chapter 4 o Selection Structures: If and Switch Statements

Python, and TCL/TK. These languages generally view the
machine at a higher, more abstract level than C. They
are not appropriate for lower-level programming such
as the code required for the UNIX kernel, but they work
very well for graphical programs.

Moreover, with the almost universal use of C and
its derivative C++ for writing other operating systems
and with the C and C++ compilers available for those
systems, one can no longer assume that C code is
being written for a UNIX environment. The universal-
ity of C and C++ as systems programming languages,
paradoxically, has severed that half of the connection
between C and UNIX. The result of all these develop-
ments is that the UNIX connection to C, while of great
historical importance and still vital to systems program-
mers, is no longer as visible as it once was.

Many thanks to Paul Abrahams, author of “UNIX
for the Impatient” and a past president of the
Association for Computing Machinery, for contribut-
ing his UNIX insights to this article.

1. What will be printed by this carelessly constructed switch statement if the

value of coloris 'R'?

switch (color) { /* break statements missing */

case 'R':

printf("red\n");

case 'B':
printf("blue\n");
case 'Y':
printf("yellow\n");
}

2. Why can’t we rewrite our multiple-alternative if statement code from

Examples 4.16 and 4.17 using switch statements?

Programming

1.

Write a switch statement that assigns to the variable lumens the expected
brightness of a standard light bulb whose wattage has been stored in watts.
Use this table:

4.9 ¢ Common Programming Errors 223

Watts Brightness (in Lumens)
15 125

25 215

40 500

60 880

75 1000

100 1675

Assign -1 to lumens if the value of watts is not in the table.
2. Write a nested if statement equivalent to the switch statement described in
the first programming exercise.

4.9 Common Programming Errors

The fact that C relational and equality operators give a result of 1 for true and 0 for
false means that C interprets some common mathematical expressions in a way that
seems surprising at first. You would probably not anticipate the fact that the follow-
ing if statement displays condition is true for all values of x.

if (0 <= x <= 4)
printf("Condition is true\n");

For example, let’s consider the case when x is 5. The value of 0 <= 51is 1, and 1 is
certainly less than or equal to 4t In order to check if x is in the range 0 to 4, you
should use the condition

(0 <= x && x <= 4)

Remember that the C equality operator is ==. If you slip up and use =, the
mathematical equal sign, the compiler can detect this error only if the first operand
is not a variable. Otherwise, your code will simply produce incorrect results. For
example, the code fragment that follows always prints x is 10, regardless of the
value of x.

if (x = 10)
printf("x is 10");

The assignment operator stores the value 10 in x. The value of an assignment
expression is the value assigned, so in this case the value of the if condition of the
statement is 10. Since 10 is nonzero, C views it as meaning true and executes the
true task.

Don't forget to parenthesize the condition of an if statement and to enclose
in braces a single-alternative if used as a true task within a double-alternative if.

224

Chapter 4 o Selection Structures: If and Switch Statements

The braces will force the else to be associated with the correct if. Also enclose
in braces a compound statement used as a true task or false task. If the braces are
missing, only the first statement will be considered part of the task. This can lead
to a syntax error if the braces are omitted from the true task of a double-alternative
if. Leaving out the braces on the false task of a double-alternative if or on the true
task of a single-alternative if will not usually generate a syntax error; the omission
will simply lead to incorrect results. In the example that follows, the braces around
the true task are missing. The compiler assumes that the semicolon at the end of the
assignment statement terminates the if statement.

if (x > 0)
sum = sum + X;
printf("Greater than zero\n");
else
printf("Less than or equal to zero\n");

The compiler may generate an unexpected symbol syntax error when it reaches
the reserved word else.

When writing a nested if statement, try to select the conditions so that you can
use the multiple-alternative format shown in Section 4.7. When possible, the logic
should be constructed so each intermediate condition falls on the false branch of the
previous decision. If more than one condition can be true at the same time, place
the most restrictive condition first.

Remember that the C compiler matches each else with the closest unmatched
if. If you are not careful, you may get a pairing that is different from what you
expect. This may not cause a syntax error, but it will affect the outcome.

In switch statements, make sure the controlling expression and case labels are
of the same permitted type (int or char but not double). Remember to include a
default case; otherwise the entire body of the switch statement will be skipped if
the controlling expression value is not listed in any of the case labels.

Don’t forget that the body of the switch statement is a single compound state-
ment, enclosed in one set of braces. However, the statements of each alternative
within the switch are not enclosed in braces; instead, each alternative is ended by a
break statement. If you omit a break statement, your program “falls through” and
executes the statements for the next case.

Chapter Review

1. Use control structures to control the flow of statement execution in a program.
The compound statement is a control structure for sequential execution.

2. Use selection control structures to represent decisions in an algorithm and
use pseudocode to write them in algorithms. Use the if statement or switch
statement to code decision steps in C.

Chapter Review 225

Expressions whose values indicate whether certain conditions are true can be
written

using the relational operators (<, <=, >, >=) and equality operators (==,

1=) to compare variables and constants

using the logical operators (&& (and), || (or), ! (not)) to form more com-
plex conditions

Data flow information in a structure chart indicates whether a variable proc-
essed by a subproblem is used as an input or an output, or as both. An input
provides data that are manipulated by the subproblem, and an output returns
a value copied from an input device or computed by the subproblem. The
same variable may be an input to one subproblem and an output from another.
Extending a solution is a problem-solving technique in which you solve a new
problem by modifying the solution to an existing problem. Writing modular
programs (with function subprograms) makes it easier to apply this technique.

A hand trace of an algorithm verifies whether it is correct. You can discover

errors in logic by carefully hand tracing an algorithm. Hand tracing an algo-
rithm before coding it as a program will save you time in the long run.

7. Nested if statements are common in C and are used to represent decisions
with multiple-alternatives. Programmers use indentation and the multiple-
alternative decision form when applicable to enhance readability of nested

if statements.

8. The switch statement implements decisions with several alternatives,
where the alternative selected depends on the value of a variable or
expression (the controlling expression). The controlling expression can be

type int or char, but not type double.

NEW C CONSTRUCTS

Construct

Effect

if Statement
One Alternative

if (x != 0.0)
product = product * x;

Double-Alternative

if (temp > 32.0)
printf("%$.1f: above freezing",
temp) ;
else
printf("%.1f: freezing", temp);

Multiplies product by x
only if x is nonzero.

If temp is greater than
32.0, itis labeled as
above freezing
otherwise, it is labeled as
freezing

(continued)

226

Chapter 4 o Selection Structures: If and Switch Statements

NEW C CONSTRUCTS (continued)

Construct

Effect

Multiple-Alternative

if (x < 0.0) {
printf("negative");
absx = -x;

} else if (x == 0.0) {

Displays one of three
messages depending on
whether x is negative,
positive, or zero. Sets

absx to represent the
absolute value or magni-
tude of x.

printf("zero");
absx = 0.0;

} else {
printf("positive");
absx = x;

}

switch Statement

switch (next ch) { Displays one of five
case 'A': messages based on the
case 'a': value of next_ch (type
char). If next_chis
‘D', 'd',or'F', "f",
the student is put on pro-
bation. If next_ch is not
listed in the case labels,
case 'b': displays an error message.

printf("Good");

break;

printf("Excellent");
break;

case 'B':

case 'C':

case 'c':
printf("O0.K.");
break;

case 'D':

case 'd':

case 'F':

case 'f':
printf("Poor, student is ");
printf("on probation");
break;

default:
printf("Invalid letter grade");

Quick-Check Exercises 227

Quick-Check Exercises

1. An if statement implements execution.

What is a compound statement?

A switch statement is often used instead of

What can be the values of an expression with a relational operator?
The relational operator <= means .

A hand trace is used to verify that a(n) is correct.

List the three types of control structures.

Correct the syntax errors.

S A

if x > 25.0 {
else

}
9. What value is assigned to fee by the if statement when speed is 757

if (speed > 35)
fee = 20.0;
else if (speed > 50)
fee = 40.00;
else if (speed > 75)
fee = 60.00;

10. Answer Exercise 9 for the if statement that follows. Which if statement
seems reasonable?

if (speed > 75)
fee = 60.0;
else if (speed > 50)
fee = 40.00;
else if (speed > 35)
fee = 20.00;

11. What output line(s) are displayed by the statements that follow when grade is
'1'? When grade is 'B'? When grade is 'b'?

switch (grade) {
case 'A':

points = 4;
break;

case 'B':
points = 3;

break;

228 Chapter 4 o Selection Structures: If and Switch Statements

12.

13.

case 'C':
points = 2;
break;

case 'D':
points = 1;
break;

case 'E':
case 'I':
case 'W':
points = 0;
}
if (points > 0)
printf ("Passed, points earned = %d\n", points);
else
printf("Failed, no points earned\n");

Explain the difference between the statements on the left and the statements
on the right. For each group of statements, give the final value of x if the ini-
tial value of x is 1.

if (x >= 0) if (x >= 0)

x =x + 1; Xx =x + 1;
else if (x >= 1) if (x >= 1)

X =X + 2; X =X + 2;

a. Evaluate the expression
1 && (30 % 10 >= 0) && (30 % 10 <= 3)
b. Is either set of parentheses required?
c. Write the complement of the expression two ways. First, add one opera-

tor and one set of parentheses. For the second version, use DeMorgan’s
theorem.

Answers to Quick-Check Exercises

PN Tk L

conditional

one or more statements surrounded by braces

nested if statements or a multiple-alternative if statement

Oand 1

less than or equal to

algorithm

sequence, selection, repetition

Parenthesize condition, remove braces (or add them around else: } else {),
and add a semicolon to the first assignment statement.

10.
11.

12.

13.

Review Questions 229

20.00 (first condition is met)
40.00, the one in 10
when gradeis 'I':

Failed, no points earned
when gradeis 'B':

Passed, points earned = 3
when gradeis 'b':

The switch statement is skipped so the output printed depends on the previ-
ous value of points (which may be garbage).

A nested if statement is on the left; a sequence of if statements is on the
right. On the left x becomes 2; on the right x becomes 4.

a. 1

b. no

c. !(1 && (30 % 10 >=0) && (30 % 10 <= 3))
0 || (30 %10<0) || (30 % 10 > 3)

Review Questions

1.

2.

Making a decision between two alternative courses of action is usually imple-
mented with a(n) statement in C.

Trace the following program fragment; indicate which function will be called
if a data value of 27.34 is entered.

printf("Enter a temperature> ");
scanf("%1f", &temp);
if (temp > 32.0)
not_freezing();
else
ice_forming();

Write a multiple-alternative if statement to display a message indicating

the educational level of a student based on the student’s number of years of
schooling (0, none; 1-5, elementary school; 6-8, middle school; 9-12, high
school; more than 12, college). Print a message to indicate bad data as well.
Write a switch statement to select an operation based on the value of inven-
tory. Increment total_paper by paper order if inventoryis 'B' or 'c';
increment total_ribbon by ribbon_order if inventoryis 'E', 'F', or 'D';
increment total_label by label order if inventoryis 'a' or 'x'. Do noth-
ing if inventory is 'M'. Display an error message if the value of inventory is
not one of these eight letters.

Write an if statement that displays an acceptance message for an astronaut
candidate if the person’s weight is between the values of opt_min and opt_max

230 Chapter 4 ¢ Selection Structures: If and Switch Statements

FIGURE 4.14 Flow Diagram for Review Question 6

!

false true
age > 59

true true

age > 20

"Adult"

false "Wor
senior"

"Retired
senior"

Y

inclusive, the person’s age is between age_min and age_max inclusive, and the
person is a nonsmoker (smoker is false).
6. Implement the flow diagram in Fig. 4.14 using a nested if structure.

Programming Projects

1. Keith’s Sheet Music needs a program to implement its music teacher’s dis-
count policy. The program is to prompt the user to enter the purchase total
and to indicate whether the purchaser is a teacher. The store plans to give
each customer a printed receipt, so your program is to create a nicely format-
ted file called receipt.txt. Music teachers receive a 10% discount on their
sheet music purchases unless the purchase total is $100 or higher. In that
case, the discount is 12%. The discount calculation occurs before addition of
the 5% sales tax. Here are two sample output files—one for a teacher and one
for a nonteacher.

Programming Projects 231

Total purchases $122.00
Teacher's discount (12%) 14.64
Discounted total 107.36
Sales tax (5%) 5.37
Total $112.73
Total purchases $ 24.90
Sales tax (5%) 1.25
Total $ 26.15

Note: to display a % sign, place two % signs in the format string:
printf("%$d%%", SALES TAX);

Write a program that calculates the user’s body mass index (BMI) and catego-
rizes it as underweight, normal, overweight, or obese, based on the following
table from the United States Centers for Disease Control:

BMI Weight Status
Below 18.5 Underweight
18.5-24.9 Normal
25.0-29.9 Overweight

30.0 and above Obese

To calculate BMI based on weight in pounds (wt_[b) and height in inches
(ht_in), use this formula (rounded to tenths):

703 X wt_Ib
ht_in®

Prompt the user to enter weight in pounds and height in inches.

While spending the summer as a surveyor’s assistant, you decide to write a pro-
gram that transforms compass headings in degrees (0 to 360) to compass bear-
ings. A compass bearing consists of three items: the direction you face (north or
south), an angle between 0 and 90 degrees, and the direction you turn before
walking (east or west). For example, to get the bearing for a compass heading
of 110.0 degrees, you would first face due south (180 degrees) and then turn
70.0 degrees east (180.0 — 70.0 = 110.0). Therefore, the bearing is South 70.0
degrees East. Be sure to check the input for invalid compass headings.

Write a program that reports the contents of a compressed-gas cylinder based
on the first letter of the cylinder’s color. The program input is a character rep-
resenting the observed color of the cylinder: Y or y’ for yellow, ‘O’ or ‘o’ for
orange, and so on. Cylinder colors and associated contents are as follows:

orange ammonia

brown carbon monoxide
yellow hydrogen

green oxygen

232

Chapter 4 o Selection Structures: If and Switch Statements

Your program should respond to input of a letter other than the first letters of
the given colors with the message, Contents unknown.

The National Earthquake Information Center has asked you to write a pro-
gram implementing the following decision table to characterize an earthquake
based on its Richter scale number.

Richter Scale Number (n) Characterization

n<5.0 Little or no damage

50=n<55 Some damage

55=n<65 Serious damage: walls may crack or fall
6.5=n<75 Disaster: houses and buildings may collapse
higher Catastrophe: most buildings destroyed

Could you handle this problem with a switch statement? If so, use a switch
statement; if not, explain why.

Write a program that takes the x—y coordinates of a point in the Cartesian
plane and prints a message telling either an axis on which the point lies or the
quadrant in which it is found.

Qll Ql

Qlll Qlv

Sample lines of output:

(-1.0, -2.5) is in quadrant III
(0.0, 4.8) is on the y-axis

Write a program that determines the day number (1 to 366) in a year for a
date that is provided as input data. As an example, January 1, 1994, is day 1.
December 31, 1993, is day 365. December 31, 1996, is day 366, since 1996 is
aleap year. A year is a leap year if it is divisible by four, except that any year
divisible by 100 is a leap year only if it is divisible by 400. Your program should
accept the month, day, and year as integers. Include a function leap that
returns 1 if called with a leap year, 0 otherwise.

Programming Projects 233

8. Write a program that interacts with the user like this:

(1) Carbon monoxide

(2) Hydrocarbons

(3) Nitrogen oxides

(4) Nonmethane hydrocarbons

Enter pollutant number>> 2

Enter number of grams emitted per mile>> 0.35

Enter odometer reading>> 40112

Emissions exceed permitted level of 0.31 grams/mile.

Use the table of emissions limits below to determine the appropriate message.!

First 50,000 Miles Second 50,000 Miles
carbon monoxide 3.4 grams/mile 4.2 grams/mile
hydrocarbons 0.31 grams/mile 0.39 grams/mile
nitrogen oxides 0.4 grams/mile 0.5 grams/mile
nonmethane hydrocarbons 0.25 grams/mile 0.31 grams/mile

9. Chatflow Wireless offers customers 600 weekday minutes for a flat rate of
39.99. Night (8 .M. to 7 A.M.) and weekend minutes are free, but additional
weekday minutes cost 0.40 each. There are taxes of 5.25% on all charges.
Write a program that prompts the user to enter the number of weekday min-
utes, night minutes, and weekend minutes used, and calculates the monthly
bill and average cost of a minute before taxes. The program should display
with labels all the input data, the pretax bill and average minute cost, the
taxes, and the total bill. Store all monetary values as whole cents (rounding
the taxes and average minute cost), and divide by 100 for display of results.

10. Write a program to control a bread machine. Allow the user to input the type
of bread as W for White and S for Sweet. Ask the user if the loaf size is double
and if the baking is manual. The following table details the time chart for the
machine for each bread type. Display a statement for each step. If the loaf
size is double, increase the baking time by 50 percent. If baking is manual,
stop after the loaf-shaping cycle and instruct the user to remove the dough for
manual baking. Use functions to display instructions to the user and to com-
pute the baking time.

!Adapted from ENERGY: PRINCIPLES, PROBLEMS, ALTERNATIVES, 4th edition by Joseph Priest.
Copyright © 1991 by Pearson Education, Inc. Printed and electronically reproduced by permission of
Pearson Education, Inc., Upper Saddle River, New Jersey.

234 Chapter 4 o Selection Structures: If and Switch Statements

11.

BREAD TIME CHART

Operation White Bread Sweet Bread
Primary kneading 15 mins 20 mins
Primary rising 60 mins 60 mins
Secondary kneading 18 mins 33 mins
Secondary rising 20 mins 30 mins

Loaf shaping 2 seconds 2 seconds
Final rising 75 mins 75 mins
Baking 45 mins 35 mins
Cooling 30 mins 30 mins

The table below shows the normal boiling points of several substances. Write
a program that prompts the user for the observed boiling point of a substance
in °C and identifies the substance if the observed boiling point is within 5% of
the expected boiling point. If the data input is more than 5% higher or lower
than any of the boiling points in the table, the program should output the
message Substance unknown.

Substance Normal boiling point (°C)
Water 100

Mercury 357

Copper 1187

Silver 2193

Gold 2660

Your program should define and call a function within_x_percent that takes
as parameters a reference value ref, a data value data, and a percentage value
x and returns 1 meaning true if data is within x % of ref—that is, (ref — x%
* ref) < data < (ref + x % * ref).Otherwise within_x_percent would
return zero, meaning false. For example, the call within_x_percent (357,
323, 10) would return true, since 10% of 357 is 35.7, and 323 falls between
321.3 and 392.7.

Repetition and
Loop Statements

CHAPTER OBJECTIVES

To understand why repetition is an important control
structure in programming

To learn about loop control variables and the three steps
needed to control loop repetition

To learn how to use the C for, while, and do-while
statements for writing loops and when to use each
statement type

To learn how to accumulate a sum or a product within a
loop body

To learn common loop patterns such as counting loops,
sentinel-controlled loops, and flag-controlled loops

To understand nested loops and how the outer loop con-
trol variable and inner loop control variable are changed
in a nested loop

To learn how to debug programs using a debugger

To learn how to debug programs by adding diagnostic
output statements

CHAPTER

loop a control
structure that repeats
a group of stepsin a
program

In your programs so far, the statements in the program body execute only once.
However, in most commercial software that you use, you can repeat a process many
times. For example, when using an editor program or a word processor, you can move
the cursor to a program line and perform as many edit operations as you need to.

Repetition, youll recall, is the third type of program control structure
(sequence, selection, repetition), and the repetition of steps in a program is called a
loop. In this chapter we describe three C loop control statements: while, for, and
do-while. In addition to describing how to write loops using each statement, we
describe the advantages of each and explain when it is best to use each one. Like if
statements, loops can be nested, and the chapter demonstrates how to write and use
nested loops in your programs.

5.1 Repetition in Programs

loop body the
statements that are
repeated in the loop

Just as the ability to make decisions is an important programming tool, so is the abil-
ity to specify repetition of a group of operations. For example, a company that has
seven employees will want to repeat the gross pay and net pay computations in its
payroll program seven times, once for each employee. The loop body contains the
statements to be repeated.

Writing out a solution to a specific case of a problem can be helpful in prepar-
ing you to define an algorithm to solve the same problem in general. After you solve
the sample case, ask yourself some of the following questions to determine whether
loops will be required in the general algorithm:

1. Were there any steps I repeated as I solved the problem? If so, which ones?

2. If the answer to question 1 is yes, did I know in advance how many times to
repeat the steps?

3. If the answer to question 2 is no, how did I know how long to keep repeating
the steps?

Your answer to the first question indicates whether your algorithm needs a loop
and what steps to include in the loop body if it does need one. Your answers to the
other questions will help you determine which loop structure to choose for your
solution. Figure 5.1 diagrams the relationship between these questions and the type
of loop you should choose. Table 5.1 defines each of the kinds of loops you may
need and refers you to the sections(s) of this chapter where you will find implemen-
tations of these loops.

5.1 e Repetition in Programs 237

FIGURE 5.1 l

Flow Diagram
of Loop Choice
Process

Any steps No No loop
repeated? required

Use one of the conditional loops:
sentinel-controlled
endfile-controlled
input validation
general conditional

Know in advance
how many times
to repeat?

Use a counting
loop

TABLE 5.1 Comparison of Loop Kinds

C Section
Implementation Containing
Kind When Used Structures an Example
Counting loop We can determine before loop execution while 5.2
exactly how many loop repetitions will be for 5.4
needed to solve the problem.
Sentinel-controlled loop Input of a list of data of any length ended while, for 5.6
by a special value
Endfile-controlled loop Input of a single list of data of any length while, for 5.6
from a data file
Input validation loop Repeated interactive input of a data value do-while 5.8
until a value within the valid range is entered
General conditional loop Repeated processing of data until a desired while, for 5.5

condition is met

238 Chapter 5 * Repetition and Loop Statements

|

Self-Check

1. Choose an appropriate kind of loop from Table 5.1 for solving each of the fol-
lowing problems.

a. Calculate the sum of the test scores of a class of 35 students. (Hint:
Initialize sum to zero before entering loop.)

b. Print weekly paychecks for a list of employees. The following data are to
be entered interactively for each employee: ID, hours worked, and hourly
pay rate. An ID of zero marks the end of the data.

c. Process a data file of Celsius temperatures. Count how many are above
100°C.

5.2 Counting Loops and the while Statement

counter-controlled
loop (counting

loop) a loop whose
required number

of iterations can be
determined before loop
execution begins

The loop shown in pseudocode below is called a counter-controlled loop (or
counting loop) because its repetition is managed by a loop control variable whose
value represents a count. A counter-controlled loop follows this general format:

Set loop control variable to an initial value of 0.
while loop control variable < final value

Increase loop control variable by 1.

We use a counter-controlled loop when we can determine prior to loop execu-
tion exactly how many loop repetitions will be needed to solve the problem. This
number should appear as the final value in the while condition.

The while Statement

Figure 5.2 shows a program fragment that computes and displays the gross pay for
seven employees. The loop body is the compound statement that starts on the third
line. The loop body gets an employee’s payroll data and computes and displays that
employee’s pay. After seven weekly pay amounts are displayed, the statement fol-
lowing the loop body executes and displays the message A11 employees processed.

The three color lines in Fig. 5.2 control the looping process. The first statement

count_emp = 0; /* no employees processed yet */

stores an initial value of 0 in the variable count_emp, which represents the count of
employees processed so far. The next line evaluates the condition count_emp < 7. If
the condition is true, the compound statement representing the loop body is executed,

5.2 e Counting Loops and the while Statement 239

FIGURE 5.2 Program Fragment With a Loop

1. count_emp = 0; /* no employees processed yet */
2. while (count_emp < 7) { /* test value of count_emp */
3 printf ("Hours> ");

4 scanf ("%d", &hours);

5. printf("Rate> ");

6. scanf("%1f", &rate);

7 pay = hours * rate;

8 printf("Pay is $%6.2f\n", pay);

9 count_emp = count emp + 1; /* increment count_emp */
0
1.

b
printf("\nAll employees processed\n");

causing a new pair of data values to be scanned and a new pay amount to be computed
and displayed. The last statement in the loop body

count_emp = count_emp + 1; /* increment count_emp */

adds 1 to the current value of count_emp. After executing the last step in the loop
body, control returns to the line beginning with while and the condition is reevalu-
ated for the next value of count_emp. The loop body is executed once for each value
of count_emp from 0 to 6. Eventually, count_emp becomes 7, and the condition
evaluates to false (0). When this happens, the loop body is not executed and control
passes to the display statement that follows the loop body. The expression follow-
loop repetition ing the reserved word while is called the loop repetition condition. The loop is
condition the repeated when this condition is true—that is, when its value is not 0. The loop is
condition that controls : . e
loop repetition exited when this condition is false.

The flowchart in Fig. 5.3 summarizes what we have explained so far about
while loops. In the flowchart, the expression in the diamond-shaped box is evalu-
ated first. If that expression is true, the loop body is executed, and the process is
repeated. The while loop is exited when the expression becomes false. If the loop
repetition condition is false when it is first tested, then the loop body is not executed
at all.

Make sure you understand the difference between the while statement in
Fig. 5.3 and the following if statement:

if (count_emp < 7) {

}

In an if statement, the compound statement after the parenthesized condition
executes at most only once. In a while statement, the compound statement can
execute more than once.

240 Chapter 5 ¢ Repetition and Loop Statements

FIGURE 5.3

Flowchart for
a while Loop

loop control
variable the variable
whose value controls
loop repetition

infinite loop a loop
that executes forever

A

frue
count_emp

<7 i

Get data

ral
arse Compute pay
Display pay
Exit loop Increase count_emp

by 1

Syntax of the while Statement In Fig. 5.2 the variable count_emp is called
the loop control variable because its value determines whether the loop body is
repeated. The loop control variable count_emp must be (1) initialized, (2) tested,
and (3) updated for the loop to execute properly. Each step is summarized next.

Initialization. count_emp is set to an initial value of 0 (initialized to 0) before
the while statement is reached.
Testing. count_emp is tested before the start of each loop repetition (called an

iteration or a pass).
Updating. count_emp is updated (its value increased by 1) during each iteration.

Similar steps must be performed for every while loop. Without the initializa-
tion, the initial test of count_emp is meaningless. The updating step ensures that the
program progresses toward the final goal (count_emp >= 7) during each repetition
of the loop. If the loop control variable is not updated, the loop will execute “for-
ever.” Such a loop is called an infinite loop.

while Statement

SYNTAX: while (/oop repetition condition)
statement;
EXAMPLE: /* Display N asterisks. */

count_star = 0;

while (count_star < N) ({
printf("*");
count_star = count_star + 1;

} (continued)

5.2 e Counting Loops and the while Statement 241

INTERPRETATION: The loop repetition condition (a condition to control the loop process) is
tested; if it is true, the statement (loop body) is executed, and the loop repetition condition is
retested. The statement is repeated as long as (while) the loop repetition condition is true.
When this condition is tested and found to be false, the while loop is exited and the next
program statement after the while statement is executed.

Note: If loop repetition condition evaluates to false the first time it is tested, statement is not

executed.
Self-Check
1. Predict the output of this program fragment:
i=0;
while (i <= 5) {
printf("%3d %3d\n", i, 10 - i);
i=1i+1;
}
2. What is displayed by this program fragment for an input of 8?

scanf("%d", &n);

ev = 0;

while (ev < n) {
printf("%3d", ev);
ev = ev + 2;

}

printf("\n");

Programming

1.

Write a program fragment that produces this output:

SN -

32
64

o Uk W N = o
[ee]

242 Chapter 5 ¢ Repetition and Loop Statements

5.3 Computing a Sum or a Product in a Loop

Loops often accumulate a sum or a product by repeating an addition or multiplica-
tion operation as demonstrated in Examples 5.1 and 5.2.

EXAMPLE 5.1

accumulator a
variable used to store a
value being computed
in increments during
the execution of a loop

The program in Fig. 5.4 has a while loop similar to the loop in Fig. 5.2. Besides dis-
playing each employee’s pay, it computes and displays the company’s total payroll.
Prior to loop execution, the statements

total pay = 0.0;
count _emp = 0;

initialize both total pay and count_emp to 0, where count_emp is the counter
variable. Here total_pay is an accumulator variable, and it accumulates the total
payroll value. Initializing total_pay to 0 is critical; if you omit this step, your final
total will be off by whatever value happens to be stored in total_pay when the
program begins execution.

In the loop body, the assignment statement
total pay = total pay + pay; /* Add next pay. */

adds the current value of pay to the sum being accumulated in total_ pay.

Consequently, the value of total_pay increases with each loop iteration. Table 5.2
traces the effect of repeating this statement for the three values of pay shown in the
sample run. Recall that iteration means a pass through the loop.

FIGURE 5.4 Program to Compute Company Payroll

1.

2.

3.

4

5. int

6. main(void)
7. {

8. double
9. int
10. int
11. double
12. double
13. double

/* Compute the payroll for a company */

#include <stdio.h>

total pay; /* company payroll */
count_emp; /* current employee */
number_emp; /* number of employees */
hours; /* hours worked */
rate; /* hourly rate */
pay; /* pay for this period */

(continued)

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

5.3 ¢ Computing a Sum or a Product in a Loop

FIGURE 5.4 (continued)

243

/* Get number of employees. */
printf("Enter number of employees> ");
scanf("%d", &number_ emp);

/* Compute each employee's pay and add it to the payroll. */

total pay = 0.0;

count_emp = 0;

while (count emp < number emp) {
printf("Hours> ");
scanf ("%1f", &hours);
printf("Rate > $");
scanf ("%$1f", &rate);
pay = hours * rate;
printf("Pay is $%6.2f\n\n", pay);
total pay = total pay + pay;
count_emp = count _emp + 1;

}

printf("All employees processed\n");

printf("Total payroll is $%8.2f\n", total pay);

return (0);

Enter number of employees> 3
Hours> 50

Rate > $5.25

Pay is $262.50

Hours> 6
Rate > $5.00
Pay is $ 30.00

Hours> 15
Rate > $7.00
Pay is $105.00

All employees processed
Total payroll is $ 397.50

/* Add next pay. */

244 Chapter 5 ¢ Repetition and Loop Statements

TABLE 5.2 Trace of Three Repetitions of Loop in Fig. 5.4

Statement hours rate pay total_pay count_emp Effect
? ? ? 0.0 0

count_emp < number emp true
scanf("%$1f", &hours); 50.0 get hours
scanf("%1f", &rate); 5.25 get rate
pay = hours * rate; 262.5 find pay
total pay = total_ pay 262.5 add to

+ pay; total_pay
count_emp = count_emp 1 increment

+ 1; count_emp
count_emp < number_ emp true
scanf("%1f", &hours); 6.0 get hours
scanf("%$1f", &rate); 5.0 get rate
pay = hours * rate; 30.0 find pay
total pay = total_ pay 292.5 add to

+ pay; total pay
count_emp = count_emp 2 increment

+ 1; count_emp
count_emp < number_emp true
scanf("%1f", &hours); 15.0 get hours
scanf ("%$1f", &rate); 7.0 get rate
pay = hours * rate; 105.0 find pay
total pay = total pay 397.5 add pay to

+ pay; total_pay
count_emp = count_emp 3 increment

+ 1;

count_emp

Program Style Writing General Loops

Because the loop in Fig. 5.2 uses the loop repetition condition count_emp < 7, it
processes exactly 7 employees. The loop in Fig. 5.4 is more general. It uses the loop
repetition condition count_emp < number_emp so it can process any number of
employees. The number of employees to be processed must be scanned into vari-
able number_emp before the while statement executes. The loop repetition condi-
tion compares the number of employees processed so far (count_emp) to the total
number of employees (number_emp).

5.3 e Computing a Sum or a Product in a Loop 245

Multiplying a List of Numbers

In a similar way, we can use a loop to compute the product of a list of numbers as
shown in the next example.

EXAMPLE 5.2

The loop that follows multiplies data items together as long as the product remains
less than 10,000. It displays the product calculated so far before asking for the next
data value. The product so far is updated on each iteration by executing the statement

product = product * item; /* Update product */

Loop exit occurs when the value of product is greater than or equal to 10,000.
Consequently, the loop body does not display the last value assigned to product.

/* Multiply data while product remains less than 10000 */
product = 1;
while (product < 10000) {
printf("%d\n", product); /* Display product so far */
printf ("Enter next item> ");
scanf ("%d", &item);
product = product * item; /* Update product */
}

This loop is an example of the general conditional loop presented in Table 5.1,
whose pseudocode is shown below.

1. Initialize loop control variable.
2. Aslong as exit condition hasn’t been met
3. Continue processing.

The product-computation loop’s loop control variable is product, which is
initialized to 1. Its exit condition is that product is greater than or equal to 10,000,
and the steps of the loop body make up the processing mentioned in pseudocode
step 3.

Compound Assignment Operators
We have seen several instances of assignment statements of the form
variable = variable op expression ;

where op is a C arithmetic operator. These include increments and decrements of
loop counters

count_emp = count emp + 1;
time = time - 1;

246

Chapter 5 ¢ Repetition and Loop Statements

TABLE 5.3 Compound Assignment Operators

Equivalent Statement

Statement with Simple with Compound

Assignment Operator Assignment Operator

count_emp = count_emp + 1; count_emp += 1;

time = time - 1; time -= 1;

total time = total time + total time += time;
times;

product = product * item; product *= item;

n=mnsw(x+ 1); n *= x + 1;

as well as statements accumulating a sum or computing a product in a loop, such as

total pay = total pay + pay;
product = product * item;

C provides special assignment operators that enable a more concise notation for
statements of this type. For the operations +, -, *, /, and %, C defines the compound
op = assignment operators +=, -=, *=, /=, and %=. A statement of the form

variable op= expression ;
is an alternative way of writing the statement
variable = variable op (expression) ;

Table 5.3 shows some examples using compound assignment operators. The last
example demonstrates the relevance of the parentheses around expression in the
definition of an assignment statement with a compound operator.

Self-Check

1. What output values are displayed by the following while loop for a data
value of 52 Of 6? Of 7?

printf("Enter an integer> ");
scanf("%d", &x);

product = x;

count = 0;

5.4 ¢ The for Statement 247

while (count < 4) {
printf("%d\n", product);
product *= x;
count += 1;

}

In general, for a data value of any number n, what does this loop display?

2. What values are displayed if the call to print£ comes at the end of the loop
instead of at the beginning?

3. The following segment needs some revision. Insert braces where they are
needed and correct the errors. The corrected code should take five integers
and display their sum.

count = 0;

while (count <= 5)

count += 1;

printf ("Next number> ");

scanf("%d", &next num);

next_num += sum;

printf("%d numbers were added; \n", count);
printf("their sum is %d.\n", sum);

4. Where possible, write equivalents for the following statements using com-
pound assignment operators:

/ 5;

*n + 4;

- X *y;
+ (u % v);

+ N Q 0
]
N Q »

Programming

1. Write a program segment that computes 1 +2 +3 + ... + (n-1) +n,
where n is a data value. Follow the loop body with an if statement that com-
pares this value to (n * (n + 1)) / 2 and displays a message that indicates
whether the values are the same or different. What message do you think

will be displayed?

5.4 The for Statement

C provides the for statement as another form for implementing loops. The loops we
have seen so far are typical of most repetition structures in that they have three loop
control components in addition to the loop body:

initialization of the loop control variable,
test of the loop repetition condition, and
change (update) of the loop control variable.

248 Chapter 5 ¢ Repetition and Loop Statements

FIGURE 5.5 Using a for Statement in a Counting Loop

1. /* Process payroll for all employees */

2. total pay = 0.0;

3. for (count_emp = 0; /* initialization */
4. count_emp < number_emp; /* loop repetition condition */
5. count_emp += 1) { /* update */
6. printf ("Hours> ");

7. scanf ("%$1f", &hours);

8. printf ("Rate > $");

9. scanf ("%1f", &rate);

10. pay = hours * rate;

11. printf("Pay is $%6.2f\n\n", pay);

12. total pay = total pay + pay;

13. }

14. printf("All employees processed\n");
15. printf("Total payroll is $%8.2f\n", total pay);

An important feature of the for statement in C is that it supplies a designated place
for each of these three components. A for statement implementation of the loop
from Fig. 5.4 is shown in Fig. 5.5.

The effect of this for statement is exactly equivalent to the execution of the
comparable while loop section of the program in Fig. 5.4. Because the for state-
ment’s heading

for (count_emp = 0; /* initialization */
count_emp < number_ emp; /* loop repetition condition */
count_emp += 1) { /* update */

combines the three loop control steps of initialization, testing, and update in one
place, separate steps to initialize and update count_emp must not appear elsewhere.
The for statement can be used to count up or down by any interval.

Program Style Formatting the for Statement

For clarity, we usually place each expression of the for heading on a separate line.
If all three expressions are very short, we may place them together on one line.
Here is an example:

/* Display nonnegative numbers < max */
for (i = 0; 1 < max; i += 1)
printf("%d\n", 1i);

side effect a change
in the value of a
variable as a result

of carrying out an
operation

5.4 ¢ The for Statement 249

for Statement

SYNTAX: for (initialization expression ;
loop repetition condition;
update expression)
statement;
EXAMPLE: /* Display N asterisks. */
for (count_star = 0;
count_star < Nj;
count_star += 1)
printf("*");

INTERPRETATION: First, the initialization expression is executed. Then, the loop repetition con-
dition is tested. If it is true, the statement is executed, and the update expression is evaluated.
Then the loop repetition condition is retested. The statement is repeated as long as the loop
repetition condition is true. When this condition is tested and found to be false, the for loop
is exited, and the next program statement after the for statement is executed.

Caution: Although C permits the use of fractional values for counting loop control variables
of type double, we strongly discourage this practice. Counting loops with type double
control variables will not always execute the same number of times on different computers.

The body of the for loop is indented. If the loop body is a compound statement
or if we are using a style in which we bracket all loop bodies, we place the opening
brace at the end of the for heading and terminate the statement by placing the clos-
ing brace on a separate line. This closing brace should be aligned with the “f” of the
for that it is ending.

Increment and Decrement Operators

The counting loops that you have seen have all included assignment expressions of
the form

counter = counter + 1
or
counter += 1

The increment operator ++ takes a single variable as its operand. The side effect
of applying the ++ operator is that the value of its operand is incremented by one.
Frequently, ++ is used just for this side effect, as in the following loop in which the
variable counter is to run from 0 up to limit:

for (counter = 0; counter < limit; ++counter)

250 Chapter 5 ¢ Repetition and Loop Statements

The value of the expression in which the ++ operator is used depends on the
position of the operator. When the ++ is placed immediately in front of its operand
(prefix increment), the value of the expression is the variable’s value after incre-
menting. When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented. Compare the
action of the two code segments in Fig. 5.6, given an initial value of 2 in i.

C also provides a decrement operator that can be used in either the prefix or
postfix position. For example, if the initial value of n is 4, the code fragment on the
left prints

3 3
and the one on the right prints
4 3

printf("%3d", --n); printf("%3d", n--);
printf("%3d", n); printf("%3d", n);

You should avoid using the increment and decrement operators in complex
expressions in which the variables to which they are applied appear more than once.
C compilers are expected to exploit the commutativity and associativity of various
operators in order to produce efficient code. For example, this code fragment may
assign y the value 13 (2 * 5 + 3) in one implementation and the value 18 (3 * 5 +
3) in another.

x = 5;
i=2;
y =1 * x + ++i;
A programmer must not depend on side effects that will vary from one compiler
to another.
FIGURE 5.6 i j
Comparison of Before... 2 ?
Prefix and Postfix
Increments
Increments... j = ++i; j o= i++;
prefix: postfix:
Increment i and Use i and then
then use it. increment it.
i] i]
After... 3 3 3 2

5.4 ¢ The for Statement 251

EXAMPLE 5.3 Function factorial (Fig. 5.7) computes the factorial of an integer represented by

the formal parameter n. The loop body executes for decreasing values of i from n
through 2, and each value of i is incorporated in the accumulating product. Loop
exit occurs when i is 1.

Increments and Decrements Other Than 1

We have seen for statement counting loops that count up by one and down by one.
Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit
conversion table.

EXAMPLE 5.4 The table displayed by the program in Fig. 5.8 shows temperature conversions

N o Y G G G O §
N RN ORUTE B RWENESNO

from 10 degrees Celsius to -5 degrees Celsius because of the values of the constant
macros named CBEGIN and CLIMIT. Since the loop update step subtracts CSTEP (5)
from celsius, the value of the counter celsius decreases by five after each rep-
etition. Loop exit occurs when celsius becomes less than cLIMIT—that is, when
celsius is -10. Table 5.4 uses the small circled numbers to trace the execution of
this counting for loop.

FIGURE 5.7 Function to Compute Factorial

ONORSINOIR VIR RN =

/*

* Computes n!

* Pre: n is greater than or equal to zero

*/
int

factorial(int n)

{

int i, /* local variables */
product; /* accumulator for product computation */

product = 1;
/* Computes the product n x (n-1) x (n-2) x ... x 2 x 1 */
for (i = n; 1 > 1; --1i) {

product = product * 1ij;

/* Returns function result */
return (product);

252 Chapter 5 ¢ Repetition and Loop Statements

FIGURE 5.8 Displaying a Celsius-to-Fahrenheit Conversion Table

1. /* Conversion of Celsius to Fahrenheit temperatures */
2.
3. #include <stdio.h>
4
5. /* Constant macros */
6. #define CBEGIN 10
7. #define CLIMIT -5
8. #define CSTEP 5
9.
10. int
11. main(void)
12. {
13. /* Variable declarations */
14. int celsius;
15. double fahrenheit;
16.
17. /* Display the table heading */
18. printf(" Celsius Fahrenheit\n");
19.
20. /* Display the table */
21. 1 for (celsius = CBEGIN;
22. 2 celsius >= CLIMIT;
23. 3 celsius -= CSTEP) {
24. 4 fahrenheit = 1.8 * celsius + 32.0;
25. 5 printf("%6c%3d%8c%7.2f\n", ' ', celsius, ' ', fahrenheit);
26. }
27.
28. return (0);
29.
Celsius Fahrenheit

10 50.00

5 41.00

0 32.00

-5 23.00

5.4 ¢ The for Statement 253

TABLE 5.4 Trace of Loop in Fig. 5.8

Statement celsius fahrenheit Effect
1 for (celsius = CBEGIN; 10 ? Initialize celsius to 10
celsius >= CLIMIT; 10 >= -5istrue
4 fahrenheit = 1.8 *
celsius + 32.0; 50.0 Assign 50 .0 to fahrenheit
5 printf . .. Display 10 and 50.0
Update and test celsius
3 ... celsius -= CSTEP 5 Subtract 5 from celsius, giving 5
celsius >= CLIMIT; 5 >= =5istrue
4 fahrenheit = 1.8 *
celsius + 32.0; 41.0 Assign 41.0 to fahrenheit
5 printf . .. Display 5 and 41.0
Update and test celsius
3 ... celsius -= CSTEP 0 Subtract 5 from celsius, giving 0
celsius >= CLIMIT; 0 >= -5istrue
4 fahrenheit = 1.8 *
celsius + 32.0; 32.0 Assign 32.0 to fahrenheit
5 printf ... Display 0 and 32.0
Update and test celsius
3 ... celsius -= CSTEP -5 Subtract 5 from celsius, giving -5
celsius >= CLIMIT; -5 >= -5 istrue
4 fahrenheit = 1.8 *
celsius + 32.0; 23.0 Assign 23.0 to fahrenheit
5 printf ... Display =5 and 23.0
Update and test celsius
3 ... celsius -= CSTEP -10 Subtract 5 from celsius, giving —10
2 celsius >= CLIMIT; -10 >= -5 jsfalse, so exit loop

The trace in Table 5.4 shows that the loop control variable celsius is initialized
to CBEGIN (10) when the for loop is reached. Since 10 is greater than or equal to
CLIMIT (-5), the loop body is executed. After each loop repetition, csTEP (5) is
subtracted from celsius, and celsius is tested in the loop repetition condition to
see whether its value is still greater than or equal to cLIMIT. If the condition is true,
the loop body is executed again and the next value of fahrenheit is computed and
displayed. If the condition is false, the loop is exited.

254

Chapter 5 ¢ Repetition and Loop Statements

Because the structure of the for statement makes it easy for the reader of a
program to identify the major loop control elements, we will use it often in the
remainder of our study of repetition when a loop requires simple initialization, test-
ing, and updating of a loop control variable.

Displaying a Table of Values

The program in Fig. 5.8 displays a table of output values. The print£ call before
the loop displays a string that forms the table heading. Within the loop body, the
printf statement

printf("%6c%3d%8c%7.2f\n", ' ', celsius, ' ', fahrenheit);

displays a pair of output values each time it executes. Function printf substitutes the
space character ' for the placeholders $6c and %8c in its format string, causing 6
blanks to precede the value of celsius and 8 blanks to separate the values of celsius
and fahrenheit. The \n in the printf format string ends the line on which each pair
of numbers appears, so the loop creates a table consisting of two columns of numbers.

Self-Check

1. Trace the execution of the loop that follows for n = 8. Show values of odd and
sum after the update of the loop counter for each iteration.

sum = 0;

for (odd = 1;
odd < n;
odd += 2)

sum = sum + odd;

printf("Sum of positive odd numbers less than %d is %d.\n", n,
sum) ;

2. Given the constant macro definitions of Fig. 5.8 (repeated here)

#define CBEGIN 10
#define CLIMIT -5
#define CSTEP 5

indicate what values of celsius would appear in the conversion table displayed
if the for loop header of Fig. 5.8 were rewritten as shown:

a. for (celsius = CLIMIT;
celsius <= CBEGIN;
celsius += CSTEP)

b. for (celsius = CLIMIT;
celsius >= CBEGIN;
celsius += CSTEP)

5.4 ¢ The for Statement 255

¢. for (celsius = CSTEP;

celsius >= CBEGIN;
celsius += CLIMIT)

d. for (celsius = CLIMIT;
celsius <= CSTEP;
celsius += CBEGIN)

What is the least number of times that the body of a while loop can be exe-
cuted? Answer the question for the body of a for loop.
What values are assigned to n, m, and p, given these initial values?

i 3
n = ++i * --j;
4 8 m= 1+ J-—;
p=1+73;

Rewrite the code shown in Exercise 4 so the effect is equivalent but no incre-
ment/decrement operator appears in an expression with another arithmetic
operator.

What errors do you see in the following fragment? Correct the code so it dis-
plays all multiples of 4 from 0 through 100.

for multd = 0;

multd < 100;

multd += 4;
printf("%d\n", mult4);

a. Trace the following program fragment:

j = 10;

for (i = 1; i <= 5; ++i) {
printf("%d %d\n", i, j);
=2

}

b. Rewrite the previous program fragment so that it produces the same output
but uses 0 as the initial value of i.

Programming

1.

Write a loop that displays a table of angle measures along with their sine and
cosine values. Assume that the initial and final angle measures (in degrees) are
available in init_degree and final_degree (type int variables), and that
the change in angle measure between table entries is given by step_degree
(also a type int variable). Remember that the math library’s sin and cos
functions take arguments that are in radians.

Write a program to display a centimeters-to-inches conversion table. The smallest
and largest number of centimeters in the table are input values. Your table should
give conversions in 10-centimeter intervals. One centimeter equals 0.3937 inch.

256 Chapter 5 ¢ Repetition and Loop Statements

5.5 Conditional Loops

In many programming situations, you will not be able to determine the exact
number of loop repetitions before loop execution begins. When we multiplied a
list of numbers in Example 5.2, the number of repetitions depended on the data
entered. Although we did not know in advance how many times the loop would
execute, we were still able to write a condition to control the loop. Here is another
case of this type of repetition. You want to continue prompting the user for a data
value as long as the response is unreasonable.
Print an initial prompting message.
Get the number of observed values.
while the number of values is negative
Print a warning and another prompting message.
Get the number of observed values.

Like the counting loops we considered earlier, such a conditional loop typically
has three parts that control repetition: initialization, testing of a loop repetition con-
dition, and an update. Let’s analyze the algorithm for ensuring valid input. Clearly,
the loop repetition condition is

number of values < 0

Because it makes no sense to test this condition unless number of values has a
meaning, getting this value must be the initialization step. The update action—the
statement that, if left out, would cause the loop to repeat infinitely—remains to be
identified. Getting a new number of observed values within the loop body is just
such a step. Since we have found these three essential loop parts, we can write this
validating input loop in C by using a while statement:
printf("Enter number of observed values> ");
scanf("%d", &num obs); /* initialization */
while (num _obs < 0) {

printf ("Negative number invalid; try again> ");

scanf("%d", &num _obs); /* update */

}

At first, it may seem odd that the initialization and update steps are identical. In
fact, this is very often the case for loops performing input operations in situations
where the number of input values is not known in advance.

EXAMPLE 5.5

The program in Fig. 5.9 is designed to assist in monitoring the gasoline supply in a
storage tank at the Super Oil Company refinery. The program is to alert the supervi-
sor when the supply of gasoline in the tank falls below 10% of the tank’s 80,000-barrel
storage capacity. Although the supervisor always deals with the contents of the tank in
terms of a number of barrels, the pump that is used to fill tanker trucks gives its meas-
urements in gallons. The barrel used in the petroleum industry equals 42 U.S. gallons.

W W wwwwww wNNNMNNNNNNMNNN SDQ @QQ@Q@Q @ @ 2D -
RNOPUTPWNROOLINONPUNCROCOINIOPWNSO L

CORSINOYSUINERLURIDE-S

5.5 e Conditional Loops 257

FIGURE 5.9 Program to Monitor Gasoline Storage Tank

/*

* Monitor gasoline supply in storage tank. Issue warning when supply
* falls below MIN_PCT % of tank capacity.

*/

#include <stdio.h>

/* constant macros */

#define CAPACITY 80000.0 /* number of barrels tank can hold

#define MIN_PCT 10 /* warn when supply falls below this
percent of capacity

#define GALS_PER BRL 42.0 /* number of U.S. gallons in one barrel

/* Function prototype */
double monitor_gas(double min_supply, double start_supply);

int
main(void)

{
double start_supply, /* input - initial supply in barrels
min_supply, /* minimum number of barrels left without
warning
current; /* output - current supply in barrels

/* Compute minimum supply without warning */
min_supply = MIN_PCT / 100.0 * CAPACITY;

/* Get initial supply */
printf ("Number of barrels currently in tank> ");
scanf ("%1f", &start_supply);

/* Subtract amounts removed and display amount remaining
as long as minimum supply remains.
current = monitor_gas(min_supply, start_supply);

/* Issue warning
printf("only %.2f barrels are left.\n\n", current);
printf("*** WARNING ***\n");

*/

*/
*/

*/

*/
*/

*/

*/

(continued)

258 Chapter 5 ¢ Repetition and Loop Statements

FIGURE 5.9 (continued)

39. printf("Available supply is less than %d percent of tank's\n",
40. MIN_PCT);

41. printf("%.2f-barrel capacity.\n", CAPACITY);

42,

43, return (0);

44.

45,

46. /*

47. * Computes and displays amount of gas remaining after each delivery

48. * Pre : min_supply and start_supply are defined.
49. * Post: Returns the supply available (in barrels) after all permitted

50. * removals. The value returned is the first supply amount that is
51. = less than min_supply.

52. =/

53. double

54. monitor_gas(double min_supply, double start_supply)

55. {

56. double remov_gals, /* input - amount of current delivery */
57. remov_brls, /* in barrels and gallons */
58. current; /* output - current supply in barrels */
59.

60. for (current = start_supply;

61. current >= min_supply;

62. current -= remov_brls) {

63. printf("%.2f barrels are available.\n\n", current);

64. printf ("Enter number of gallons removed> ");

65. scanf ("%1f", &remov_gals);

66. remov_brls = remov_gals / GALS_PER_BRL;

67.

68. printf ("After removal of %.2f gallons (%.2f barrels),\n",

69. remov_gals, remov_brls);

70. }

71.

72. return (current);

73.

Number of barrels currently in tank> 8500.5
8500.50 barrels are available.

(continued)

FIGURE 5.9 (continued)

5.5 e Conditional Loops

259

Enter number of gallons removed>
After removal of 5859.00 gallons
8361.00 barrels are available.

Enter number of gallons removed>
After removal of 7568.40 gallons
8180.80 barrels are available.

Enter number of gallons removed>
After removal of 8400.00 gallons
only 7980.80 barrels are left.

%* WARNING *
Available supply is less than 10
80000.00-barrel capacity.

5859.0
(139.50 barrels),

7568.4
(180.20 barrels),

8400.0
(200.00 barrels),

percent of tank's

The main function first prompts the operator for the amount of gasoline
currently stored in the tank. Next, it calls function monitor gas to monitor the
removal of gasoline and to stop removals as soon as the current supply falls below
the minimum supply level. After gasoline is pumped into each tanker, the opera-
tor enters the number of gallons removed and function monitor_gas updates the
number of barrels still available (current). When the supply drops below the 10%
limit, loop exit occurs and monitor_gas returns the value of current to the main
function, which issues a warning.

A counting loop would not be appropriate in this program because we do not
know in advance how many tanker deliveries will need to be processed before the
warning is issued. However, the for statement is still a good choice because we do
have initialization, testing, and update steps.

Let’s take a close look at the loop in function monitor_gas. Logically, we want
to continue to record amounts of gasoline removed as long as the supply in the tank
does not fall below the minimum. The loop repetition condition, the second expres-
sion in the for loop heading, states that we stay in the loop as long as

current >= min_supply

Since min_supply does not change, current is the variable that controls the loop.
Therefore, the first and third expressions of the for statement’s heading handle the
initialization and update of this variable’s value.

Tracing this program with the data shown, we come first to the assignment
statement that computes a value for min_supply of 8000.0, based on the tank
capacity and minimum percentage. The call to print£ just before the call to scanf

260

Chapter 5 ¢ Repetition and Loop Statements

generates the prompting message for entering the tank’s initial supply. Next, the
starting supply entered by the program operator is scanned into variable start_
supply and the main function calls monitor_ gas.

In monitor_gas, the initialization expression of the for statement copies the
starting supply into current, the loop control variable, giving current the value
8500.5. When the loop repetition condition

current >= min_supply

is first tested, it evaluates to true, causing the loop body (the compound statement
in braces) to execute. The current supply is displayed followed by a prompting mes-
sage. A value is obtained for gallons removed (5859.0), the value is converted to
barrels, and this amount is displayed. When execution of the loop body is complete,
the update expression of the for statement

current -= remov_brls

is executed, subtracting from the current supply the amount removed. The loop rep-
etition condition is retested with the new value of current (8361.00). Since 8361.00
> 8000.0 is true, the loop body once again displays the current supply and processes
a delivery of 7568. 4 gallons, or 180.20 barrels. The value of current is then updated
to 8180.80 barrels, which is still not below the minimum, so the loop body executes
a third time, processing removal of 200.00 barrels. This time execution of the for
statement update expression brings the value of current to 7980.80. The loop rep-
etition condition is tested again: Since 7980.8 >= 8000.0 is false, loop exit occurs,
and the statements following the closing brace of the loop body are executed.

Just as in the counting loop shown in Fig. 5.5, there are three critical steps in
Fig. 5.9 that involve the loop control variable current.

current is initialized to the starting supply in the for statement initialization
expression.

current is tested before each execution of the loop body.

current is updated (by subtraction of the amount removed) during each iteration.

Remember that steps similar to these appear in virtually every loop you write.
The C for statement heading provides you with a designated place for each of the
three steps.

Program Style Performing Loop Processing in a Function
Subprogram

In Fig. 5.9, function monitor_gas contains a for loop that performs the major
program task—monitoring gasoline deliveries. The function result is the final value
of the loop control variable, current. This program structure is fairly common and
quite effective. Placing all loop processing in a function subprogram simplifies the
main function.

5.6 ¢ Loop Design 261

L]

Self-Check

1. Give an example of data the user could enter for the storage tank monitoring
program that would cause function monitor_gas to return without executing
the body of the for loop.

2. Correct the syntax and logic of the code that follows so that it prints all multi-
ples of 4 from 0 through 100:

for sum = 0;

sum < 100;

sum += 4;
printf("%d\n", sum);

3. What output is displayed if this list of data is used for the program in Fig. 5.9?

8350.8
7581.0
7984.2

4. How would you modify the program in Fig. 5.9 so that it also determines
the number of deliveries (count_deliv) made before the gasoline supply
drops below the minimum? Which is the loop control variable, current
or count_dellv'p

Programming

1. There are 9,870 people in a town whose population increases by 10% each
year. Write a loop that displays the annual population and determines how
many years (count_years) it will take for the population to surpass 30,000.

2. Rewrite the payroll program (Fig. 5.5), moving the loop processing into a
function subprogram. Return the total payroll amount as the function result.

5.6 Loop Design

Being able to analyze the operation of a loop is one thing; designing your own loops
is another. In this section, we will consider the latter. The comment that precedes
the call to function monitor_gas in Fig. 5.9 is a good summary of the purpose of
the loop in this function.

/* Subtract amounts removed and display amount remaining
as long as minimum supply remains. */

Let’s see how the problem-solving questions suggested in Sections 1.5 and 5.1 can
help us formulate a valid loop structure. As always, the columns labeled “Answer”

262 Chapter 5 ¢ Repetition and Loop Statements

sentinel value anend
marker that follows the
last item in a list of data

and “Implications . . .” in Table 5.5 represent an individual problem solver’s thought
processes and are not offered as the “one and only true path” to a solution.

Sentinel-Controlled Loops

Many programs with loops input one or more additional data items each time the
loop body is repeated. Often we don’t know how many data items the loop should
process when it begins execution. Therefore, we must find some way to signal the
program to stop reading and processing new data.

One way to do this is to instruct the user to enter a unique data value, called
a sentinel value, after the last data item. The loop repetition condition tests each
data item and causes loop exit when the sentinel value is read. Choose the sentinel
value carefully; it must be a value that could not normally occur as data.

TABLE 5.5 Problem-Solving Questions for Loop Design

Implications for

Question Answer the Algorithm
What are the Initial supply of gasoline Input variables needed:
inputs? (barrels). start_supply
Amounts removed remov_gals
(gallons). Value of start_supply must

What are the
outputs?

Is there any
repetition?

Do | know in
advance how many
times steps will

be repeated?

How do | know
how long to keep
repeating the steps?

be input once, but amounts
removed are entered many times.

Amounts removed in gallons Values of current and remov_gals
and barrels, and the current are echoed in the output.
supply of gasoline. Output variable needed:
remov_brls
Yes. One repeatedly Program variable needed:
1. gets amount removed min_supply
2. converts the amount
to barrels

3. subtracts the amount
removed from the
current supply

4. checks to see whether the
supply has fallen below
the minimum.

No. Loop will not be controlled
by a counter.

As long as the current supply The loop repetition
is not below the minimum. condition is
current >= min_supply

5.6 ¢ Loop Design 263

A loop that processes data until the sentinel value is entered has the form

1. Get aline of data.

2. while the sentinel value has not been encountered
3. Process the data line.
4. Get another line of data.

Note that this loop, like other loops we have studied, has an initialization (step 1),
a loop repetition condition (step 2), and an update (step 4). Step 1 gets the first line
of data; step 4 gets all the other data lines and then tries to obtain one more line. This
attempted extra input permits entry (but not processing) of the sentinel value. For
program readability, we usually name the sentinel by defining a constant macro.

EXAMPLE 5.6

A program that calculates the sum of a collection of exam scores is a candidate for
using a sentinel value. If the class is large, the instructor may not know the exact
number of students who took the exam being graded. The program should work
regardless of class size. The loop below uses sum as an accumulator variable and
score as an input variable.

Sentinel Loop

1. Initialize sum to zero.

2. Get first score.

3. while score is not the sentinel
4. Add score to sum.
5. Get next score.

One is tempted to try the following algorithm that reverses the order of steps 4 and
5 s0 as to be able to omit the duplication of step 5 in step 2.

Incorrect Sentinel Loop

1. Initialize sum to zero.

2. while score is not the sentinel
3. Get score.
4. Add score to sum.

There are two problems associated with this strategy. First, with no initializing input
statement, you will have no value for score on which to judge the loop repetition
condition when it is first tested. Second, consider the last two iterations of the loop.
On the next-to-last iteration, the last data value is copied into score and added
to the accumulating sum; on the last iteration, the attempt to get another score
obtains the sentinel value. However, this fact will not cause the loop to exit until the
loop repetition condition is tested again. Before exit occurs, the sentinel is added to
sum. For these reasons, it is important to set up sentinel-controlled loops using the
recommended structure: one input to get the loop going (the initialization input),
and a second to keep it going (the updating input). The following program uses a

264 Chapter 5 ¢ Repetition and Loop Statements

FIGURE 5.10 Sentinel-Controlled while Loop

1. /* Compute the sum of a list of exam scores. */

2.

3. #include <stdio.h>

4

5. #define SENTINEL -99

6.

7. int

8. main(void)

9. {

10. int sum = 0, /* output - sum of scores input so far */
11. score; /* input - current score */
12.

13. /* Accumulate sum of all scores. */
14. printf ("Enter first score (or %d to quit)> ", SENTINEL);

15. scanf ("%d", &score); /* Get first score. */
16. while (score != SENTINEL) {

17. sum += score;

18. printf ("Enter next score (%d to quit)> ", SENTINEL);

19. scanf("%d", &score); /* Get next score. */
20. }

21. printf("\nSum of exam scores is %d\n", sum);

22.

23. return (0);

24,

while loop to implement the sentinel-controlled loop (Fig. 5.10). It also shows that

the declaration of a variable may include an initialization.

The following sample dialogue would be used to enter the scores 55, 33, and 77:

Enter first score (or -99 to quit)> 55
Enter next score (-99 to quit)> 33
Enter next score (-99 to quit)> 77
Enter next score (-99 to quit)> -99

Sum of exam scores is 165

It is usually instructive (and often necessary) to question what happens when there
are no data items to process. In this case, the sentinel value would be entered at
the first prompt. Loop exit would occur right after the first and only test of the loop
repetition condition, so the loop body would not be executed—that is, it is a loop
with zero iterations. The variable sum would correctly retain its initial value of zero.

5.6 ¢ Loop Design 265

Using a for Statement to Implement a Sentinel Loop

Because the for statement combines the initialization, test, and update in one
place, some programmers prefer to use it to implement sentinel-controlled loops.
The for statement form of the while loop in Fig. 5.10 follows.

/* Accumulate sum of all scores. */
printf("Enter first score (or %d to quit)> ", SENTINEL);
for (scanf("%d", &score);
score != SENTINEL;
scanf ("%d", &score)) {
sum += score;
printf ("Enter next score (%d to quit)> ", SENTINEL);

Endfile-Controlled Loops

In Section 2.7, we discussed writing programs to run in batch mode using data
files. A data file is always terminated by an endfile character that can be detected
by the scanf function. Therefore, you can write a batch program that processes
a list of data of any length without requiring a special sentinel value at the end of
the data.

To write such a program, you must set up your input loop so it notices when
scanf encounters the endfile character. So far we have discussed only the effect
scanf has on the variables passed to it as arguments. However, scanf also returns a
result value just like the functions we studied in Section 3.2. When scanf is success-
fully able to fill its argument variables with values from the standard input device,
the result value that it returns is the number of data items it actually obtained. For
example, successful execution of the scanf in the following statement gets values
for the variables in its input list, part_id, num_avail, and cost, and returns a
result of 3, which is assigned to input_status:

input_status = scanf("%d%d%1lf", &part_id, &num_avail, &cost);

However, if scanf runs into difficulty with invalid or insufficient data (for
instance, if it comes across the letter 'o' instead of a zero when trying to get a
decimal integer), the function returns as its value the number of data items scanned
before encountering the error or running out of data. This means that for the example
shown, a nonnegative value less than 3 returned by scanf indicates an error. The
third situation scanf can encounter is detecting the endfile character before getting
input data for any of its arguments. In this case, scanf returns as its result the value
of the standard constant EOF (a negative integer).

It is possible to design a repetition statement very similar to the sentinel-
controlled loop that uses the status value returned by the scanning function to

266

Chapter 5 ¢ Repetition and Loop Statements

control repetition rather than using the values scanned. Here is the pseudocode
for an endfile-controlled loop:

1. Get the first data value and save input status

2. while input status does not indicate that end of file has been reached
3. Process data value
4. Get next data value and save input status

An example of such a loop is shown in Fig. 5.11, which is a batch version of the
exam scores program in Fig. 5.10. The loop repetition condition

input_status != EOF

causes loop exit after the endfile character is reached. The data file scores.dat
contains the 3 numbers shown in the sample run.

Infinite Loops on Faulty Data

The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Figs. 5.10 and 5.11. For example, let’s
assume the user responds to the prompt

Enter next score (-99 to quit)>

in Fig. 5.10 with the faulty data 70 (the second character is the letter 'o' rather
than a zero). The function scanf would stop at the letter 'o', storing just the
value 7 in score and leaving the letter 'o' unprocessed. On the next loop itera-
tion, there would be no wait for the user to respond to the prompt, for scanf would
find the letter 'o' awaiting processing. However, since this letter is not part of a
valid integer, the scanf function would then leave the variable score unchanged
and the letter ' o' unprocessed, returning a status value of zero as the result of the
function call. Because the sentinel-controlled loop of Fig. 5.10 does not use the
value returned by scant, the printing of the prompt and the unsuccessful attempt
to process the letter ' o' would repeat over and over.

Even though the loop of the batch program in Fig. 5.11 does use the status
value returned by scanf, it too would go into an infinite loop on faulty data. The
only status value that causes this loop to exit is the negative integer meaning
EOF. However, the endfile-controlled loop could be easily modified to exit when
encountering the end of file or faulty data. Changing the loop repetition condi-
tion to

input_status ==

would cause the loop to exit on either the end of file (input_status negative) or
faulty data (input_status zero). We would also need to add an if statement after
the loop to decide whether to simply print the results or to warn of bad input. The

N NN NNNNQD Q Q @Q Q@ 2O @ 2 =
SURAWN2OLINIURIRWNRO®

OO =

5.6 ¢ Loop Design

FIGURE 5.11 Batch Version of Sum of Exam Scores Program

267

/*

* Compute the sum of the list of exam scores stored in the
* file scores.dat

*/

#include <stdio.h>

int

main(void)

{
int sum = 0, /* sum of scores input so far */
score, /* current score */
input_status; /* status value returned by scanf */
printf("Scores\n");
input_status = scanf("%d", &score);
while (input_status != EOF) ({
printf("%5d\n", score);
sum += score;
input_status = scanf("%d", &score);
}
printf("\nSum of exam scores is %d\n", sum);
return (0);
}
Scores
55
33
717

Sum of exam scores is 165

false task in the following if statement gets and displays the bad character when

input_status is not EOF.

if (input_status == EOF) {
printf("Sum of exam scores is %d\n", sum);
} else {
scanf("%c", &bad_char);
printf("*** Error in input: %c ***\n", bad char);

268 Chapter 5 * Repetition and Loop Statements

Self-Check

1.

Identify these three steps in the pseudocode that follows: the initialization of
the loop control variable, the loop repetition condition, and the update of the
loop control variable.

a. Get a value for n.
Give p the value 1.
c. while n is positive
d. Multiply p by n.
e. Subtract 1 from n.
f. Print p with a label.

What would be the behavior of the loop in Fig. 5.11 if the braces around the
loop body were omitted?

Programming

1.

Translate the pseudocode from Exercise 1 using a while loop. Which of
these three labels would it make sense to print along with the value of p?

n*i = n! = n to the ith power =

Modify the loop in Fig. 5.4 so that it is a sentinel-controlled loop. Get an input
value for pay as both the initialization and update steps of the loop. Use the
value -99 as the sentinel.

Rewrite the program in Fig. 5.4 to run in batch mode with an endfile-
controlled loop.

Write a program segment that allows the user to enter values and prints out
the number of whole numbers and the number of values with fractional parts
entered. Design this segment as a sentinel-controlled loop using zero as the
sentinel value.

5.7 Nested Loops

Loops may be nested just like other control structures. Nested loops consist of an
outer loop with one or more inner loops. Each time the outer loop is repeated, the
inner loops are reentered, their loop control expressions are reevaluated, and all
required iterations are performed.

EXAMPLE 5.7

The program in Fig. 5.12 contains a sentinel loop nested within a counting loop.
This structure is being used to tally by month the local Audubon Club members’

W W wwwwww wWNNNMNNNNNNNNDQQQ@Q@@ @ 2 -
FNPUPRWNSROOLINOVNPUNCRCOINIOIWN=OL

5.7 ¢ Nested Loops 269

FIGURE 5.12 Program to Process Bald Eagle Sightings for a Year

o =

/*

* Tally by month the bald eagle sightings for the year. Each month's
* sightings are terminated by the sentinel zero.

*/

#include <stdio.h>

#define SENTINEL 0
#define NUM_MONTHS 12

int
main(void)

{

int month, /* number of month being processed */
mem_sight, /* one member's sightings for this month */
sightings; /* total sightings so far for this month */

printf ("BALD EAGLE SIGHTINGS\n");
for (month = 1;

month <= NUM_MONTHS;

++month) {

sightings = 0;

scanf("%d", &mem sight);
while (mem_sight != SENTINEL) {

if (mem_sight >= 0)

sightings += mem_ sight;
else
printf("Warning, negative count %d ignored\n",
mem_sight);
scanf("%d", &mem_sight);
} /* inner while */

printf(" month %2d: %2d\n", month, sightings);
} /* outer for */

return (0);

Input data
21430

120 (continued)

270 Chapter 5 ¢ Repetition and Loop Statements

FIGURE 5.12

(continued)

54 -110

Results

BALD EAGLE SIGHTINGS

month
month
month
Warning,
month

10

3
0

negative count -1 ignored
10

sightings of bald eagles for the past year. The data for this program consist of a
group of integers followed by a zero, then a second group of integers followed by a
zero, then a third group, and so on, for twelve groups of numbers. The first group
of numbers represents sightings in January, the second represents sightings in
February, and so on, for all 12 months.

The outer for loop repeats twelve times (value of NuM_MONTHS). The first statement
in the outer loop sets the accumulator variable sightings to zero. The number of
repetitions of the inner while loop depends on the data and may be zero (e.g., month
3 of the sample). The if statement nested in the inner loop adds a positive count of
eagles to sightings and displays a warning message for negative counts. After exit
from the inner loop, the outer loop displays the total sightings for the current month.

EXAMPLE 5.8

Figure 5.13 shows a sample run of a program with two nested counting loops. The
outer loop is repeated three times (for i = 1, 2, 3). Each time the outer loop is
repeated, the statement

printf("Outer %6d\n", 1i);

displays the string "outer" and the value of i (the outer loop control variable).
Next, the inner loop is entered, and its loop control variable j is reset to 0. The
number of times the inner loop is repeated depends on the current value of i. Each
time the inner loop is repeated, the statement

printf(" Inner %9d\n", Jj);

displays the string * Inner " and the value of j.

N NN = o2 m omd e e e =) =
IDESNONIOR 0RO UTERSWENESNO SO

o =

5.7 ¢ Nested Loops 271

FIGURE 5.13 Nested Counting Loop Program

/*

* Illustrates a pair of nested counting loops

*/

#include <stdio.h>

int

main(void)

{
int i, j; /* loop control variables */
printf (" i j\n"); /* prints column labels */
for (i = 1; i< 4; ++i) { /* heading of outer for loop */
printf ("Outer %6d\n", 1i);
for (j = 0; j o< i; ++3) { /* heading of inner loop */
printf("Inner %9d\n", j);
} /* end of inner loop */
} /* end of outer loop */
return (0);
}
i3
Outer 1
Inner 0
Outer 2
Inner 0
Inner 1
Outer 3
Inner 0
Inner 1
Inner

The outer loop control variable, i, appears in the condition that determines the
number of repetitions of the inner loop. Although this is perfectly valid, you cannot
use the same variable as the loop control variable of both an outer and an inner for
loop in the same nest.

272 Chapter 5 ¢ Repetition and Loop Statements

|

Self-Check

1. What is displayed by the following program segments, assuming m is 3 and n
is 57

a. for (i =1; i <= n; ++i) {
for (j = 0; j < i; ++73) {
printf("*");

}
printf("\n");

}

b. for (i = n; i> 0; --1) {
for (3 =m; J>0; --3){
printf("*");

}
printf("\n");

}

2. Show the output displayed by these nested loops:

for (i = 0; i< 3; ++i) {
printf ("Outer %4d\n", 1i);
for (j = 0; j < 2; ++3) {
printf(" Inner%3d%3d\n", i, j);
}
for (k = 2; k >0; --k) {
printf(" Inner%3d%3d\n", i, k);

Programming

1. Write a program that displays the multiplication table for numbers 0 to 9.
2. Write nests of loops that cause the following output to be displayed:

O 000000 oo oo
e = =
NN NDDNDDNDDNDDN
w w w ww
NN
w

5.8 ¢ The do-while Statement and Flag-Controlled Loops 273

5.8 The do-while Statement and Flag-Controlled Loops

Both the for statement and the while statement evaluate a loop repetition condi-
tion before the first execution of the loop body. In most cases, this pretest is desir-
able and prevents the loop from executing when there may be no data items to
process or when the initial value of the loop control variable is outside its expected
range. There are some situations, generally involving interactive input, when we
know that a loop must execute at least one time. We write the pseudocode for an
input validation loop as follows:

1. Get adata value.
2. If data value isn’t in the acceptable range, go back to step 1.

C provides the do-while statement to implement such loops as shown next.

EXAMPLE 5.9

The loop

do {
printf("Enter a letter from A through E> ");
scanf("%c", &letter_choice);

} while (letter choice < 'A' || letter choice > 'E');

prompts the user to enter one of the letters a through E. After scanf gets a data
character, the loop repetition condition tests to see whether letter choice con-
tains one of the letters requested. If so, the repetition condition is false, and the next
statement after the loop executes. If letter choice contains some other letter, the
condition is true and the loop body is repeated. Since we know the program user
must enter at least one data character, the do-while is an ideal statement to use to
implement this loop.

do-while Statement
SYNTAX: do

statement;
while (loop repetition condition) ;
EXAMPLE: /* Find first even number input */
do
status = scanf("%d", &num);
while (status > 0 && (num & 2) != 0);

(continued)

274 Chapter 5 ¢ Repetition and Loop Statements

flag atype int
variable used to
represent whether or
not a certain event has
occurred

INTERPRETATION: First, the statement is executed. Then, the loop repetition condition is
tested, and if it is true, the statement is repeated and the condition retested. When this
condition is tested and found to be false, the loop is exited and the next statement after the
do-while is executed.

Note: If the loop body contains more than one statement, the group of statements must be
surrounded by braces.

Flag-Controlled Loops for Input Validation

Sometimes a loop repetition condition becomes so complex that placing the full
expression in its usual spot is awkward. In many cases, the condition may be simpli-
fied by using a flag. A flag is a type int variable used to represent whether or not a
certain event has occurred. A flag has one of two values: 1 (true) and o (false).

EXAMPLE 5.10

Function get_int (Fig. 5.14) returns an integer value that is in the range speci-
fied by its two arguments (n_min through n_max, inclusive). The loop repeatedly
prompts the user for a value in the desired range. The outer do-while structure
implements the stated purpose of the function. The type int variable error acts
as a program flag to signal whether an error has been detected. It is initialized to 0
(false) at the beginning of the outer loop and is changed to 1 (true) when an error is
detected by the if statement that validates the data scanned into in_val. Execution
of the outer loop continues as long as error is true. The inner do-while skips any
characters remaining on a data line by repeatedly scanning a character and checking
to see whether it is the newline character '\n".

Execution of the function call
next_int = get_int(10, 20);

proceeds as follows, assuming that the user responds to the first prompt by mistyp-
ing the number 20 as @20. Because the first character is @, scanf returns 0 to
status, error is set to 1, the first error message is displayed, and the inner do-
while skips the rest of the data line. When the outer loop repeats, the user enters
20. When scanf encounters the o, it stops scanning, stores the 2 in in_val, and
returns the result 1 to status. Because the number 2 is less than n_min (10), error
is set to 1, the second error message is displayed, and the inner do-while skips the
rest of the data line. Because error is 1, the outer loop is repeated. After the user
responds to the last prompt below by entering 20, the outer loop is exited and 20 is
returned as the result and stored in next_int.

OO =

5.8 ¢ The do-while Statement and Flag-Controlled Loops 275
FIGURE 5.14 Validating Input Using do-while Statement
/*
* Returns the first integer between n_min and n_max entered as data.
* Pre : n_min <= n_max
* Post: Result is in the range n_min through n_max.
*/
int
get_int (int n_min, int n_max)
{
int in_val, /* input - number entered by user */
status; /* status value returned by scanf */
char skip_ch; /* character to skip */
int error; /* error flag for bad input */
/* Get data from user until in_val is in the range. */

do {
/* No errors detected yet. */
error = 0;
/* Get a number from the user. */
printf("Enter an integer in the range from %d ", n_min);
printf("to %d inclusive> ", n_max);
status = scanf("%d", &in_val);

/* Validate the number. */

if (status != 1) { /* in_val didn't get a number */
error = 1;
scanf("%c", &skip_ch);

printf("Invalid character >>%c>>. ", skip_ch);
printf("Skipping rest of line.\n");

} else if (in_val < n min || in_val > n_max) {
error = 1;

printf("Number %d is not in range.\n", in val);

/* Skip rest of data line. */
do

scanf("%c", &skip_ch);

while (skip _ch != "\n");

} while (error);

return (in_val);

276 Chapter 5 ¢ Repetition and Loop Statements

Enter an integer in the range from 10 to 20 inclusive> @20
Invalid character >>@>>. Skipping rest of line.

Enter an integer in the range from 10 to 20 inclusive> 20
Number 2 is not in range.

Enter an integer in the range from 10 to 20 inclusive> 20

The do-while is often the structure to choose when checking for valid input. As
soon as the input loop of Fig. 5.14 receives a status code from scanf indicating an
error, the loop body explicitly scans and echoes the bad character, skips the rest of
the input line, and sets the error flag so the loop will execute again, permitting fresh
(and hopefully valid) input. The do-while used in Fig. 5.14 also prevents an infinite
input loop in the event the user types an invalid character.

Self-Check
1. Which of the following code segments is a better way to implement a sentinel-
controlled loop? Why?
scanf ("%d", &num); do {
while (num != SENT) { scanf("%d", &num);
/* process num */ if (num != SENT) {
scanf ("%d", &num); /* process num */}
} } while (num != SENT);
2. Rewrite the following code using a do-while statement with no decisions in
the loop body:
sum = 0;

for (odd = 1; odd < n; odd = odd + 2)
sum = sum + odd;
printf("Sum of the positive odd numbers less than %d is %d\n",
n, sum);

In what situations will the rewritten code print an incorrect sum?
Programming

1. Design an interactive input loop that scans pairs of integers until it reaches a
pair in which the first integer evenly divides the second.

5.9 Iterative Approximations

Numerical analysis is the branch of mathematics and computer science that devel-
ops algorithms for solving computational problems. Problems from numerical analy-
sis include finding solutions to sets of equations, performing operations on matrices,

FIGURE 5.15

Six Roots for the
Equation fix) =0

root (zero of a
function) a function
argument value that
causes the function
result to be zero

5.9 e Iterative Approximations 277

finding roots of equations, and performing mathematical integration. The next case
study illustrates a method for iteratively approximating a root of an equation.

Many real-world problems can be solved by finding roots of equations. A value
k is a root of an equation, f(x) = 0, if f(k) equals zero. If we graph the function f(x),
as shown in Fig. 5.15, the roots of the equation are those points where the x-axis and
the graph of the function intersect. The roots of the equation f(x) = 0 are also called
the zeros of the function f{x).

The bisection method is one way of approximating a root of the equation
flx) = 0. This method repeatedly generates approximate roots until a true root is
discovered or until an approximation is found that differs from a true root by less
than epsilon, where epsilon is a very small constant (for example, 0.0001). The
approximation can be found if we can isolate the true root and the approximate root
within the same interval whose length is less than epsilon. In our next case study, we
develop a function to implement this method of iterative approximation.

Function Parameters

Although we could develop a bisection function to find roots of one specified func-
tion, our bisection routine would be far more useful if we could call it to find a root
of any function, just by specifying the name of the function in the call. To do this
we must be able to include a function in the parameter list of another function.
Declaring a function parameter is accomplished by simply including a prototype
of the function in the parameter list. For example, if you want to write a function
evaluate that evaluates another function at three different points and displays the
results, write evaluate as shown in Fig. 5.16. Then you can call evaluate either
with library functions that take a type double argument and return a type double
result or with your own function that meets these criteria. Table 5.6 shows two calls
to evaluate along with the output generated.

278

Chapter 5 ¢ Repetition and Loop Statements

TABLE 5.6 Calls to Function evaluate and the Output Produced

Call to evaluate Output Produced

evaluate(sqrt, 0.25, 25.0, 100.0); £(0.25000) = 0.50000
£(25.00000) = 5.00000
£(100.00000) = 10.00000

evaluate(sin, 0.0, 3.14159, £(0.00000) = 0.00000
0.5 * 3.14159); £(3.14159) = 0.00000
£(1.57079) = 1.00000

FIGURE 5.16 Using a Function Parameter

RO O =

-—
=

/*
* Evaluate a function at three points, displaying results.
*/
void
evaluate(double f(double f arg), double ptl, double pt2, double pt3)
{
printf("£(%.5f)
printf("£(%.5f)
printf("£(%.5f)

$.5f\n", ptl, f(ptl));
$.5f\n", pt2, f(pt2));
$.5f\n", pt3, f(pt3));

CASE STUDY Bisection Method for Finding Roots

PROBLEM

Develop a function bisect that approximates a root of a function £ on an interval
that contains an odd number of roots.

ANALYSIS

A program that is to call function bisect should first tabulate function values to
find an appropriate interval in which to search for a root. If a change of sign occurs
on an interval, that interval must contain an odd number of roots. Figure 5.17 shows
two such intervals. If there is no change of sign, the interval may contain no roots.
Let us assume that [x,4, x,,] (x_left to x_right) is an interval on which a
change of sign does occur and in which there is exactly one root. Furthermore,

5.9 e lterative Approximations 279

FIGURE 5.17

Change of Sign
Implies an Odd
Number of Roots

(@) (b)

One root Three roots

assume that the function f(x) is continuous on this interval. If we bisect this interval
by computing its midpoint x,,,, using the formula
Xleft + Xright

Xmid = 20

there are three possible outcomes: the root is in the lower half of the interval,
[Xieft» Xia 15 the root is in the upper half of the interval, [x,,, X,ig.]; O f(x,4) is zero.
Figure 5.18 shows these three possibilities graphically.

A fourth possibility is that the length of the interval is less than epsilon. In this
case, any point in the interval is an acceptable root approximation.

DATA REQUIREMENTS

Problem Inputs

double x_left /* left endpoint of interval 4
double x_right /* right endpoint of interval */
double epsilon /* error tolerance */
double f(double farg) /* function whose root is sought */

Problem Outputs

double root /* approximate root of f */

DESIGN

The initial interval on which to search for a root is defined by the input parameters
x_left and x_right. Before searching this interval, we must verify that it contains
an odd number of roots. If it does, we need to repeatedly bisect the interval, search-
ing the half containing an odd number of roots until we find a true root or until the
length of the interval to search is less than epsilon.

280 Chapter 5 ¢ Repetition and Loop Statements

FIGURE 5.18

Three Possibilities
That Arise When
the Interval [Xpes,
Xright) 15 Bisected

(a)

The root rtis in the half interval [x, 4, X1

(b)

The root rtis in the half interval [x, ., Xrigm]-

f(X,g) = 0.0

5.9 e lterative Approximations 281

INITIAL ALGORITHM

1. if the interval contains an even number of roots
2. Display “no root” message.
3. Return NO_ROOT and exit the function.
4. repeat as long as interval is greater than tolerance and a root is not found
5. Compute the function value at the midpoint of the interval.
6. if the function value at midpoint is zero
7. Set root to the midpoint.
else
8. Choose the left or right half of the interval and
continue the search.
9. Return the midpoint of the final interval as the root.

PROGRAM VARIABLES

int root_found /* whether or not root is found */

double x_mid /* interval midpoint */
double f left, /* values of function at left and */
f mid, /* right endpoints and at midpoint */

f right /* of interval */

Refinement of Step 1

1.1 £ left = f(x_left)

1.2 £ right = f(x_right)

1.3 if signs of £ left and £ right are the same (i.e., if their product is
nonnegative)

Refinement of Step 4

4.1 while x_right - x_left >epsilon and !root found

Refinement of Step 8
8.1 if root is in left half of interval (f_left * £ mid < 0.0)
8.2 Change right end to midpoint
else
8.3 Change left end to midpoint

IMPLEMENTATION

Figure 5.19 shows an implementation of this algorithm. We have added some calls
to printf to make function bisect self-tracing. Two functions (g and h) whose
roots will be found are shown at the end of the program listing.

282

O

W W Wwwwwww wWNNNMNNNNNNMNNNDQQQ@Q@@Q@ @2
RNPUTRWNROOINOIVNIPUNSRSOOINIWPWNEOW

Chapter 5 ¢ Repetition and Loop Statements

FIGURE 5.19 Finding a Function Root Using the Bisection Method

/*
* Finds roots of the equations
* g(x) =0 and h(x) =0

* on a specified interval [x_left, x right] using the bisection method.
x/

#include <stdio.h>
#include <math.h>

#define FALSE 0
#define TRUE 1
#define NO_ROOT -99999.0

double bisect(double x left, double x right, double epsilon,
double f(double farg));

double g(double x);

double h(double x);

int
main(void)

{
double x left, x right, /* left, right endpoints of interval */
epsilon, /* error tolerance */
root;
/* Get endpoints and error tolerance from user */

printf ("\nEnter interval endpoints> ");
scanf("%$1£f31f", &x_left, &x right);
printf("\nEnter tolerance> ");

scanf ("%1f", &epsilon);

/* Use bisect function to look for roots of g and h */
printf("\n\nFunction g");
root = bisect(x_left, x right, epsilon, g);
if (root != NO_ROOT)
printf("\n g(%.7f) = %e\n", root, g(root));

(continued)

39.
40.
41.
42,
43.
44,
45.
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74,
75.
76.

5.9 e Iterative Approximations

FIGURE 5.19 (continued)

283

printf ("\n\nFunction h");
root = bisect(x_left, x right, epsilon, h);
if (root != NO_ROOT)
printf("\n h(%.7f) = %e\n", root, h(root));

return (0);

* TImplements the bisection method for finding a root of a function f.
* Returns a root if signs of fp(x_left) and fp(x_right) are different.
* Otherwise returns NO_ROOT.

*/
double
bisect(double x_left, /* input - endpoints of interval in */
double x_right, /* which to look for a root */
double epsilon, /* input - error tolerance */
double f(double farg)) /* input - the function */
{
double x mid, /* midpoint of interval */
£ left, /* £(x_left) */
f mid, /* f£(x_mid) */
f right; /* f£(x_right) */
int root_found; /* flag to indicate whether root is found */

/* Computes function values at initial endpoints of interval */
f left = f(x_left); f right = f(x_right);

/* If no change of sign occurs on the interval there is not a
unique root. Exit function and return NO_ROOT */
if (f_left * f right > 0) { /* same sign */
printf("\nMay be no root in [%.7f, %.7f]", x left, x right);
return NO_ROOT;

/* Searches as long as interval size is large enough
and no root has been found */

(continued)

284

77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.

Chapter 5 ¢ Repetition and Loop Statements

FIGURE 5.19 (continued)

root_found = FALSE; /* no root found yet */
while (fabs(x_right - x left) > epsilon && !root found)
{
/* Computes midpoint and function value at midpoint */
x mid = (x_left + x right) / 2.0;
f mid = f(x_mid);
if (£ _mid == 0.0) { /* Here's the root */
root found = TRUE;
} else if (f_left * £ mid < 0.0) {/* Root in [x_left,x mid]*/
x_right = x mid;
} else { /* Root in [x_mid,x_right]x/
x left = x mid;
}
/* Trace loop execution - print root location or new interval */
if (root_found)
printf("\nRoot found at x = %.7f, midpoint of [%.7f, %.7f]",
x _mid, x left, x right);
else
printf("\nNew interval is [%.7f, %.7f]",
x_left, x right);
}
/* 1If there is a root, it is the midpoint of [x_left, x_right]
return ((x_left + x right) / 2.0);
}
/* Functions for which roots are sought */
/* 3 2
* 5x - 2x + 3
*/
double
g(double x)
{
return (5 * pow(x, 3.0) - 2 * pow(x, 2.0) + 3);
}

(continued)

@/

116.
117.
118.
119.
120.
121.
122.
123.
124.

5.9 e lterative Approximations 285

FIGURE 5.19 (continued)

/* 4 2

* x - 3x - 8

*/
double
h(double x)

{

return (pow(x, 4.0) - 3 * pow(x, 2.0) - 8);

}

TESTING

The C program shown in Figure 5.19 looks for approximate roots for the equations
g(x) = 0 and h(x) = 0 on the interval [x_left, x_right]. The left and right end-
points, x_left and x_right, and the tolerance, epsilon, are inputs from the user.
The main function gets these three inputs, calls function bisect, and displays the
results. Each call to bisect passes a function name as the fourth argument. Because
the bisection method as implemented in Fig. 5.19 can be applied to any function
that both returns a type double value and takes a single type double argument,
we can test bisect on multiple functions in a single program run. When bisect is
executing as a result of function main’s statement

root = bisect(x_left, x right, epsilon, g);

the statement

£ 1@t = E(E_L@EE)

is equivalent to

f_left = g(x_left);

However, when bisect executes as a result of the call statement
root = bisect(x_left, x right, epsilon, h);

the same statement means

f left = h(x_left);

Figure 5.20 shows the results of one run of the program in Fig. 5.19.

286

Chapter 5 ¢ Repetition and Loop Statements

FIGURE 5.20 Sample Run of Bisection Program with Trace Code Included

Enter interval endpoints> -1.0 1.0

Enter tolerance> 0.001

Function g

New
New
New
New
New
New
New
New
New
New
New

interval
interval
interval
interval
interval
interval
interval
interval
interval
interval
interval

Function h
May be no root in [-1.0000000, 1.0000000]

is
is
is
is
is
is
is
is
is
is
is

g(-0.7290039)

[-1.0000000, 0.0000000]
[-1.0000000, —-0.5000000]
[-0.7500000, —-0.5000000]
[-0.7500000, -0.6250000]
[-0.7500000, -0.6875000]
[-0.7500000, -0.7187500]
[-0.7343750, -0.7187500]
[-0.7343750, -0.7265625]
[-0.7304688, -0.7265625]
[-0.7304688, -0.7285156]
[-0.7294922, -0.7285156]
= -2.697494e-05

|

Self-Check

1.

2.

Find endpoints of an interval one unit long in which a root of h(x) = 0 is found
for function h from Fig. 5.19.

It is unusual for a program to use equality comparison of two type double
values as in

if (£ mid == 0.0)

Find a function and an interval that would cause this test to evaluate to 1 (true).

Programming

1.

Revise the program in Fig. 5.19 so that if the user enters an interval longer
than one unit, the program checks one-unit segments of the interval until a
subinterval is found with different signs for the values of function £. The pro-
gram should then call bisect with this subinterval and function £.

5.10 e How to Debug and Test Programs 287

5.10 How to Debug and Test Programs

In Section 2.8 we described the three general categories of errors: syntax errors,
run-time errors, and logic errors. Sometimes the cause of a run-time error or the
source of a logic error is apparent and the error can be fixed easily. Often, however,
the error is not obvious and you may spend considerable time and energy locating it.

The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results. Then you can
focus on the statements in that section of the program to determine which are at
fault. We describe two ways to do this next.

Using Debugger Programs

A debugger program can help you debug a C program. The debugger program lets
you execute your program one statement at a time (single-step execution). Through
single-step execution, you can trace your program’s execution and observe the effect
of each C statement on variables you select. With single-step execution you can vali-
date that loop control variables and other important variables (e.g., accumulators)
are incremented as expected during each iteration of a loop. You can also check that
input variables contain the correct data after each scan operation.

If your program is very long, you can separate your program into segments by
setting breakpoints at selected statements. A breakpoint is like a fence between
two segments of a program. You should set a breakpoint at the end of each major
algorithm step. Then instruct the debugger to execute all statements from the last
breakpoint up to the next breakpoint. When the program stops at a breakpoint, you
can examine the values of selected variables to determine whether the program seg-
ment has executed correctly. If it has, you will want to execute through to the next
breakpoint. If it has not, you may want to set more breakpoints in that segment or
perhaps perform single-step execution through that segment.

Debugging without a Debugger

If you cannot use a debugger, insert extra diagnostic calls to printf that display
intermediate results at critical points in your program. For example, you should dis-
play the values of variables affected by each major algorithm step before and after
the step executes. By comparing these results at the end of a run, you may be able
to determine which segment of your program contains bugs.

Once you have determined the likely source of an error, you should insert addi-
tional diagnostic calls to print£ to trace the values of critical variables in the “buggy”
segment. For example, if the loop in Fig. 5.10 is not computing the correct sum, the
conditional call to print£, shown in color below, will display each value of score and
sum when the value of DEBUG is nonzero. The asterisks highlight the diagnostic output
in the debugging runs and the diagnostic calls to printf in the source program.

288 Chapter 5 * Repetition and Loop Statements

loop boundaries
initial and final values
of the loop control
variable

while (score != SENTINEL) {
sum += score;
if (DEBUG)
printf("***** score is %d, sum is %d\n", score, sum);
printf ("Enter next score (%d to quit)> ", SENTINEL);
scanf("%d", &score); /* Get next score. */

By making all diagnostic calls to printf dependent on a constant such as
DEBUG, you can turn your diagnostics on by inserting

#define DEBUG 1
in a region of your program that you expect may contain bugs. Insertion of
#define DEBUG 0

will turn your diagnostics off.

We usually include a \n at the end of every printf format string. It is espe-
cially critical that you do this in diagnostic calls to printf so that your output will be
displayed immediately; otherwise, if a run-time error occurs before a \n is encoun-
tered in another format string, you may never see the diagnostic message.

Be careful when you insert diagnostic calls to print£. Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf.

Off-by-One Loop Errors

A fairly common logic error in programs with loops is a loop that executes one more
time or one less time than required. If a sentinel-controlled loop performs an extra
repetition, it may erroneously process the sentinel value along with the regular data.

If a loop performs a counting operation, make sure that the initial and final val-
ues of the loop control variable are correct and that the loop repetition condition is
right. For example, the following loop body executes n + 1 times instead of n times.
If you want the loop body to execute exactly n times, change the loop repetition
condition to count < n.

for (count = 0; count <= nj; ++count)
sum += count;

Often you can determine whether a loop is correct by checking the loop
boundaries—that is, the initial and final values of the loop control variable. For
a counting for loop, carefully evaluate the expression in the initialization step,
substitute this value everywhere the counter variable appears in the loop body, and
verify that it makes sense as a beginning value. Then choose a value for the counter
that still causes the loop repetition condition to be true, but that will make this

5.11 e Loops in Graphics Programs (Optional) 289

condition false after one more evaluation of the update expression. Check the
validity of this boundary value wherever the counter variable appears. As an exam-
ple, in the for loop,

su 0;
k

3

1;
for (i = -n; i<n - k; ++1i)
sum += i * i;

check that the first value of the counter variable i is supposed to be -n and that the
last value should be n - 2. Next, check that the assignment statement

sum += i * i;

is correct at these boundaries. When i is -n, sum gets the value of n>. When i isn - 2,
the value of (n - 2)?is added to the previous value of sum. As a final check, pick some
small value of n (for example, 2) and trace the loop execution to see that it computes
sum correctly for this case.

Testing

After all errors have been corrected and the program appears to execute as
expected, the program should be tested thoroughly to make sure that it works. For
a simple program, make enough test runs to verify that the program works properly
for representative samples of all possible data combinations.

Self-Check

1. For the first counting loop in the subsection “Off-by-One Loop Errors,” add
debugging statements to show the value of the loop control variable at the
start of each repetition. Also, add debugging statements to show the value of
sum at the end of each loop repetition.

2. Repeat Exercise 1 for the second loop in the same subsection.

5.11 Loops in Graphics Programs (Optional)

You can form many interesting geometric patterns on your screen by using a loop in
a graphics program to repeatedly draw similar shapes. Each shape can have a differ-
ent size, color, fill pattern, and position. Using a loop, you can also draw a sequence
of frames to move an object across the screen.

290 Chapter 5 ¢ Repetition and Loop Statements

EXAMPLE 5.11

FIGURE 5.21

Nested Rectangles
for a Quilt Pattern

The program in Fig. 5.22 draws a “quilt” consisting of nested filled rectangles (see
Figure 5.21). It first draws a large black bar which fills the output window. Each
subsequent bar is centered inside the previous one, overwriting its pixels in a new
color, so only a border from the previous rectangle remains on the screen.

Before switching to graphics mode, the program prompts the user to specify the
number of bars. The statements

stepX = width / (2 * numBars); /* x increment */
stepY = height / (2 * numBars); /* y increment */

define the change in x and y values for the corners of each bar and are computed so
that there will be room to display all the bars.

In the for loop, the statements

foreColor = i % 16; /* 0 <= foreColor <= 15 */
setcolor (foreColor);

setfillstyle(i % 12, foreColor); /* set fill style. */
bar(x1l, yl, x2, y2); /* draw a bar. */

A DA A DDA WWWWWWWWWWNNNNNNNNNNSQQQQQQQaa
PWNSOOLRINOGUBRWNSOLVONOIUVAWNSOORINOIUVAEWN=DO

5.11 e Loops in Graphics Programs (Optional)

FIGURE 5.22 Program to draw a quilt

291

8 Y e B s BY Y =

/*

* Display a pattern for a quilt -- a set of nested rectangles

*/
#include <graphics.h>
#include <stdio.h>

int
main(void)

{
int x1, yl, x2, y2; /* coordinates of corner points */
int stepX, stepY; /* change in coordinate values */
int foreColor; /* foreground color */
int numBars; /* number of bars */
int width, height; /* screen width and height */

printf(“Enter number of bars> “);
scanf (“%d”, &numBars);
width =
height =

getmaxwidth();
getmaxheight();
initwindow(width, height, “Quilt”);

/* set corner points of outermost bar
and increments for inner bars */

x1 = 0; yl = 0; /*
x2 = width; y2 = height; /*
stepX = width / (2 * numBars); /*
stepY = height / (2 * numBars); /*
for (int i = 1; i <= numBars; ++i)
{
foreColor = i % 16; /*
setcolor(foreColor);
setfillstyle(i % 12, foreColor); /*
bar(xl, yl, x2, y2); /*
x1 = x1 + stepX; vyl = yl + stepY; /*
X2 = X2 - stepX; y2 = y2 - stepY; /*
}
getch(); /* pause for user */

closegraph();
return (0);

top left corner */
bottom right corner */
X increment */

y increment */

0 <= foreColor <= 15 */

Set fill style */

Draw a bar */

Change top left corner */
Change bottom right */

292

OO N S D=

e I I R e e e e)
RO O O = OO

Chapter 5 ¢ Repetition and Loop Statements

set the foreground color to one of 16 colors, based on the value of loop control vari-
able i. Similarly, function setfillstyle sets the fill pattern to one of 12 possible
patterns. After each bar is drawn, the statements

x1 = x1 + stepX; yl = yl + stepY; /* change top left */
x2 = X2 - stepX; y2 = y2 - stepY; /* change bottom right */

change the top-left corner (point x1, y1) and the bottom-right corner (point x2, y2)
for the next bar, moving them closer together. For interesting effects, try running
this program with different values assigned to stepx and stepy

Animation

Loops are used in graphics programs to create animation. In graphics animation,
motion is achieved by displaying a series of frames in which the object is in a slightly
different position from one frame to another, so it appears that the object is moving.
Each frame is displayed for a few milli-seconds. This is analogous to the flip-books
you may have seen in which objects are drawn in slightly different positions on each
page of the book. As you flip the pages, the object moves.

The program in Fig. 5.23 draws a ball that moves around the screen like the ball
in a pong game. It starts moving down the screen and to the right until it reaches a

FIGURE 5.23 Program to draw a moving ball

/*

* Draw a ball that moves around the screen

*/

#include <graphics.h>
#define TRUE

int

main(void)

{

const
const
const
const

int width;

int
int
int
int

1

PAUSE = 20; /* delay between frames */
DELTA = 5; /* change in x or y value */
RADIUS = 30; /* ball radius */

COLOR = RED;

/* width of screen */

int height; /* height of screen */
int y; /* center of ball */

int x;
int stepX;
int stepY;

/* increment for x */
/* increment for y */
(continued)

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

/* Move the ball */
X = x + stepX;
y = y + stepy;

closegraph();
return (0);

5.11 ¢ Loops in Graphics Programs (Optional) 293
FIGURE 5.23 (continued)
/* Open a full-screen window with double buffering */
width = getmaxwidth();
height = getmaxheight();
initwindow(width, height,
“Pong - close window to quit”, 0, 0, TRUE);
x = RADIUS; vy = RADIUS; /* Start ball at top-left corner */
stepX = DELTA; stepY = DELTA; /* Move down and to the right */
/* Draw the moving ball */
while (TRUE) /* Repeat forever */
{

/* Clear the old frame and draw the new one. */

clearviewport();

setfillstyle(SOLID_FILL, COLOR);

fillellipse(x, y, RADIUS, RADIUS); /* Draw the ball */

/* After drawing the frame, swap the buffers */

swapbuffers();

delay (PAUSE) ;

/* If ball is too close to window edge, change direction */

if (x <= RADIUS) /* Is ball to close to left edge? */
stepX = DELTA; /* Move right */

else if (x >= width - RADIUS) /* Is ball to close to right edge? */
stepX = -DELTA; /* Move left */

if (y <= RADIUS) /* Is ball to close to top? */
stepY = DELTA; /* Move down */

else if (y >= height - RADIUS) /* Is ball to close to bottom? */
stepY = -DELTA; /* Move up */

294

single buffering The
default case in which
only one buffer is
allocated

buffer An area of
memory where data to
be displayed or printed
is temporarily stored

double buffering a
technique used in
graphics programming
to reduce display flicker
by allocating two
buffers: the second
buffer is filled while
the contents of the first
buffer is displayed and
then the roles of each
buffer are reversed

Chapter 5 ¢ Repetition and Loop Statements

“wall” (a window edge) and then reverses its x- or y-direction depending on which
wall it hit.

Animation programs use a technique called double buffering to reduce the
screen {licker and make the motion seem smoother. In single buffering (the
default situation), a single memory area (or buffer) is used to hold the frame that
will be shown next on the screen. After the buffer is filled, its bytes are sent to the
graphics hardware for display. When done, the bytes for the next frame are loaded
into the buffer. In double buffering, while the bytes in the first buffer are being
sent to the graphics display, the second buffer is being filled with the bytes for
the next frame. Then, the contents of the second buffer are sent to the graphics
hardware, while the first buffer is being filled. The extra buffer enables the screen
display to be refreshed more frequently, resulting in less flicker between transitions.
In graphics.h, double buffering is turned on by setting the sixth argument for
initwindow to TRUE.

initwindow(width, height,

"Pong - close window to quit", 0, 0, TRUE);

Because the while loop condition is TRUE, the loop executes “forever,” or until the
user closes the window. The loop begins by clearing the window for the new frame
(function clearviewport). Next, it draws the ball in the new frame (stored in the
second buffer). Then the buffers are swapped (function swapbuffers) and there is
a delay of 10 milliseconds while the ball is displayed in its new position.

swapbuffers();
delay(PAUSE);

The if statements change the direction of motion when the ball reaches an edge.
For example, in the statement below, the first condition is true if the current x posi-
tion is closer to the left edge than the radius of the ball. In that case, the ball should
move to the right (stepx is positive).

if (x <= RADIUS) /* Is ball too close to left edge? */
stepX = DELTA; /* Move right */

else if (x >= width - RADIUS) /* Is ball too close to right edge? */
stepX = -DELTA; /* Move left */

The second condition is true if the x position of the ball is to too close to the right
edge, so the ball should move to the left (stepx is negative). The assignment
statements at the end of the loop compute the position of the ball for the next
frame.

Figure 5.24 shows a trace of the ball as it bounces around the screen. This was
obtained by removing the call to clearviewport. In the actual display, only one
ball would be drawn at a time. Table 5.7 shows the new graphics functions intro-
duced in this section.

FIGURE 5.24

Trace of the
moving ball

5.11 ¢ Loops in Graphics Programs (Optional) 295

M Pong - close window to quit

Self-Check

1.

What would be drawn by the following fragment?

radius = 20;

x = radius; y = getmaxy() / 2;
for (int i 1; i <= 10; ++1i)

{

color i % 16;

TABLE 5.7 Functions in Graphics Library

Function Prototype Effect

void clearviewport() Clears the active viewport. The current window is the

default viewport.

void delay(int) The program pauses for the number of milliseconds

specified by its argument.

swapbuffers () Swaps the buffers if double buffering is turned on.

296 Chapter 5 * Repetition and Loop Statements

setcolor(color);
setfillstyle(HATCH_FILL, color);
fillellipse(x, y, radius, radius);

x = x + radius;

getch(); /* pause for user entry */

}

2. Experiment with the animation program by removing the call to clearview-
port. What happens? Also what happens if you eliminate double buffering by
removing the call to swapbuffers? How does changing the value of PAUSE
affect the animation?

Programming

1. Write a program that draws an archery target with alternating black and white
circles.

2. Modify the program in Self-Check Exercise 1 so the ball moves continuously
back and forth in a horizontal direction.

5.12 Common Programming Errors

Beginners sometimes confuse if and while statements because both statements
contain a parenthesized condition. Always use an if statement to implement a deci-
sion step and a while or for statement to implement a loop.

The syntax of the for statement header is repeated.

for (initialization expression;

loop repetition condition;

update expression)
Remember to end the initialization expression and the loop repetition condition
with semicolons. Be careful not to put a semicolon before or after the closing paren-
thesis of the for statement header. A semicolon after this parenthesis would have
the effect of ending the for statement without making execution of the loop body
dependent on its condition.

Another common mistake in using while and for statements is to forget that
the structure assumes that the loop body is a single statement. Remember to use
braces around a loop body consisting of multiple statements. Some C programmers
always use braces around a loop body, whether it contains one or many statements.
Keep in mind that your compiler ignores indentation, so the loop below (without
braces around the loop body)
while (x > xbig)

X -= 2;
++xbig;
/* intended end of while loop */

5.12 ¢ Common Programming Errors 297

really executes as
while (x > xbig)

x -= 2; /* only this statement is repeated */
++xbig;

The C compiler can easily detect that there is something wrong with a program
fragment in which a closing brace has been omitted in a compound statement.
However, the error message noting the symbol’s absence may be far from the spot
where the brace belongs, and other error messages often appear as a side effect of
the omission. When compound statements are nested, the compiler will associate
the first closing brace encountered with the innermost structure. Even if it is the
terminator for this inner structure that is left out, the compiler may complain about
the outer structure. In the example that follows, the body of the while statement is
missing a brace. However, the compiler will associate the closing brace before else
with the body of the while loop and then proceed to mark the else as improper.

printf ("Experiment successful? (Y/N)> ");
scanf("%c", &ans);
if (ans == 'Y') {
printf ("Enter one number per line (Enter %d to quit)\n> ",
SENT) ;
scanf ("%d", &data);
while (data != SENT) {
sum += data;
printf("> ");
scanf ("%d", &data);
/* <— missing } */
} else {
printf("Try it again tomorrow.\n");
printf ("Now follow correct shutdown procedure.\n");

Be careful when you use tests for inequality to control the repetition of a loop.
The following loop is intended to process all transactions for a bank account while
the balance is positive:
scanf ("%d%1f", &code, &amount);
while (balance != 0.0) {

scanf ("%d%1lf", &code, &amount);
}

If the bank balance goes from a positive to a negative amount without being exactly
0.0, the loop will not terminate (an infinite loop). This loop is safer:

scanf ("%d%1f", &code, &amount);
while (balance > 0.0) {

scanf ("%d%1f", &code, &amount);

298

Chapter 5 ¢ Repetition and Loop Statements

Be sure to verify that a loop’s repetition condition will eventually become false (0);
otherwise, an infinite loop may result. If you use a sentinel-controlled loop, remember
to provide a prompt that tells the program’s user what value to enter as the sentinel.
Make sure that the sentinel value cannot be confused with a normal data item.

One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation. Consider
the following loop that expects the user to type the number 0 (actually any integer
other than 1) to exit:

do {

printf ("One more time? (1 to continue/0 to quit)> ");

scanf ("%d", &again);
} while (again = 1); /* should be: again == 1 */
The value of the loop repetition condition will always be 1, never o (false), so this
loop will not exit on an entry of zero or of any other number.

A do-while always executes at least once. Use a do-while only when there is
no possibility of zero loop iterations. If you find yourself adding an if statement to
patch your code with a result like this

if (condition;)
do {

} while (condition;);

replace the segment with a while or for statement. Both these statements auto-
matically test the loop repetition condition before executing the loop body.

Do not use increment, decrement, or compound assignment operators as sub-
expressions in complex expressions. At best, such usage leads to expressions that are
difficult to read; at worst, to expressions that produce varying results in different
implementations of C.

Remember the parentheses that are assumed to be around any expression that
is the second operand of a compound assignment operator. Since the statement

a *=b + c;
is equivalent to
a=a* (b+c);

there is no shorter way to write
a=a*b+c;

Be sure that the operand of an increment or decrement operator is a variable
and that this variable is referenced after executing the increment or decrement
operation. Without a subsequent reference, the operator’s side effect of changing
the value of the variable is pointless. Do not use a variable twice in an expression in
which it is incremented/decremented. Applying the increment/decrement operators
to constants or expressions is illegal.

Chapter Review 299

Chapter Review

1.

Use a loop to repeat steps in a program. Two kinds of loops occur frequently
in programming: counting loops and sentinel-controlled loops. For a counting
loop, the number of iterations required can be determined before the loop

is entered. For a sentinel-controlled loop, repetition continues until a special
data value is scanned. The pseudocode for each loop form follows.

Counter-Controlled Loop
Set loop control variable to an initial value of 0.
While loop control variable < final value

Increase loop control variable by 1.

Sentinel-Controlled Loop
Get a line of data.
While the sentinel value has not been encountered
Process the data line.
Get another line of data.
We also introduced pseudocode forms for three other kinds of loops:

Endfile-Controlled Loop

Get first data value and save input status.

While input status does not indicate that end of file has been reached
Process data value.
Get next data value and save input status.

Input Validation Loop

Get a data value.

If data value isn’t in the acceptable range,
go back to first step.

General Conditional Loop

Initialize loop control variable.

As long as exit condition hasn’t been met,
continue processing.

C provides three statements for implementing loops: while, for, and do-
while. Use the for to implement counting loops and the do-while to imple-
ment loops that must execute at least once, such as data validation loops for
interactive programs. Depending on which implementation is clearer, code
other conditional loops using for or while statements.

In designing a loop, focus on both loop control and loop processing. For loop
processing, make sure that the loop body contains steps that perform the operation
that must be repeated. For loop control, you must provide steps that initialize, test,
and update the loop control variable. Make sure that the initialization step leads to
correct program results when the loop body is not executed (zero-iteration loop).

Chapter 5 ¢ Repetition and Loop Statements

5. A function can take another function as a parameter.

6. Numerical analysis is the branch of mathematics and computer science
that develops algorithms for mathematical computation. We demonstrated
how to use the bisection method, a technique for iterative approximation

of a root of a function.

NEW C CONSTRUCTS

Construct

Effect

Counting for Loop
for (num = 0;
num < 26;
++num) {
square = num * num;
printf("%5d %5d\n", num,
square) ;
}
Counting for Loop with a Negative Step

for (volts 20;
volts >= -20;
volts -= 10) {
current = volts / resistance;
printf("%5d %8.3f\n", volts,
current);

}
Sentinel-Controlled while Loop
product = 1;
printf("Enter %d to quit\n",
SENVAL) ;
printf ("Enter first number> ");
scanf ("%d", &dat);
while (dat != SENVAL) {
product *= dat;
printf ("Next number> ");
scanf ("%d", &dat);
}
Endfile-Controlled while Loop
sum = 0;
status = scanf("%d", &n);
while (status == 1) {
sum += n;
status =
scanf ("%d", &n);

Displays 26 lines, each containing an integer
from 0 to 25 and its square.

For values of volts equal to 20, 10, 0,
-10, -20, computes value of current
and displays volts and current.

Computes the product of a list of numbers.
The product is complete when the user
enters the sentinel value (SENVAL).

Accumulates the sum of a list of numbers
input from a file. The sum is complete when
scanf detects the endfile character or
encounters erroneous data.

(continued)

Quick-Check Exercises 301

NEW C CONSTRUCTS (continued)

Construct Effect

do-while Loop

do { Repeatedly displays prompts and stores a
printf("Positive number < 10> "); numberin num until user enters a number
scanf ("d%, &num"); that is in range.

} while (num < 1 || num >= 10);

Increment / Decrement

z

++j * k—-; Stores in z the product of the incremented
value of j and the current value of k. Then
k is decremented.

Compound Assignment

ans *= a - b; Assigns to ans the value of

ans * (a - b).

Quick-Check Exercises

A loop that continues to process input data until a special value is entered is
called a -controlled loop.

Some for loops cannot be rewritten in C using a while loop. True or false?
It is an error if the body of a for loop never executes. True or false?

In an endfile-controlled while loop, the initialization and update expressions
typically include calls to the function

In a typical counter-controlled loop, the number of loop repetitions may not
be known until the loop is executing. True or false?

During execution of the following program segment, how many lines of aster-
isks are displayed?

for (i = 0; i < 10; ++i)
for (3 = 0; j < 5; ++5)
printf("*xx**%k*kkkx\n");

During execution of the following program segment:

a. How many times does the first call to printf execute?

b. How many times does the second call to print£ execute?
c. What is the last value displayed?

for (i = 0; i< 7; ++i) {
for (j = 0; j < i; ++3)
printf("%4d", i * j);
printf("\n");

302

Chapter 5 ¢ Repetition and Loop Statements

10.

11.

If the value of n is 4 and m is 5, is the value of the following expression 217
++(n * m)

Explain your answer.
What are the values of n, m, and p after execution of this three-statement fragment?

3j k n = 3j — ++k;
m = j—— + k——;
5 2 p=k + 3j;

What are the values of x, y, and z after execution of this three-statement
fragment?

X y z X *= y + z;
y /= 2 * z + 1;
3 5) 2 z = X

What does the following code segment display? Try each of these inputs: 345,
82, 6. Then, describe the action of the code.

printf("\nEnter a positive integer> ");
scanf ("%d", &num);
do {
printf("sd ", num % 10);
num /= 10;
} while (num > 0);
printf("\n");

Answers to Quick-Check Exercises

Mo OUk Lo

9.

10.

sentinel
false
false
scanf
false

50

a. 0+ 1+ 2+ 3 +4+5+6 =21

b. 7

c. 30

No. The expression is illegal. The increment operator cannot be applied to an
expression such as (n * m).

n=2, m=8, p=6

x=21, y=1, z=23

Review Questions 303

11. Enter a positive integer> 345
5 4 3
Enter a positive integer> 82
2 8
Enter a positive integer> 6
6

The code displays the digits of an integer in reverse order and separated by spaces.

Review Questions

1. In what ways are the initialization, repetition test, and update steps alike for a
sentinel-controlled loop and an endfile-controlled loop? How are they different?
2. Write a program that computes and displays the sum of a collection of Celsius
temperatures entered at the terminal until a sentinel value of -275 is entered
3. Hand trace the program that follows given the following data:

4 2 8 4 1421 9 331 -22 10 8 2 3345
#include <stdio.h>
#define SPECIAL_SLOPE 0.0

int
main(void)
{
double slope, y2, yl, x2, x1;

printf("Enter 4 numbers separated by spaces.");
printf("\nThe last two numbers cannot be the ");
printf("same, but\nthe program terminates if ");
printf("the first two are.\n");

printf("\nEnter four numbers> ");

scanf ("%$1£f%1£f21£f%1f", &y2, &yl, &x2, &xl);

for (slope = (y2 - yl) / (x2 - x1);
slope != SPECIAL_ SLOPE;
slope = (y2 - yl) / (x2 - x1)) {
printf("Slope is %5.2f.\n", slope);
printf ("\nEnter four more numbers> ");
scanf ("$1£f%1£f%1£f%1f", &y2, &yl, &x2, &xl);

return (0);

4. Rewrite the program in Review Question 3 so that it uses a while loop.

304

Chapter 5 ¢ Repetition and Loop Statements

Rewrite the program segment that follows, using a for loop:

count = 0;
i=0;
while (i < n) {

scanf ("%d", &x);

if (x == 1)

++count;

++1i;
}
Rewrite this for loop heading, omitting any invalid semicolons.

for (i = n;
i < max;
t+iz);

Write a do-while loop that repeatedly prompts for and takes input until a
value in the range 0 through 15 inclusive is input. Include code that prevents
the loop from executing forever on input of a wrong data type.

Programming Projects

1.

An integer n is divisible by 9 if the sum of its digits is divisible by 9.

Develop a program to display each digit, starting with the rightmost digit.
Your program should also determine whether or not the number is divisible by
9. Test it on the following numbers:

n = 154368
n = 621594
n = 123456

Hint: Use the % operator to get each digit; then use / to remove that digit.
So 154368 % 10 gives 8 and 154368 / 10 gives 15436. The next digit extracted
should be 6, then 3 and so on.

Redo programming project 1 by reading each digit of the number to be tested
into a type char variable digit. Display each digit and form the sum of the
numeric values of the digits. Hint: The numeric value of digit is

(int) digit - (int) 'O

Write a program to create an output file containing a customized loan amorti-
zation table. Your program will prompt the user to enter the amount borrowed
(the principal), the annual interest rate, and the number of payments (n). To
calculate the monthly payment, it will use the formula from Programming

Programming Projects 305

Project 1 in Chapter 3. This payment must be rounded to the nearest cent.
After the payment has been rounded to the nearest cent, the program will
write to the output file n lines showing how the debt is paid off. Each month
part of the payment is the monthly interest on the principal balance, and the
rest is applied to the principal. Because the payment and each month’s inter-
est are rounded, the final payment will be a bit different and must be calcu-
lated as the sum of the final interest payment and the final principal balance.
Here is a sample table for a $1000 loan borrowed at a 9% annual interest rate
and paid back over 6 months.

Principal $1000.00 Payment $171.07
Annual interest 9.0% Term 6 months
Payment Interest Principal Principal
Balance

1 7.50 163.57 836.43
2 6.27 164.80 671.63
3 5.04 166.03 505.60
4 3.79 167.28 338.32
5 2.54 168.53 169.79
6 1.27 169.79 0.00
Final payment $171.06

a. Write a program that will find the smallest, largest, and average values in a
collection of N numbers. Get the value of N before scanning each value in
the collection of N numbers.

b. Modify your program to compute and display both the range of values in the
data collection and the standard deviation of the data collection. To compute
the standard deviation, accumulate the sum of the squares of the data values
(sum_squares) in the main loop. After loop exit, use the formula

sum_squares

- average?
N

standard deviation = \/
The greatest common divisor (ged) of two integers is the product of the inte-
gers” common factors. Write a program that inputs two numbers and imple-
ments the following approach to finding their ged. We will use the numbers
-252 and 735. Working with the numbers” absolute values, we find the
remainder of one divided by the other.

0
735[252
0
252

306 Chapter 5 ¢ Repetition and Loop Statements

Now we calculate the remainder of the old divisor divided by the remainder

found.

2
252|735
504
231

We repeat this process until the remainder is zero.

1 11
2311 252 211231

231 21
21 21
21

0

The last divisor (21) is the ged.

The Environmental Awareness Club of BigCorp International is proposing
that the company subsidize at $.08 per passenger-kilometer the commuting
costs of employees who form carpools that meet a prescribed minimum pas-
senger efficiency. Passenger efficiency P (in passenger-kilometers per liter) is

defined as

P=
l
where n is the number of passengers, s is the distance traveled in kilometers,
and [is the number of liters of gasoline used.

Write a program that processes an input file of data on existing carpools
(carpool.txt), creating an output file effic.txt containing a table of all
carpools that meet the passenger efficiency minimum. The input file begins
with a number that is the minimum passenger efficiency. Each carpool is rep-
resented by a data line containing three numbers: the number of people in the
carpool, the total commuting distance per five-day week, and the number of
liters of gasoline consumed in a week of commuting. The data file ends with a
line of zeros. Write your results with this format:

CARPOOLS MEETING MINIMUM PASSENGER EFFICIENCY OF 25 PASSENGER KM/L

Passengers

Weekly Commute Gasoline Efficiency Weekly
(km) Consumption (L) (pass km/L) Subsidy ($)
75 11.0 27.3 24.00

60 4.5 26.7 19.60

10.

Programming Projects 307

a. Write a program to process a collection of daily high temperatures. Your
program should count and print the number of hot days (high tempera-
ture 85 or higher), the number of pleasant days (high temperature 60-84),
and the number of cold days (high temperatures less than 60). It should
also display the category of each temperature. Test your program on the
following data:

55 62 68 74 59 45 41 58 60 67 65 78 82 88 091
92 90 93 87 80 78 79 72 68 61 59

b. Modify your program to display the average temperature (a real number)
at the end of the run.

Write a program to process weekly employee time cards for all employees of
an organization. Each employee will have three data items: an identification
number, the hourly wage rate, and the number of hours worked during a given
week. Each employee is to be paid time and a half for all hours worked over
40. A tax amount of 3.625% of gross salary will be deducted. The program out-
put should show the employee’s number and net pay. Display the total payroll
and the average amount paid at the end of the run.

Suppose you own a beer distributorship that sells Piels (ID number 1), Coors
(ID number 2), Bud (ID number 3), and Iron City (ID number 4) by the case.
Write a program to

a. Get the case inventory for each brand for the start of the week.
b. Process all weekly sales and purchase records for each brand.
c. Display out the final inventory.

Each transaction will consist of two data items. The first item will be the brand
ID number (an integer). The second will be the amount purchased (a positive
integer value) or the amount sold (a negative integer value). For now you may
assume that you always have sufficient foresight to prevent depletion of your
inventory for any brand. (Hint: Your data entry should begin with four values
representing the case inventory, followed by the transaction values.)

The pressure of a gas changes as the volume and temperature of the gas vary.
Write a program that uses the Van der Waals equation of state for a gas,

(P + %f) (V = bn) = nRT
to create a file that displays in tabular form the relationship between the pres-
sure and the volume of n moles of carbon dioxide at a constant absolute tem-
perature (T). P is the pressure in atmospheres, and V is the volume in liters.
The Van der Waals constants for carbon dioxide are a = 3.592 1.2 - atm/mol?
and b = 0.0427 L/mol. Use 0.08206 L - atm/mol - K for the gas constant R.
Inputs to the program include n, the Kelvin temperature, the initial and final

308

Chapter 5 ¢ Repetition and Loop Statements

11.

volumes in milliliters, and the volume increment between lines of the table.
Your program will output a table that varies the volume of the gas from the
initial to the final volume in steps prescribed by the volume increment. Here
is a sample run:

Please enter at the prompts the number of moles of carbon
dioxide, the absolute temperature, the initial volume in
milliliters, the final volume, and the increment volume
between lines of the table.

Quantity of carbon dioxide (moles)> 0.02
Temperature (kelvin)> 300

Initial volume (milliliters)> 400

Final volume (milliliters)> 600

Volume increment (milliliters)> 50

Output File

0.0200 moles of carbon dioxide at 300 kelvin

Volume (ml) Pressure (atm)
400 1.2246
450 1.0891
500 0.9807
550 0.8918
600 0.8178

A concrete channel to bring water to Crystal Lake is being designed. It will
have vertical walls and be 15 feet wide. It will be 10 feet deep, have a slope of
.0015 feet/foot, and a roughness coefficient of .014. How deep will the water
be when 1,000 cubic feet per second is flowing through the channel?

To solve this problem, we can use Manning’s equation

1486,
= ———ARY3s'?
TN

where Q is the flow of water (cubic feet per second), N is the roughness coef-
ficient (unitless), A is the area (square feet), S is the slope (feet/foot), and R is
the hydraulic radius (feet).

The hydraulic radius is the cross-sectional area divided by the wetted
perimeter. For square channels like the one in this example,

Hydraulic radius = depth X width /(2.0 X depth + width)

To solve this problem, design a program that allows the user to guess a depth
and then calculates the corresponding flow. If the flow is too little, the user

12.

13.

Programming Projects 309

should guess a depth a little higher; if the flow is too high, the user should
guess a depth a little lower. The guessing is repeated until the computed flow
is within 0.1% of the flow desired.

To help the user make an initial guess, the program should display the
flow for half the channel depth. Note the example run:

At a depth of 5.0000 feet, the flow is 641.3255 cubic
feet per second.

Enter your initial guess for the channel depth
when the flow is 1000.0000 cubic feet per second
Enter guess> 6.0

Depth: 6.0000 Flow: 825.5906 cfs Target: 1000.0000 cfs
Difference: 174.4094 Error: 17.4409 percent
Enter guess> 7.0

Depth: 7.0000 Flow: 1017.7784 cfs Target: 1000.0000 cfs
Difference: -17.7784 Error: -1.7778 percent

Enter guess> 6.8

Assume that United States consumers put $51 billion in fast food charges on
their credit and debit cards in 2006, up from $33.2 billion in 2005. Based on
this model of the billions of fast food charges,

F(t) = 33.2 + 16.8t

where ¢ is years since 2005, write a program that repeatedly prompts the user to
enter a year after 2005 and then predicts the billions of dollars of fast food charges
U.S. consumers will make in that year. Define and call a function fast_food
billions that takes the year as its input argument and returns the prediction as its
result. Tell the user that entry of a year before 2005 will cause the program to stop.

A baseball player’s batting average is calculated as the number of hits divided
by the official number of at-bats. In calculating official at-bats, walks, sacri-
fices, and occasions when hit by the pitch are not counted. Write a program
that takes an input file containing player numbers and batting records. Trips
to the plate are coded in the batting record as follows: H—hit, O—out, W—
walk, S—sacrifice, P—hit by pitch. The program should output for each player
the input data followed by the batting average. (Hint: Each batting record is
followed by a newline character.)

Sample input file:
12 HOOOWSHHOOHPWWHO
4 OSOHHHWWOHOHOOO
7 WPOHOOHWOHHOWOO

310

Chapter 5 ¢ Repetition and Loop Statements

14.

15.

16.

Corresponding output:
Player 12's record: HOOOWSHHOOHPWWHO
Player 12's batting average: 0.455

Player 4's record: OSOHHHWWOHOHOOO
Player 4's batting average: 0.417

Player 7's record: WPOHOOHWOHHOWOO
Player 7's batting average: 0.364

The rate of decay of a radioactive isotope is given in terms of its half-life H,
the time lapse required for the isotope to decay to one-half of its original mass.
The isotope cobalt-60 (*Co) has a half-life of 5.272 years. Compute and print
in table form the amount of this isotope that remains after each year for 5
years, given the initial presence of an amount in grams. The value of amount
should be provided interactively. The amount of ®°Co remaining can be com-
puted by using the following formula:

r = amount X CY/M

where amount is the initial amount in grams, C is expressed as e-"% (¢ = 2.71828),
y is the number of years elapsed, and H is the half-life of the isotope in
years.

The value for 7 can be determined by the series equation

1 1 1
U R S RS I
Write a program to approximate the value of 1 using the formula given includ-
ing terms up through 1/99.

In this chapter we studied the bisection method for finding a root of an equa-
tion. Another method for finding a root, Newton’s method, usually converges
to a solution even faster than the bisection method, if it converges at all.

Newton’s method starts with an initial guess for a root, x,, and then generates

successive approximate roots xy, Xy, . . ., X;, X;,, ... , using the iterative formula

flx)
Y+1 = _f,(xj)

where f'(x) is the derivative of function f evaluated at x = x;. The formula gen-
erates a new guess, Xji1s from a previous one, x;. Sometimes Newton’s method
will fail to converge to a root. In this case, the program should terminate after
many trials, perhaps 100.

Figure 5.25 shows the geometric interpretation of Newton’s method
where x, x,, and x, represent successive guesses for the root. At each point

FIGURE 5.25

Geometric
Interpretation of
Newton’s Method

17.

Programming Projects 311

y
A y=1f(x)
Root
i > X
«— X3 X X, X,

x;, the derivative, f'(x;), is the slope of the tangent to the curve, f(x). The next
guess for the root, x;,1, is the point at which the tangent crosses the x-axis.
From geometry, we get the equation
Yjir1 =Y

a1 Ty
where m is the slope of the line between points (x;,,, y;,1) and (x;, y7;). In Fig.
5.23, we see that 1., is zero, y; is f(x;), and m is ' (v)); therefore, by substituting
and rearranging terms, we get
) = (x) X (5o~ x)

leading to the formula shown at the beginning of this problem.

Write a program that uses Newton’s method to approximate the nth root
of a number to six decimal places. If x" = ¢, then " - ¢ = 0. Finding a root of

the second equation will give you Ve. Test your program on V2, V7, and
V/~1. Your program could use ¢/2 as its initial guess.

You would like to find the area under the curve

y = flw)

between the lines x = @ and x = b. One way to approximate this area is to use
line segments as approximations of small pieces of the curve and then to sum

312 Chapter 5 ¢ Repetition and Loop Statements

FIGURE 5.26

Approximating
the Area Under
a Curve with
Trapezoids

y
A
CAY
(x45 ¥4) (Xas ¥5)
y=1Xx)
(X ¥o) »
[<—h—>
> X
Xy=a Xy X, X X,_4 x,=b

the areas of trapezoids created by drawing perpendiculars from the line segment
endpoints to the x-axis, as shown in Fig. 5.26. We will assume that f(x) is non-
negative over the interval [a,b]. The trapezoidal rule approximates this area T as

n—1
T % (f(a)) +2Y f(xi))
i=1

for n subintervals of length h:

Write a function trap with input parameters a, b, n, and £ that implements
the trapezoidal rule. Call trap with values for n of 2, 4, 8, 16, 32, 64, and 128
on functions

glx) = x?sinx (@ = 0,b = 3.14159)
and
hix) = N4 —x2 (a=-2,b=2)

Function h defines a half-circle of radius 2. Compare your approximation to
the actual area of this half-circle.

Note: If you have studied calculus, you will observe that the trapezoidal rule is
approximating

[Fex)dx

a

Graphics Projects 313

Graphics Projects

18.

19.

20.
21.

22.

Draw a series of circles along one diagonal of a window. The circles should be
different colors and each circle should touch the ones next to it.

Redo Programming Project 18 but this time draw a series of squares along the
other diagonal as well.

Draw a simple stick figure and move it across the screen.

Redo Programming Project 18 but this time draw a single circle that moves
down a diagonal.

Redo Programming Project 19 with a single circle and square moving along
each diagonal.

This page intentionally left blank

Pointers and Modular
Programming

CHAPTER OBJECTIVES

To learn about pointers and indirect addressing

To see how to access external data files in a program
and to be able to read from input files and write to out-
put files using file pointers

To learn how to return function results through a func-
tion’s arguments

To understand the differences between call-by-value and
call-by-reference

To understand the distinction between input, inout, and
output parameters and when to use each kind

To learn how to modularize a program system and pass
information between system modules (functions)

To understand how to document the flow of informa-
tion using structure charts

To learn testing and debugging techniques appropriate
for a program system with several modules

CHAPTER

This chapter begins with a discussion of pointers and highlights some of their
uses in C. We will see how pointers can be used to store a memory cell address
and access or modify the contents of this cell through indirect reference. We
will also learn how to use file pointers to enable a program to access input and
output files.

In Chapter 3 you learned how to write the separate modules—functions—of
a program. The functions correspond to the individual steps in a problem solution.
You also learned how to provide inputs to a function and how to return a single
output. In this chapter you learn how to write functions that can return multiple
outputs. You will also learn how to write programs that use several functions to build
modular program systems.

6.1 Pointers and the Indirection Operator

pointer or pointer
variable A memory
cell that stores the
address of a data item.

The declaration
float *p;

identifies p as a pointer variable of type “pointer to float.” This means that we
can store the memory address of a type £loat variable in p.

Pointer Type Declaration
SYNTAX: type *variable;
EXAMPLE: float *p;

INTERPRETATION: The value of the pointer variable p is a memory address. A data item
whose address is stored in this variable must be of the specified type.

EXAMPLE 6.1

The declaration statements

int m = 25;
int *itemp; /* a pointer to an integer */

allocate storage for an int variable (m) and a pointer variable (itemp). The fol-
lowing statement stores the memory address of m in pointer itemp. It applies the

FIGURE 6.1

Referencing a
Variable through a
Pointer

Indirect

reference Accessing
the contents of a
memory cell through
a pointer variable that
stores its address

6.1 ¢ Pointers and the Indirection Operator 317

m itemp

A

25
1024

*itemp

unary address of operator & to variable m to get its address which is then stored
in itemp.

itemp = &m; /* Store address of m in pointer itemp */

This is the same & operator that we have applied to variables in the input list of a
scanf statement.

Figure 6.1 is a diagram of the situation that results after the above assignment assum-
ing that variable m is associated with memory cell 1024. Because it makes no differ-
ence to a program which memory cell is used, we represent the address in a pointer
by drawing an arrow from the pointer (itemp) to the variable (m) that it points to.

Indirect Reference

The label below the arrow in Fig. 6.1 shows that we can use *itemp to reference the
cell selected by pointer itemp. When the unary indirection operator * is applied to
a pointer variable, it has the effect of following the pointer referenced by its oper-
and. This provides an indirect reference to the cell that is selected by the pointer
variable. Table 6.1 shows the values of some pointer references for Fig. 6.1.

EXAMPLE 6.2

For the declarations shown earlier, the statement

*itemp = 35;

stores 35 in the variable m that is pointed to by itemp. The statement
printf("%d", *itemp);

displays the new value of m (35). The statement

*itemp = 2 * (*itemp);

doubles the value currently stored in m, the variable pointed to by itemp. Note that
the parentheses are inserted for clarity but are not needed.

TABLE 6.1 References with Pointers

Reference Cell referenced Cell Type (Value)

itemp gray shaded cell pointer (1024)
*itemp cell in color int (25)

318

Chapter 6 ¢ Pointers and Modular Programming

Pointers to Files

As an alternative to input/output redirection, C allows a program to explicitly name
a file from which the program will take input or write output. To use files in this
way, we must declare pointer variables of type FILE *. The statements

FILE *inp; /* pointer to input file */
FILE *outp; /* pointer to ouput file */

declare that file pointer variables inp and outp will hold information allowing
access to the program’s input and output files, respectively.

The operating system must prepare a file for input or output before permitting
access. This preparation is the purpose of the calls to function fopen in the statements

inp = fopen("distance.txt", "r");
outp = fopen("distout.txt", "w");

The first assignment statement opens (prepares for access) file distance.txt as
a source of program input and stores the necessary access value in the file pointer
variable inp. The "r" in the first call to fopen indicates that we wish to read (scan)
data from the file opened. Because the second assignment statement includes a
"w", indicating our desire to write to distout.txt, outp is initialized as an output
file pointer.

The next two statements demonstrate the use of the functions fscanf and
fprintf, file equivalents of functions scanf and printf.

fscanf(inp, "%$1lf", &item);
fprintf (outp, "%.2f\n", item);

Function fscanf must first be given an input file pointer like inp. The remainder
of a call to £scanf is identical to a call to scanf: It includes a format string and
an input list. Similarly, function fprintf differs from function printf only in its
requirement of an output file pointer like outp as its first argument. Like scanf,
function f£scanf returns either the number of items read or a negative value (EOF)
if the end of file character is detected.

When a program has no further use for its input and output files, it closes them
by calling function fclose with the file pointers.

fclose(inp);
fclose(outp);

Figure 6.2 shows a program that reads a collection of numbers from a file indata.
txt and writes each number rounded to 2 decimal places on a separate line of file
outdata.txt. We show a sample file indata.txt and outdata.txt after the
program.

W NN INNNNNNNNRDQQQQQQaaaa
SOPINONARWNSOOLINIOARWNIS®

6.1 ¢ Pointers and the Indirection Operator

FIGURE 6.2 Program Using File Pointers

319

CO = e a9

/* Re
* ro
*/

#incl

int
main(

{

File
344 5
43.12

File
344.0
55.00
6.36
9.40
43.12
47.60

ads each number from an input file and writes it
unded to 2 decimal places on a line of an output file.

ude <stdio.h>

void)
FILE *inp; /* pointer to input file */
FILE *outp; /* pointer to ouput file */

double item;
int input_status; /* status value returned by fscanf */

/* Prepare files for input or output */
inp = fopen("indata.txt", "r");
outp = fopen("outdata.txt", "w");

/* Read each item, format it, and write it */
input_status = fscanf(inp, "%1f", &item);
while (input_status == 1) {
fprintf (outp, "%.2f\n", item);
input_status = fscanf(inp, "%1f", &item);

/* Close the files */
fclose(inp);
fclose(outp);

return (0);
indata.txt
5 6.3556 9.4

3 47.596

outdata.txt
0

320 Chapter 6 ¢ Pointers and Modular Programming

|

Self-check

1. Trace the execution of the following fragment.

int m = 10, n = 5;
int *mp, *np;

mp = &m;
np = &n;
*mp = *mp + *np;

*np = *mp — *np;
printf("%d %d\n%d %d\n", m, *mp, n, *np);

2. Given the declarations

int m = 25, n = 77;
char ¢ = '*';
int *itemp;

describe the errors in each of the following statements.

m = &n;
itemp = m;
*itemp = c;
*itemp = &c;

Programming

1. Add statements to Fig. 6.2 that count the number of items read and write the
count (an integer) as the last line of the output file. Why can’t you write the
count as the first item of the output file?

6.2 Functions with Output Parameters

Argument lists provide the communication links between the main function and
its function subprograms. Arguments make functions more versatile because they
enable a function to manipulate different data each time it is called. So far, we know
how to pass inputs to a function and how to use the return statement to send back
one result value from a function. This section describes how programmers use out-
put parameters to return multiple results from a function.

When a function call executes, the computer allocates memory space in the
function data area for each formal parameter. The value of each actual parameter is
stored in the memory cell allocated to its corresponding formal parameter. Or, we
can use the address of operator (&) to store the actual parameter’s address instead of
its value. Next, we discuss how a function uses pointers and the indirection operator
(*) to return results to the function that calls it.

6.2 * Functions with Output Parameters 321

FIGURE 6.3 Function separate

1. /=
2. * Separates a number into three parts: a sign (+, -, or blank),
3. * a whole number magnitude, and a fractional part.
4. =/
5. void
6. separate(double num, /* input - value to be split */
7. char *signp, /* output - sign of num */
8. int *wholep, /* output - whole number magnitude of num */
9. double *fracp) /* output - fractional part of num */
10. {
11. double magnitude; /* local variable - magnitude of num */
12.
13. /* Determines sign of num */
14. if (num < 0)
15. *signp = '-';
16. else if (num == 0)
17. *signp = ' ';
18. else
19. *signp = '+';
20.
21. /* Finds magnitude of num (its absolute value) and
22. separates it into whole and fractional parts */
23. magnitude = fabs(num);
24. *wholep = floor(magnitude);
25. *fracp = magnitude - *wholep;
26. }
EXAMPLE 6.3 Function separate in Fig. 6.3 finds the sign, whole number magnitude,

and fractional parts of its first parameter. In our previous examples, all the for-
mal parameters of a function represent inputs to the function from the calling
function. In function separate, however, only the first formal parameter, num,
is an input; the other three formal parameters—signp, wholep, and fracp—
are output parameters, used to carry multiple results from function sepa-
rate back to the function calling it. Note that output parameters are declared
as pointers. Figure 6.4 illustrates the function as a box with one input and three
outputs.

322 Chapter 6 ¢ Pointers and Modular Programming

FIGURE 6.4

Diagram of
Function separate
with Multiple
Results

input num ——— signp output
parameter ——> separate ———> wholep parameters
——> fracp

Let’s focus for a moment on the heading of the function in Fig. 6.3.

void
separate(double num, /* input - value to be split */
char *signp, /* output - sign of num */
int *wholep, /* output - whole number magnitude
of num */
double *fracp) /* output - fractional part of num */

The actual argument value passed to the formal parameter num is used to deter-
mine the values to be sent back through signp, wholep, and fracp. Notice that in
Fig. 6.3 the declarations of these output parameters in the function heading have
asterisks before the parameter names denoting that they are pointers. The assign-
ment statements in the function use indirect reference to send back the function
results. The function type is void as it is for functions returning no result, and the
function body does not include a return statement to send back a single value, as we
saw in earlier functions.

The declaration char *signp tells the compiler that output parameter signp
will contain the address of a type char variable. Another way to express the idea
that signp is the address of a type char variable is to say that the parameter
signp is a pointer to a type char variable. Similarly, the output parameters
wholep and fracp are pointers to variables of types int and double. We have
chosen names for these output parameters that end in the letter “p” because they
are all pointers.

Figure 6.5 shows a complete program including a brief function main that
calls function separate. Function separate is defined as it was in Fig. 6.3,

FIGURE 6.5 Program That Calls a Function with Output Arguments

/*

*/

e B

* Demonstrates the use of a function with input and output parameters.

#include <stdio.h>
#include <math.h>

(continued)

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.

6.2 ¢ Functions with Output Parameters

FIGURE 6.5 (continued)

323

void separate(double num, char *signp, int *wholep, double *fracp);

int

main(void)

{

double value; /* input - number to analyze

char sn; /* output - sign of value
int whl; /* output - whole number magnitude of value
double fr; /* output - fractional part of value

/* Gets data
printf("Enter a value to analyze> ");
scanf ("%$1f", &value);

/* Separates data value into three parts
separate(value, &sn, &whl, &fr);

/* Prints results

printf("Parts of %.4f\n sign: %c\n", value, sn);
printf(" whole number magnitude: %d\n", whl);
printf(" fractional part: %.4f\n", fr);

return (0);

* Separates a number into three parts: a sign (+, -, or blank),

* a whole number magnitude, and a fractional part.

*/
*/
*/
*/

*/

*/

*/

* Pre: num is defined; signp, wholep, and fracp contain addresses of memory

* Post: function results are stored in cells pointed to by signp, wholep,
* fracp
*/
void
separate(double num, /* input - value to be split
char *signp, /* output - sign of num
int *wholep, /* output - whole number magnitude of num
double *fracp) /* output - fractional part of num
{
double magnitude; /* local variable - magnitude of num

cells where results are to be stored

and

*/
*/
*/
*/

*/

(continued)

324

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

Chapter 6 ¢ Pointers and Modular Programming

FIGURE 6.5

(continued)

/* Determines sign of num */
if (num < 0)

else if (num

else

*signp = '-';

== 0)
*signp = ' ';
*signp = '+';

/* Finds magnitude of num (its absolute value) and separates it into

whole and fractional parts */

magnitude = fabs(num);

*wholep
*fracp

= floor(magnitude);
= magnitude - *wholep;

Enter a value to analyze> 35.817
Parts of 35.8170

sign:

+

whole number magnitude: 35

fractional part: 0.8170

but pre- and postconditions have been added to its block comment. The calling
function must declare variables in which function separate can store the mul-
tiple results it computes. Function main in our example declares three variables
to receive these results—a type char variable sn, a type int variable wh1, and
a type double variable fr. Notice that no values are placed in these variables
prior to the call to function separate, for it is the job of separate to define
their values.

Figure 6.6 shows the data areas of main and separate as they are set up by the
function call statement

separate(value, &sn, &whl, &fr);

This statement causes the number stored in the actual argument value to be copied
into the input parameter num and the addresses of the arguments sn, whl, and fr
to be stored in the corresponding output parameters signp, wholep, and fracp.
The small numbers in color represent possible actual addresses in memory. Since
it makes no difference to our program which specific cells are used, we draw an
arrow from signp to sn. Note that the use of the address-of operator & on the actual
arguments sn, whl, and fr is essential. If the operator & were omitted, we would
be passing to separate the values of sn, whl, and fr, information that is worthless
from the perspective of separate. The only way separate can store values in sn,

FIGURE 6.6

Parameter
Correspondence
for separate(value,
&sn, &whl, &fr);

6.2 ¢ Functions with Output Parameters 325

Function main Function separate
Data Area Data Area
value num
35.817 35.817
sn signp
® <
7421
whl wholep
? <
7422
fr fracp
? <
7424
magnitude
e

whl, and fr is if it knows where to find them in memory. The purpose of separate
with regard to its second, third, and fourth arguments is comparable to the purpose
of the library function scanf with regard to all of its arguments except the first (the
format string).

In addition to the fact that the values of the actual output arguments in the
call to separate are useless, these values are also of data types that do not match
the types of the corresponding formal parameters. Table 6.2 shows the effect of
the address-of operator & on the data type of a reference. You see that in general if
a reference x is of type “whatever-type,” the reference &x is of type “pointer to
whatever-type,” that is, “whatever-type *.”

So far, we have examined how to declare simple output parameters in a function
prototype and how to use the address-of operator & in a function call statement to

TABLE 6.2 Effect of & Operator on the Data Type of a Reference

Declaration Data Type of x Data Type of &x
char X char char * (pointer to char)
int X int int * (pointer to int)

double x double double * (pointer to double)

326

Chapter 6 ¢ Pointers and Modular Programming

pass pointers of appropriate types. Now we need to study how the function manipu-
lates these pointers in order to send back multiple results. The statements in func-
tion separate that cause the return of results follow.

*signp = '-';
*signp = ' ';
*signp = '+';

*wholep = floor(magnitude);
*fracp = magnitude - *wholep;

In each case, the name of the formal parameter is preceded by the indirection
operator *. Recall that when the unary * operator is applied to a reference that
is of some pointer type, it has the effect of following the pointer referenced by its
operand.

For the data pictured in Fig. 6.6, the statement

*signp = '+';

follows the pointer in signp to the cell that function main calls sn and stores in it
the character '+'. The statement

*wholep = floor(magnitude);

follows the pointer in wholep to the cell called whl by main and stores the integer
35 there. Similarly, the statement

*fracp = magnitude - *wholep;

uses two indirect references: One accesses the value in main’s local variable whl
through the pointer wholep, and another accesses £r of main through the pointer
fracp to give the final output argument the value 0.817.

Meanings of * Symbol

We have now seen three distinct meanings of the symbol *. In Chapter 2 we studied
its use as the binary operator meaning multiplication. Function separate intro-
duces two additional meanings. The *’s in the declarations of the function’s formal
parameters are part of the names of the parameters’ data types. These *’s should be
read as “pointer to.” Thus the declaration

char *signp;

tells the compiler that the type of parameter signp is “pointer to char.”

The * has a completely different meaning when it is used as the unary indirec-
tion operator in the function body. Here it means “follow the pointer.” Thus, when
used in a reference, *signp means follow the pointer in signp. Notice that the data
type of the reference *signp is char, the data type of *wholep is int, and the data
quaof*fracpisdouble.

6.2 ¢ Functions with Output Parameters 327

L]

Self-Check

1. Write a prototype for a function sum_n_avg that has three type double input
parameters and two output parameters.

nl — —> ———> sump
n2 —— sum_n_avg > avgp
n3 —>|

The function computes the sum and the average of its three input arguments
and relays its results through two output parameters.

2. The following code fragment is from a function preparing to call sum_n_avg
(see Exercise 1). Complete the function call statement.

{
double one, two, three, sum of 3, avg of 3;
printf("Enter three numbers> ");
scanf("%1f%1f%1f", &one, &two, &three);
sum_n_avg();
}

3. Given the memory setup shown, fill in the chart by indicating the data type
and value of each reference as well as the name of the function in which the
reference would be legal.

Function main Function sub
Data Area Data Area
X valp
17.1 [«
code letp
g <
many countp
14 <

328 Chapter 6 ¢ Pointers and Modular Programming

6.3 Multiple Calls to a Function with

Describe pointer values by referring to cell attributes. For example, the value
of valp would be “pointer to color-shaded cell,” and the value of smany would

be “pointer to gray-shaded cell.”

Reference Where Legal Data Type

Value

valp sub double *
&many

code

&code

countp

*countp

*valp

letp

&X

pointer to color-shaded cell

Programming

1. Define the function sum_n_avg whose prototype you wrote in Self-Check
Exercise 1. The function should compute both the sum and the average
of its three input parameters and relay these results through its output

parameters.

Input/Output Parameters

In previous examples, we passed information into a function through its input
parameters and returned results from a function through its output parameters. Our
next example demonstrates the use of a single parameter both to bring a data value
into a function and to carry a result value out of the function. It also demonstrates
how a function may be called more than once in a given program and process dif-

sorting rearranging
data in a particular
sequence (increasing
or decreasing)

ferent data in each call.

EXAMPLE 6.4

The main function in Fig. 6.7 gets three data values, numl, num2, and num3,
and rearranges the data so that they are in increasing sequence with the small-
est value in numl. The three calls to function order perform this sorting

operation.

W W Wwwwwww wWNNNMNMNNNNNNNNDQQQQ@Q @22
PNOPURWN_ROOLOINOVNAUNCRCODNIIPWNSOW

OO O

6.3 * Multiple Calls to a Function with Input/Output Parameters 329

FIGURE 6.7 Program to Sort Three Numbers

/*

* Tests function order by ordering three numbers
*/

#include <stdio.h>

void order(double *smp, double *1lgp);

int
main(void)

{
double numl, num2, num3; /* three numbers to put in order */
/* Gets test data */
printf("Enter three numbers separated by blanks> ");
scanf ("$1£f%1£f%1f", &numl, &num2, &num3);
/* Orders the three numbers */
order (&numl, &num2);
order (&numl, &num3);
order (&num2, &num3);
/* Displays results */
printf("The numbers in ascending order are: %.2f %.2f %.2f\n",
numl, num2, num3);
return (0);
}
/*
* Arranges arguments in ascending order.
* Pre: smp and lgp are addresses of defined type double variables
* Post: variable pointed to by smp contains the smaller of the type
* double values; variable pointed to by lgp contains the larger
*/
void
order (double *smp, double *1lgp) /* input/output */
{
double temp; /* temporary variable to hold one number during swap */

(continued)

330 Chapter 6 ¢ Pointers and Modular Programming

FIGURE 6.7 (continued)
39. /* Compares values pointed to by smp and lgp and switches if necessary */
40. if (*smp > *1gp) {
41. temp = *smp;
42.
43. *smp = *1gp;
44, *1gp = temp;
45, }
46. }

Enter three numbers separated by blanks> 7.5 9.6 5.5

The numbers in ascending order are: 5.50 7.50 9.60

Each time function order executes, the smaller of its two argument values is stored
in its first actual argument and the larger is stored in its second actual argument.
Therefore, the function call

order (&numl, &num2);

stores the smaller of num1 and num2 in numl and the larger in num2. In the sample
run shown, numl is 7.5 and num2 is 9.6, so these values are not changed by the
function execution. However, the function call

order (&numl, &num3);

switches the values of numi1 (initial value is 7.5) and num3 (initial value is 5.5).
Table 6.3 traces the main function execution.

The body of function order is based on the if statement from Fig. 4.6. The func-
tion heading

void
order (double *smp, double *1gp) /* input/output */

TABLE 6.3 Trace of Program to Sort Three Numbers

Statement num’1 num?2 num3 Effect

scanf("...", &numl, &num2, &num3); 7.5 9.6 5.5 Enters data

order (&numl, &num2); No change

order (&numl, &num3); 5.5 9.6 7.5 Switches num1l and num3
order (&num2, &num3); 5.5 7.5 9.6 Switches num2 and num3
printf("...", numl, num2, num3); Displays5.5 7.5 9.6

FIGURE 6.8

Data Areas After
temp = *smp;
During Call
order (&numl,
&num3) ;

6.3 ¢ Multiple Calls to a Function with Input/Output Parameters 331

identifies smp and 1gp as input/output parameters because the function uses the
current actual argument values as inputs and may return new values.

During the execution of the second call
order (&numl, &num3);

the formal parameter smp contains the address of the actual argument num1, and the
formal parameter 1gp contains the address of the actual argument num3. Testing the
condition

(*smp > *1gp)

causes both of these pointers to be followed, resulting in the condition

(7.5 > 5.5)

which evaluates to true. Executing the first assignment statement in the true task,
temp = *smp;

causes the 7.5 to be copied into the local variable temp. Figure 6.8 shows us a
snapshot of the values in memory immediately after execution of this assignment
statement.

Execution of the next assignment statement,
*smp = *1gp;

would cause the 7.5 in the variable pointed to by smp to be replaced by 5.5, the
value of the variable pointed to by 1gp. The final assignment statement,

*1lgp = temp;

copies the contents of the temporary variable (7.5) into the variable pointed to by
1gp. This completes the swap of values.

Function main Function order
Data Area Data Area
numl smp
7.5 [€
num2 1lgp
9.6
num3 temp
5.5 7.5

332

Chapter 6 ¢ Pointers and Modular Programming

TABLE 6.4 Different Kinds of Function Subprograms

Purpose

Function Type

Parameters

To Return Result

To compute or
obtain as input

a single numeric
or character value.

To produce printed
output containing
values of numeric or
character arguments.

To compute mul-
tiple numeric or
character results.

To modify
argument values.

Same as type
of value to be
computed or
obtained.

void

void

void

Input parameters
hold copies of data
provided by calling
function.

Input parameters
hold copies of data
provided by calling
function.

Input parameters
hold copies of data
provided by calling
function.

Output parameters
are pointers to
actual arguments.

Input/output
parameters are
pointers to actual
arguments. Input
data is accessed
by indirect refer-
ence through
parameters.

Function code includes
a return state-
ment with an
expression whose
value is the result.

No result is returned.

Results are stored
in the calling
function’s data
area by indirect
assignment
through output
parameters. No
return statement
is required.

Results are stored

in the calling
function’s data

area by indirect
assignment through
output parameters.

No return statement
is required.

So far we have seen four kinds of functions, and we have studied how formal
parameters are used in all of them. Table 6.4 compares the various kinds of func-
tions and indicates the circumstances when each kind should be used.

Program Style Preferred Kinds of Functions

Although all the kinds of functions in Table 6.4 are useful in developing program
systems, we recommend that you use the first kind whenever it is possible to do
so. Functions that return a single value are the easiest functions for a program
reader to deal with. You will note that all the mathematical functions we discussed
in Section 3.2 are of this variety. Since such functions take only input argu-
ments, the programmer is not concerned with using such complexities as indirect
referencing in the function definition or applying the address-of operator in the

6.3 ¢ Multiple Calls to a Function with Input/Output Parameters 333

function call. If the value returned by the function is to be stored in a variable,
the reader sees an assignment statement in the code of the calling function. If a
function subprogram has a meaningful name, the reader can often get a good idea
of what is happening in the calling function without reading the function sub-
program’s code.

Self-Check

1. What would be the effect of the following sequence of calls to function order?
(Hint: Trace the calls for num1 = 8, num2 = 12, num3 = 10.)

order (&num3, &num2);
order (&num2, &numl);
order (&num3, &num2);

2. Show the table of values for x, y, and z that is the output displayed by the fol-
lowing program. You will notice that the function sum does not follow the sug-
gestion in the last Program Style segment of Section 6.3. You can improve this
program in the programming exercise that follows.

#include <stdio.h>

void sum(int a, int b, int *cp);

int
main(void)

{

int %, y, z;

printf(" X y z\n\n");

sum(x, y, &z);
printf("%4d%4d%4d\n", x, y, 2);

sum(y, X, &z);
printf("%4d%4d%4d\n", x, y, 2);

sum(z, y, &X);
printf("%4d%4d%4d\n", x, y, 2);

sum(z, z, &X);
printf("%4d%4d%4d\n", x, y, 2);

334 Chapter 6 ¢ Pointers and Modular Programming

sum(y, Y, &y);
printf("%$4d%4d%4d\n", x, y, 2);

return (0);

}
void
sum(int a, int b, int *cp)
{
*cp = a + b;
}

Programming

1. Rewrite the sum function in Self-Check Exercise 2 as a function that takes just
two input arguments. The sum computed should be returned as the function’s
type int result. Also, write an equivalent function main that calls your sum
function.

6.4 Scope of Names

scope of aname the The scope of a name refers to the region of a program where a particular meaning

region in a program of a name is visible or can be referenced. Let’s consider the names in the program
where a particular

meaning of a name outline shown in Fig. 6.9. The names MAX and LIMIT are defined as constant macros
is visible and their scope begins at their definition and continues to the end of the source file.

This means that all three functions can access MAX and LIMIT.

FIGURE 6.9 Outline of Program for Studying Scope of Names

#define MAX 950
#define LIMIT 200

void one(int anarg, double second); /* prototype 1 */
int fun two(int one, char anarg); /* prototype 2 */
int

main(void)

{

e O O R

- -

int localvar;

(continued)

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

FIGURE 6.9 (continued)

6.4 ¢ Scope of Names

335

} /* end main */

void
one(int anarg, double second)

{

int onelocal;
} /* end one */
int
fun_two(int one, char anarg)
{

int localvar;

} /* end fun_two */

/* header 1 */
/* local 1 */
/* header 2 */
/* local 2 */

The scope of the function subprogram name fun_two begins with its prototype
and continues to the end of the source file. This means that function fun_two can
be called by functions one, main, and itself. The situation is different for func-
tion one because one is used as a formal parameter name in function fun_two.
Therefore, function one can be called by the main function and itself but not by
function fun_two.

All of the formal parameters and local variables in Fig. 6.9 are visible only from
their declaration to the closing brace of the function in which they are declared.
For example, from the line that is marked with the comment /* header 1 */to
the line marked /* end one */ the identifier anarg means an integer variable
in the data area of function one. From the line with the comment /* header 2 */
through the line marked /* end fun_two */ this name refers to a character
variable in the data area of fun_two. In the rest of the file, the name anarg is not
visible.

Table 6.5 shows which identifiers are visible within each of the three
functions.

336 Chapter 6 ¢ Pointers and Modular Programming

TABLE 6.5 Scope of Names in Fig. 6.9

Visible Visible Visible
Name in one in fun_two in main
MAX yes yes yes
LIMIT yes yes yes
main yes yes yes
localvar (inmain) no no yes
one (the function) yes no yes
anarg (int) yes no no
second yes no no
onelocal yes no no
fun_two yes yes yes
one (formal parameter) no yes no
anarg (char) no yes no
localvar (in fun_two) no yes no

6.5 Formal Output Parameters as Actual Arguments

So far, all of our actual arguments in calls to functions have been either local vari-
ables or input parameters of the calling function. However, sometimes a function
needs to pass its own output parameter as an argument when it calls another func-
tion. In Fig. 6.10, which we have left incomplete, we write a function that scans a
data line representing a common fraction of the form

numerator / denominator

where numerator is an integer and denominator is a positive integer. The / symbol
is a separator. The function is based on function get_int (see Fig. 5.14). Its outer
loop repeats until a valid fraction is scanned, and its inner loop skips any characters
at the end of the data line.

Function scan_fraction has two output parameters, nump and denomp,
through which it returns the numerator and denominator of the fraction scanned.
Function scan_fraction needs to pass its output parameters to library function
scanf which gets the needed numerator and denominator values. In all other
calls to scanf, we applied the address-of operator & to each variable to be filled.
However, because nump and denomp store addresses, we can use them directly in
the call to scanf:

status = scanf("%d %c%d", nump, &slash, denomp);

6.5 ¢ Formal Output Parameters as Actual Arguments 337

FIGURE 6.10 Function scan_fraction (incomplete)

1. /*

2. * Gets and returns a valid fraction as its result

3. * A valid fraction is of this form: integer/positive integer

4, * Pre : none

5. */

6. void

7. scan_fraction(int *nump, int *denomp)

8. {

9. char slash; /* character between numerator and denominator */
10. int status; /* status code returned by scanf indicating

11. number of valid values obtained */
12. int error; /* flag indicating presence of an error */
13. char discard; /* unprocessed character from input line */
14. do {

15. /* No errors detected yet */
16. error = 0;

17.

18. /* Get a fraction from the user */
19. printf("Enter a common fraction as two integers separated ");

20. printf("by a slash> ");

21. status = scanf("%d %cgd", , ,);

22.

23. /* Validate the fraction */
24. if (status < 3) {

25. error = 1;

26. printf("Invalid-please read directions carefully\n");

27. } else if (slash != '/") {

28. error = 1;

29. printf("Invalid-separate numerator and denominator");

30. printf(" by a slash (/)\n");

31. } else if (*denomp <= 0) {

32. error = 1;

33. printf("Invalid—denominator must be positive\n");

34. }

35.

36. /* Discard extra input characters */
37. do {

38. scanf("%c", &discard);

39. } while (discard != '\n');

40. } while (error);

a1. 3

338 Chapter 6 ¢ Pointers and Modular Programming

FIGURE 6.11
Calling Function Function scan_
Data Areas for Data Area fraction Data Area
scan_fraction and
Its Caller numerator nump
B <
denominator denomp
2 <
slash
?

The statement
status = scanf("%d %c%d", nump, &slash, denomp);

stores the first number scanned in the variable whose address is in nump, the slash
character (possibly preceded by blanks) in local variable s1ash, and the second
number scanned in the variable whose address is in denomp. The if statement vali-
dates the fraction, setting the flag error to 1 (true) if the data entry was unsuccessful.

Figure 6.11 shows the data areas for scan_fraction and the function calling
it. For the situation shown, scanf stores the two numbers scanned in variables
numerator and denominator. The slash character is stored in local variable s1ash.

When you pass an output parameter of function @ to function b, you need to
carefully consider how it will be used in function b. You may find it helpful to sketch
the data areas as we did in Fig. 6.11. Table 6.6 gives you guidelines for function
arguments of type int, double, and char.

Self-Check

1. Box models of functions onef and twof follow. Do not try to define the
complete functions; write only the portions described.

outlp resultlp

dat > indat >
—>| onef out2p > twof result2p
> >

6.5 ¢ Formal Output Parameters as Actual Arguments

339

TABLE 6.6 Passing an Argument x to Function some_fun
Purpose in
Actual Use in Called Formal
Argument Calling Function Parameter Call to
Type Function (some_fun) Type some_fun Example
int local input int some_fun(x) Fig. 6.5, main:
char variable parameter char separate(value,
double or input double &sn, &whl, &fr);
parameter (1st argument)
int local output or int * some_fun(&x) Fig.6.5 main:
char variable input/ char * separate(value,
double output double * &sn, &whl, &fr);
parameter (2nd-4th arguments)
int * output or output or input/ int * some_fun(x) Fig. 6.10 completed,
char * input/ output parameter char * scanf(. . .,nump,
double * output double * &slash denomp); (2nd
parameter and 4th arguments)
int * output or input int some_fun(*x) Self-Check Ex. 2 in Section
char * input/ parameter char 6.6, trouble: double_
double * output double trouble(y, *x);
parameter (2nd argument)

Assume that these functions are concerned only with integers, and write head-
ings for onef and twof. Begin the body of function onef with a declaration
of an integer local variable tmp. Show a call from onef to twof in which the
input argument is dat, and tmp and out2p are the output arguments. Function
onef intends for twof to store one integer result in tmp and one in the variable
pointed to by out2p.

2. a. Classify each formal parameter of double trouble and trouble as
input, output, or input/output.
b. What values of x and y are displayed by this program? (Hint: Sketch
the data areas of main, trouble, and double_trouble as the program
executes.)

void double trouble(int *p, int y);

void trouble(int *x, int *y);

int
main(void)

int x, y;

340 Chapter 6 ¢ Pointers and Modular Programming

trouble(&x, &y);
printf("x = %d, y = %d\n", x, y);
return (0);

¥
void
double_trouble(int *p, int y)
{
int x;
x = 10;
*p =2 * X -vy;
}
void
trouble(int *x, int *y)
{
double_ trouble(x, 7);
double_ trouble(y, *Xx);
}

c. What naming convention introduced in Section 6.2 is violated in the
formal parameter list of trouble?

6.6 Problem Solving lllustrated

In this section, we examine two programming problems that illustrate many of the
concepts discussed in this chapter. The top-down design process will be demon-
strated in solving each programming problem. Each program will be implemented
in a stepwise manner, starting with a list of major algorithm steps and continuing to
add detail through refinement until the program and its function subprogram can be
written. The first problem uses files and file pointers. The second problem imple-
ments a set of functions for manipulating fractions.

CASE STUDY Collecting Area For Solar-Heated House

PROBLEM

An architect needs a program that can estimate the appropriate size for the col-
lecting area of a solar-heated house. Determining collecting area size requires
consideration of several factors, including the average number of heating degree
days for the coldest month of a year (the product of the average difference between
inside and outside temperatures and the number of days in the month), the heating

6.6 * Problem Solving lllustrated 341

requirement per square foot of floor space, the floor space, and the efficiency of
the collection method. The program will have access to two data files. File hdd.txt
contains numbers representing the average heating degree days in the construction
location for each of 12 months. File solar.txt contains the average solar insolation
(rate in BTU/day at which solar radiation falls on one square foot of a given location)
for each month. The first entry in each file represents data for January, the second,
data for February, and so on.

ANALYSIS

The formula for approximating the desired collecting area (A) is

B heat loss
= energy resource

A

In turn, heat loss is computed as the product of the heating requirement, the floor
space, and the heating degree days. We compute the necessary energy resource by
multiplying the efficiency of the collection method by the average solar insolation
per day and the number of days.

In all of our previous programs, data for program inputs have come from the
same source—either the keyboard or a file. In this program we will use three input
sources: the two data files and the keyboard. We can now identify the problem’s
data requirements and develop an algorithm.

DATA REQUIREMENTS

Problem Inputs

Average heating degree days file
Average solar insolation file

heat_deg_days /* average heating degree days for coldest month */
coldest mon /* coldest month (number 1 .. 12) Sy
solar_insol /* average daily solar insolation (BTU/ft"2)for
coldest month */
heating req /* BTU/degree day ft"2 for planned type construction*/
efficiency /* % of solar insolation converted to usable heat */

floor_ space /* square feet */

Program Variables

energy_resrc /* usable solar energy available in coldest month
(BTUs obtained from 1 ft"2 of collecting area) */

Problem Outputs

heat loss /* BTUs of heat lost by structure in coldest month */
collect_area /* approximate size (ft"2) of collecting area needed*/

342

Chapter 6 ¢ Pointers and Modular Programming

DESIGN

Initial Algorithm

1. Determine the coldest month and the average heating degree days for this
month.

Find the average daily solar insolation per {t? for the coldest month.

3. Get from the user the other problem inputs: heating_req, efficiency, and
floor_space.

Estimate the collecting area needed.

5. Display results.

be

b

As shown in the structure chart (Fig. 6.12), we will design step 2 as a separate
function. Function nth_item will find the value in file solar.txt that corresponds to
the coldest month. Steps 3 and 5 are quite straightforward, so only steps 1 and 4 call
for refinement here.

FIGURE 6.12

Structure Chart for Computing Solar Collecting Area Size

Estimate solar
collecting area

size
| heatin'gfreq
efficiency
solar_file floor_space
hdd_file coldest_mon heat_deg_days
solar_insol collect_area
coldest_mon solar_insol hea_tir?g req coldest_mon |collect_area
heat_deg_days efficiency
| floor_space
1
Determine coldest Get solar Get heating Estimate
month, average insolation for requirement, . Display
) L collecting
heating degree coldest month efficiency, floor — results
days for it (function nth_item) space from user

||t

coldest_mon | num_days

‘]

days_in_month

6.6 ¢ Problem Solving Illustrated 343

STEP 1 REFINEMENT

We will introduce three new variables to use in our refinement—a counter, ct,
to keep track of our position in the heating degree days file, an integer variable to
record file status, and an integer variable next_hdd to hold each heating degree
days value in turn.

Additional Program Variables

ct /* position in file */
status /* input status */
next hdd /* one heating degree days value */

1.1 Scan first value from heating degree days file into heat_deg_days, and initial-
ize coldest_mon to 1.
1.2 Initialize ct to 2.
1.3 Scan a value from the file into next_hdd, saving status.
1.4 As long as no faulty data or not at end of file, repeat
1.5 if next_hdd is greater than heat_deg_days
1.6 Copy next_hdd into heat_deg_days.
1.7 Copy ct into coldest_mon.
1.8 Increment ct.
1.9 Scan a value from the file into next_hdd, saving status.

STEP 4 REFINEMENT

4.1 Calculate heat loss as the product of heating req, floor_ space, and
heat deg_days.

4.2 Calculate energy_resrc as the product of efficiency (converted to hun-
dredths), solar_insol, and the number of days in the coldest month.

4.3 Calculate collect_area as heat_loss divided by energy_resrc. Round
result to nearest whole square foot.

We will develop a separate function for finding the number of days in a month, a
value needed in step 4.2 (see Fig. 6.12).
Functions

Functions nth_item and days_in_month are quite simple, so we will show only
their implementation. Figure 6.13 is an implementation of the entire program for
approximating the necessary size of a solar collecting area for solar heating a certain
structure in a given geographic area.

Input file hdd.txt

995 900 750 400 180 20 10 10 60 290 610 1051

Input file solar.txt
500 750 1100 1490 1900 2100 2050 1550 1200 900 500 500

344 Chapter 6 ¢ Pointers and Modular Programming

FIGURE 6.13 Program to Approximate Solar Collecting Area Size

1. /=*

2. * Estimate necessary solar collecting area size for a particular type of
3. * construction in a given location.

4, =*/

5. #include <stdio.h>

6.

7. int days_in _month(int);

8. int nth_item(FILE *, int);

9.

10. int main(void)

1. {

12. int heat_deg_days, /* average for coldest month */

13. solar_insol, /* average daily solar radiation per

14. ft*2 for coldest month */

15. coldest_mon, /* coldest month: number in range 1..12 */
16. heating req, /* BTU / degree day ft"2 requirement for
17. given type of construction */

18. efficiency, /* % of solar insolation converted to

19. usable heat */

20. collect_area, /* ft"2 needed to provide heat for

21. coldest month */

22. city /* position in file */

23. status, /* file status variable */

24, next hdd; /* one heating degree days value */

25. double floor_space, /* £t°2 */

26. heat loss, /* BTUs lost in coldest month */

27. energy_resrc; /* BTUs heat obtained from 1 ft"2

28. collecting area in coldest month */
29. FILE *hdd file; /* average heating degree days for each
30. of 12 months */

31. FILE *solar_file; /* average solar insolation for each of
32. 12 months */

33.

34. /* Get average heating degree days for coldest month from file */
35. hdd_file = fopen("hdd.txt", "r");

36. fscanf(hdd_file, "%d", &heat_deg_days);

37. coldest mon = 1;

38. ct = 2;

39. status = fscanf(hdd_file, "%d", &next_hdd);

40. while (status == 1) {

(continued)

41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
5%
54.
55.
56.
57
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

6.6 * Problem Solving lllustrated

FIGURE 6.13 (continued)

345

if (next_hdd > heat deg days) {
heat deg_days = next hdd;
coldest _mon = ct;

++ct;
status = fscanf(hdd file, "%d", &next hdd);

}
fclose(hdd file);

/* Get corresponding average daily solar insolation from other file */

solar file = fopen("solar.txt", "r");
solar_insol = nth item(solar_file, coldest mon);
fclose(solar file);

/* Get from user specifics of this house */

printf("What is the approximate heating requirement (BTU / ");
printf ("degree day ft"2)\nof this type of construction?\n=> ");
scanf("%d", &heating req);

printf ("What percent of solar insolation will be converted ");
printf("to usable heat?\n=> ");

scanf("%d", &efficiency);

printf("What is the floor space (ft"2)?\n=> ");

scanf("%1f", &floor_ space);

/* Project collecting area needed */

heat loss = heating req * floor space * heat deg days;

energy resrc = efficiency * 0.01 * solar insol *
days_in month(coldest mon);

collect area = (int)(heat loss / energy resrc + 0.5);

/* Display results */

printf("To replace heat loss of %.0f BTU in the ", heat loss);
printf("coldest month (month %d)\nwith available ", coldest mon);
printf("solar insolation of %d BTU / ft"2 / day,", solar_insol);
printf(" and an\nefficiency of %d percent,", efficiency);
printf(" use a solar collecting area of %d", collect area);
printf(" ft"2.\n");

return (0);

(continued)

346 Chapter 6 ¢ Pointers and Modular Programming

FIGURE 6.13 (continued)

82.

83. /=*

84. * Given a month number (1 = January, 2 = February, ..,
85. * 12 = December), return the number of days in the month
86. * (nonleap year).

87. * Pre: 1 <= monthNumber <= 12

88. =/

89. int days_in month(int month number)
90. {

91.

92. int ans;

93.

94. switch (month number) {

95. case 2: ans = 28; /* February */
96. break;

97.

98. case 4: /* April */

99. case 6: /* June */

100. case 9: /* September */

101. case 11: ans = 30; /* November */
102. break;

103.

104. default: ans = 31;

105. }

106.

107. return ans;

108. 3

109.

110. /=*

111. * Finds and returns the nth integer in a file.

112. * Pre: data file accesses a file of at least n integers (
113. =*/

114. int nth_item(FILE *data_file, int n)

115. {

116. int i, item;

117.

118. for (i = 1; i <= n; ++1i)

119. fscanf(data_file, "%d", &item);
120.

n >=1).

(continued)

121.
122.

6.6 * Problem Solving lllustrated 347

FIGURE 6.13 (continued)

return item;

Sample Run

What is the approximate heating requirement (BTU / degree day ft"2)
of this type of construction?

=> 9

What percent of solar insolation will be converted to usable heat?
=> 60

What is the floor space (ft"2)?

=> 1200

To replace heat loss of 11350800 BTU in the coldest month (month 12)
with available solar insolation of 500 BTU / ft"2 / day, and an
efficiency of 60 percent, use a solar collecting area of 1221 ft"2.

Functions for Common Fractions

In our next case study, we manipulate numeric data of a type not provided as one
of C’s base types. In order to do this, we must write our own functions to perform
operations on common fractions that we take for granted when using types int
and double.

CASE STUDY Arithmetic with Common Fractions

PROBLEM

You are working problems in which you must display your results as integer ratios;
therefore, you need to be able to perform computations with common fractions and get
results that are common fractions in reduced form. You want to write a program that
will allow you to add, subtract, multiply, and divide several pairs of common fractions.

ANALYSIS

Because the problem specifies that results are to be in reduced form, we will need
to include a fraction-reducing function in addition to the computational functions. If
we break the problem into small enough chunks, there should be an opportunity to
reuse code by calling the same function multiple times. The in-depth analysis of the
problem is actually distributed through the development of these functions.

348 Chapter 6 ¢ Pointers and Modular Programming

DATA REQUIREMENTS
Problem Inputs

int nl, dl /* numerator, denominator of first fraction */
int n2, d2 /* numerator, denominator of second fraction */
char op /* arithmetic operator + - * or / */
char again /* y or n depending on user's desire to continue */

Problem Outputs

int n_ans /* numerator of answer */
int d_ans /* denominator of answer */
DESIGN

As we develop an algorithm through stepwise refinement, we will look for instances
in which a definition of a new function would simplify the design.

INITIAL ALGORITHM

1. Repeat as long as user wants to continue.
2. Get a fraction problem.
3. Compute the result.
4. Display problem and result.
5. Check if user wants to continue.

Step 2 Refinement
2.1 Get first fraction.

2.2 Get operator.
2.3 Get second fraction.

Step 3 Refinement

3.1 Select a task based on operator:

‘+: 3.1.1 Add the fractions.

‘=t 3.1.2 Add the first fraction and the negation of the second.

*’: 3.1.3 Multiply the fractions.

/1 3.1.4 Multiply the first fraction and the reciprocal of the second.
3.2 Put the result fraction in reduced form.

Step 3.2 Refinement
3.2.1 Find the greatest common divisor (ged) of the numerator and denominator.
3.2.2 Divide the numerator and denominator by the ged.

The structure chart in Fig. 6.14 shows the data flow among the steps we have
identified.

FIGURE 6.14

Structure Chart for
Common Fraction
Problem

stub a skeleton
function that consists
of a header and
statements that display
trace messages and
assign values to output
parameters; enables
testing of the flow

of control among
functions before this
function is completed

6.6 * Problem Solving lllustrated

Perform arithmetic
operations on
common fractions

349

nl nl nl,dl
a1 A di A op
op again op | n_ans n2,d2
n2 n2 [d_ans n_ans
d2 d2 | d_ans
Get _
fraction Continue? Compute Print problem
problem result and result
| O
num, denom
num op nl nl +
denom dl + dl + +
n2 Z_ans n2 r;_ans dnum print
2 ans 2 ans enom ey
scan_ get d) @ T ¢ fraction
fraction operator
add_ multiply reduce_
fractions fractions fraction
nl,n2 T
¢ gcd
find_gcd

IMPLEMENTATION

For steps 2.1 and 2.3 we will use function scan_fraction from Fig. 6.10. We
will write new function subprograms for get_operator (step 2.2), add_frac-
tions (steps 3.1.1 and 3.1.2), multiply fractions (steps 3.1.3 and 3.1.4)
reduce_fraction (step 3.2), £ind_ged (step 3.2.1), and print_fraction (part
of step 4). As a result, coding function main is quite straightforward. Figure
6.15 shows most of the program; however, the functions multiply fractions
and find_gcd have been left as exercises. In their places, we have inserted
stubs, skeleton functions that have complete comments and headers but merely
assign values to their output parameters to allow testing of the partial system.
Debugging and testing the system will be explained in Section 6.7.

350

OO R R =

Chapter 6 ¢ Pointers and Modular Programming

FIGURE 6.15 Program to Perform Arithmetic Operations on Common Fractions

/*

* Adds, subtracts, multiplies and divides common fractions, displaying

* results in reduced form.

2/

#include <stdio.h>
#include <stdlib.h> /* provides function abs */

/* Function prototypes */
void scan_fraction(int *nump, int *denomp);

char get operator(void);

void add_fractions(int nl, int dl, int n2, int d2,
int *n_ansp, int *d_ansp);

void multiply fractions(int nl, int dl, int n2, int d2,
int *n_ansp, int *d_ansp);

int find ged (int nl, int n2);
void reduce_ fraction(int *nump, int *denomp);
void print fraction(int num, int denom);

int

main(void)

{
int nl, di; /* numerator, denominator of first fraction
int n2, d2; /* numerator, denominator of second fraction
char op; /* arithmetic operator + - * or /
char again; /* y or n depending on user's desire to continue

int n_ans, d_ans; /* numerator, denominator of answer
/* While the user wants to continue, gets and solves arithmetic
problems with common fractions
do {
/* Gets a fraction problem
scan_fraction(&nl, &dl);
op = get operator();

(continued)

@/
@/
@/
2/
2/

2/

2/

6.6 ¢ Problem Solving Illustrated 351

FIGURE 6.15 (continued)

40. scan_fraction(&n2, &d2);

41.

42. /* Computes the result */

43, switch (op) {

44, case '+':

45, add_fractions(nl, dl, n2, d2, &n_ans, &d_ans);

46. break;

47.

48. case '-':

49, add fractions(nl, dl1, -n2, d2, &n_ans, &d_ans);

50. break;

51.

52. case '*':

53. multiply fractions(nl, dl, n2, d2, &n_ans, &d_ans);
54. break;

55.

56. case '/':

57. multiply fractions(nl, dl, d2, n2, &n_ans, &d_ans);
58. }

59. reduce_ fraction(&n_ans, &d_ans);

60.

61. /* Displays problem and result */
62. printf("\n");

63. print_fraction(nl, dl);

64. printf(" %c ", op);

65. print_fraction(n2, d2);

66. printf(" = ");

67. print_ fraction(n_ans, d_ans);

68.

69. /* Asks user about doing another problem */
70. printf ("\nDo another problem? (y/n)> ");

71. scanf (" %c", &again);

72. } while (again == 'y' || again == 'Y');

73. return (0);

74.

75. /* Insert function scan_fraction from Fig. 6.10 here. */

76.

77. /*

78. * Gets and returns a valid arithmetic operator. Skips over newline
79. * characters and permits reentry of operator in case of error.

(continued)

352

80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.

Chapter 6 ¢ Pointers and Modular Programming

FIGURE 6.15 (continued)

*/
char

get_operator(void)

{
char op;
printf ("Enter an arithmetic operator (+,-,*, or /)\n> ");
for (scanf("%c", &op);
op != '+' && op != '-' &&
op != '*' && op != '/';
scanf ("%c", &op)) {
if (op != '\n')
printf("%c invalid, reenter operator (+,-, *,/)\n> ", op);
}
return (op);
}
/*

* Adds fractions represented by pairs of integers.

* Pre: nl, dl, n2, d2 are defined;
* n_ansp and d_ansp are addresses of type int variables.
* Post: sum of nl/dl and n2/d2 is stored in variables pointed

* to by n_ansp and d_ansp. Result is not reduced.
=/
void
add_fractions(int nl, int dl, /* input - first fraction */
int n2, int d2, /* input - second fraction */
int *n_ansp, int *d_ansp) /* output - sum of 2 fractions*/
{
int denom, /* common denominator used for sum (may not be least)
numer, /* numerator of sum

sign factor; /* -1 for a negative, 1 otherwise

/* Finds a common denominator
denom = dl * d2;

/* Computes numerator
numer = nl * d2 + n2 * dl;

/* Adjusts sign (at most, numerator should be negative)

(continued)

@/
@/
@/

@/

@/

@/

120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.

6.6 ¢ Problem Solving Illustrated 353

FIGURE 6.15 (continued)

if (numer * denom >= 0)

sign_factor = 1;
else
sign_factor = -1;
numer = sign_factor * abs(numer);

denom = abs(denom);

/* Returns result
*n_ansp = numer;
*d_ansp = denom;

/*

khkkk STUB *kkk*x

* Multiplies fractions represented by pairs of integers.
* Pre: nl, dl, n2, d2 are defined;

& n_ansp and d_ansp are addresses of type int variables.
* Post: product of nl/dl and n2/d2 is stored in variables pointed
B to by n_ansp and d_ansp. Result is not reduced.
2V
void
multiply fractions(int nl, int dl, /* input - first fraction
int n2, int d2, /* input - second fraction
int *n_ansp, /* output -
int *d_ansp) /* product of 2 fractions
{

/* Displays trace message

printf("\nEntering multiply fractions with\n");

printf("nl = %d, dl = %d, n2 = %d, d2 = %d\n", nl, dl1, n2, d2);
/* Defines output arguments

*n_ansp = 1;

*d_ansp = 1;

/*
kkk STUB *khkkk*k
* Finds greatest common divisor of two integers
@y

int

(continued)

@/

@/
@/
@/
@/

@/

@/

354 Chapter 6 ¢ Pointers and Modular Programming

FIGURE 6.15 (continued)

160. find gcd (int nl, int n2) /* input - two integers

161. {

162. int gcd;

163.

164. /* Displays trace message

165. printf("\nEntering find gcd with nl = %d, n2 = %d\n", nl, n2);
166.

167. /* Asks user for gcd

168. printf("gcd of %d and %d?> ", nl, n2);
169. scanf ("%d", &gcd);

170.

171. /* Displays exit trace message

172. printf("find gcd returning %d\n", gcd);
173. return (gcd);

174. %

175.

176. /=*

177. * Reduces a fraction by dividing its numerator and denominator by their
178. * greatest common divisor.

179. =/

180. void

181. reduce fraction(int *nump, /* input/output -

182. int *denomp) /* numerator and denominator of fraction
183. {

184. int gcd; /* greatest common divisor of numerator & denominator
185.

186. gcd = find gcd(*nump, *denomp);

187. *nump = *nump / gcd;

188. *denomp = *denomp / gcd;

189. 3

190.

191. /=*

192. * Displays pair of integers as a fraction.

193. =/

194. void

195. print fraction(int num, int denom) /* input - numerator & denominator
196. {

197. printf("%d/%d", num, denom);

198. }

=/

@/

@/

@/

@/
@/

=/

2/

6.6 ¢ Problem Solving Illustrated 355

TESTING

We have chosen to leave portions of our fraction system for you to write, but we
would still like to test the functions that are complete. We have inserted a stub
for each function not yet completed. Each stub prints an identification message
and assigns values to its output parameters. For testing purposes, we made the
find_ged stub interactive so the program tester can enter a correct greatest com-
mon divisor and see if this leads to correct results.

Figure 6.16 shows a run of the program in its present form. Notice that when
we choose operator + and enter a correct greatest common divisor interactively, the
result is correct. However, when we choose operator *, although the program con-
tinues execution by calling the stubs, the result is incorrect because the stub for func-
tion multiply fractions always returns a numerator and denominator value of 1.

FIGURE 6.16 Sample Run of a Partially Complete Program Containing Stubs

Enter a common fraction as two integers separated by a slash> 3/-4
Input invalid—denominator must be positive

Enter a common fraction as two integers separated by a slash> 3/4
Enter an arithmetic operator (+,-,*, or /)

> +

Enter a common fraction as two integers separated by a slash> 5/8
Entering find gcd with nl = 44, n2 = 32

gcd of 44 and 32?> 4

find _gcd returning 4

3/4 + 5/8 = 11/8

Do another problem? (y/n)> vy

Enter a common fraction as two integers separated by a slash> 1/2
Enter an arithmetic operator (+,-,*, or /)

> 5

5 invalid, reenter operator (+,-,%*,/)

> ok

Enter a common fraction as two integers separated by a slash> 5/7
Entering multiply fractions with

nl =1, dl = 2, n2 =5, d2 =7

Entering find gecd with nl = 1, n2 =1

ged of 1 and 12> 1

find gcd returning 1

1/2 * 5/7 = 1/1
Do another problem? (y/n)> n

356 Chapter 6 ¢ Pointers and Modular Programming

|

Self-Check

1. Why are pointer types used for the parameters of scan_fraction?
2. Why was it not necessary to include a default case in the switch statement
that calls add_fractions and multiply_fractions‘.p

Programming

1. Implement the following algorithm as the find_ged function needed in
the common fraction system of Fig. 6.15. Your function will find the great-
est common divisor (that is, the product of all common factors) of integers
nl and n2.

1. Put the absolute value of n1 in q and of n2 in p.
2. Store the remainder of q divided by p in r.
3. while r is not zero
4. Copy p into g and r into p.
5. Store the remainder of g divided by p in r.
6. pisthe ged.
2. Write the function multiply fractions. If your result has a zero denomina-
tor, display an error message and change the denominator to 1.

6.7 Debugging and Testing a Program System

top-down testing

the process of testing
flow of control between
a main function and its
subordinate functions

As the number of statements in a program system grows, the possibility of error
also increases. If we keep each function to a manageable size, the likelihood of
error increases much more slowly. It is also easier to read and test each function.

In the last case study, we inserted stubs in the program for functions that were
not yet written. When a team of programmers is working on a problem, using stubs
is a common practice. Obviously, not all functions will be ready at the same time,
and the use of stubs enables us to test and debug the main program flow and those
functions that are available.

Each stub displays an identification message and assigns values to its output
parameters to prevent execution errors caused by undefined values. We show the
stub for function multiply fractions again in Fig. 6.17. If a program contains
one or more stubs, the message printed by each stub when it is called provides a
trace of the call sequence and allows the programmer to determine whether the
flow of control within the program is correct. The process of testing a program in
this way is called top-down testing.

When a function is completed, it can be substituted for its stub in the program.
However, we often perform a preliminary test of a new function before substitution

6.7 ¢ Debugging and Testing a Program System 357
FIGURE 6.17 Stub for Function multiply_fractions
1. /=%
2_ *kkk*x STUB *kkk*
3. * Multiplies fractions represented by pairs of integers.
4. * Pre: nl, dl, n2, d2 are defined;
5. * n_ansp and d_ansp are addresses of type int variables.
6. * Post: product of nl/dl and n2/d2 is stored in variables pointed
7. * to by n_ansp and d_ansp. Result is not reduced.
8. */
9. void
10. multiply fractions(int nl, int d1, /* input - first fraction */
11. int n2, int d2, /* input - second fraction */
12. int *n_ansp, /* output - */
13. int *d_ansp) /* product of 2 fractions */
14. {
15. /* Displays trace message */
16. printf("\nEntering multiply fractions with\n");
17. printf("nl = %d, dl1 = %d, n2 = %d, d2 = %d\n", nl, dl1, n2, d2);
18.
19. /* Defines output arguments */
20. *n_ansp = 1;
21. *d_ansp = 1;
22. 1}

unit test a test of an
individual function

bottom-up testing
the process of
separately testing
individual functions of a
program system

system integration
tests testing a system
after replacing all its
stubs with functions
that have been
pretested

because it is easier to locate and correct errors when dealing with a single function
rather than with a complete program system. We can perform such a unit test by
writing a short driver function to call it.

Don’t spend a lot of time creating an elegant driver because you will discard it as
soon as the new function is tested. A driver function should contain only the declara-
tions and executable statements necessary to perform a test of a single function. A driver
function should begin by giving values to all input and input/output parameters. Next
comes the call to the function being tested. After calling the function, the driver should
display the function results. A driver for function scan_fraction is shown in Fig. 6.18.

Once you are confident that a function works properly, substitute it for its stub
in the program system. The process of separately testing individual functions before
inserting them in a program system is called bottom-up testing. Tests of the entire
system are system integration tests.

By following a combination of top-down and bottom-up testing, a programming
team can be fairly confident that the complete program system will be relatively free
of errors when it is finally put together. Consequently, the final debugging sessions
should proceed quickly and smoothly.

358

S G =Y
N

B2 69 = e D as Y Y =

Chapter 6 ¢ Pointers and Modular Programming

FIGURE 6.18 Driver for Function scan_fraction

/* Driver for scan_fraction */

int

main(void)

{
int num, denom;
printf("To quit, enter a fraction with a zero numerator\n");
scan_fraction(&num, &denom);
while (num != 0) {
printf("Fraction is %d/%d\n", num, denom);
scan_fraction(&num, &denom);
}
return (0);
}

Debugging Tips for Program Systems
A list of suggestions for debugging a program system follows.

1. Carefully document each function parameter and local variable using comments

as you write the code. Also, describe the function’s purpose using comments.

Create a trace of execution by displaying the function name as you enter it.

3. Trace or display the values of all input and input/output parameters upon
entry to a function. Check that these values make sense.

4. Trace or display the values of all function outputs after returning from a func-
tion. Verify that these values are correct by hand computation. Make sure you
declare all input/output and output parameters as pointer types.

5. Make sure that a function stub assigns a value to the variable pointed to by
each output parameter.

o

If you are using a debugger, you may be able to specify whether you want
to execute a function as if it were a single statement or whether you want to step
through the individual statements of a function. Initially, execute the function as a
single statement and trace the values of all input and output parameters (tips 3 and
4 above). If the function results are incorrect, step through its individual statements.

If you are not using a debugger, you should plan for debugging as you write each
function rather than waiting until after you finish the whole program. Include the
display statements (mentioned in debugging tips 2 through 4) in the original C code
for the function. When you are satisfied that the function works correctly, remove the
debugging statements. The simplest way is to change them to comments by enclosing

Chapter Review 359

them within the symbols /*, */; if you have a problem later, you can remove these
symbols, thereby changing the comments back to executable statements.

6.8 Common Programming Errors

Many opportunities for error arise when you use functions with parameter lists, so
be extremely careful. Proper use of parameters is difficult for new programmers to
master, but it is an essential skill. One obvious pitfall is not ensuring that the actual
argument list has the same number of items as the formal parameter list. Each
actual input argument must be of a type that can be assigned to its corresponding
formal parameter. An actual output argument must be of the same pointer data type
as the corresponding formal parameter.

It is easy to introduce errors in a function that produces multiple results. If an
output parameter is not of a pointer type or if the calling function neglects to send a
correct variable address, the function results will be incorrect.

The C scope rules determine where a name is visible and can, therefore, be
referenced. If an identifier is referenced outside its scope, an undeclared symbol
syntax error will result.

Chapter Review

1. A program can declare pointers to variables of a specified type. For example,
int *mp declares mp as a pointer to an integer. The statementmp = &p;
stores the address of p (type int) in mp. The unary indirection operator * ena-
bles indirect access through a pointer. The statement n1 = *mp; stores the
value of p in n1 where *mp means follow the pointer in mp. The statement
*mp = n2; stores the value of n2 (type int) in the variable p.

2. The declaration FILE *inp; declares inp as a pointer to a type FILE variable.
The function fopen is used to prepare a file for access by a C program. The
function £scanf (fprintf) is used to read (write) data from (to) a file. The
function fclose is used to close or disconnect a file.

3. Parameters enable a programmer to pass data to functions and to return
multiple results from functions. The parameter list provides a highly visible
communication path between a function and its calling program. Using
parameters enables a function to process different data each time it executes,
thereby making it easier to reuse the function in other programs.

4. Parameters may be used for input to a function, for output or sending back
results, and for both input and output. An input parameter is used only for
passing data into a function. The parameter’s declared type is the same as the

360

Chapter 6 ¢ Pointers and Modular Programming

type of the data. Output and input/output parameters must be able to access
variables in the calling function’s data area so they are declared as pointers to
the result data types. The actual argument corresponding to an input param-
eter may be an expression or a constant; the actual argument corresponding to
an output or input/output parameter must be the address of a variable.

5. A function can use parameters declared as pointers to return values. Use &x in
a function call to pass the address of x to an output parameter or to an input/

output parameter. In the function called, use *xp =

. . . to assign a value to

the actual argument associated with formal parameter xp.

6. The scope of an identifier dictates where it can be referenced. A parameter or
local variable can be referenced anywhere in the function that declares it. A func-
tion name is visible from its declaration (the function prototype) to the end of the
source file except within functions that have local variables of the same name. The
same rule applies for a constant macro: It is visible from its #define directive.

NEW C CONSTRUCTS

Construct Effect

File Open

inp = fopen("num.txt", "r"); Opens num. txt as an input file, storing file pointer

outp = fopen("out.txt", "w"); in inp. Opens out.txt as an output file, storing file
pointer in outp.

Calls to Input/Output Functions

fscanf (inp, "%d%d", &mid, &low); Copies input data from file num. txt into the type int

fprintf (outp, "%5d %5d %5d\n",
high, mid, low);

File Close

fclose(inp);

fclose(outp);

Function that Returns Multiple Results
void

input */
input */
output*/
output*/

token val);

make change(double change, /*
double token val, /*
int *num_tokenp, /*
double *leftp) /*
{
*num_tokenp = floor(change /
*leftp = change - *num_tokenp *
token val;
¥

variables mid and low.
Stores in the file out . txt a line containing the values of

high, mid, and low.

Closes input file num. txt and newly created file
out.txt.

Determines how many of a certain bill or coin
(token_val) should be included in change amount.
This number is sent back through the output parameter
num_tokenp. The amount of change remaining to
be made is sent back through the output parameter
leftp. The following call assigns a 3 to num_
twenties and 11.50 to remaining change.
int num_twenties;
double remaining change;
make change(71.50, 20.00,
&num_twenties,

&remaining change);
(continued)

NEW C CONSTRUCTS

(continued)

Quick-Check Exercises 361

Construct

Effect

Function with Input/Output Parameters

void
correct_fraction(int *nump,

{

/* input/ */
int *denomp) /* output */
if ((*nump * *denomp) > 0)
*nump = abs(*nump);
else
*nump = -abs(*nump);
*denomp = abs(*denomp);

The following call corrects the form of a common fraction
so the denominator is always positive (e.g., =5/ 3 rather
than 5/-3).

int num, denom;
num = 5;

denom -3;
correct_fraction(&num, &denom);

Quick-Check Exercises

1. The items passed in a function call are the

sponding

. The corre-

appear in the function prototype and heading.

2. Constants and expressions can be actual arguments corresponding to formal

parameters that are

parameters.

3. Formal parameters that are output parameters must have actual arguments

that are

4. Which of the following is used to test a function: A driver or a stub?
5. Which of the following is used to test program flow in a partially complete sys-

tem: A driver or a stub?

6. The part of a program where an identifier can be referenced is called the

of the identifier.

7. What are the values of main function variables x and y at the point marked
/* values here */ in the following program?

/* nonsense */
void silly(int x);
int

main(void)

{

int x, v;

x = 10; y = 11;

silly(x);
silly(y);

/* values here */

362 Chapter 6 ¢ Pointers and Modular Programming

void
silly(int x)
{

int y;

y = x + 2;
X *= 2;

}

8. Let’s make some changes in our nonsense program. What are main’s x and y
at /* values here */ in the following version?

/* nonsense */
void silly(int *x);

int
main(void)
{
int x, y;
x = 10; y = 11;
silly(&x);
silly(&y); /* values here */
}
void
silly(int *x)
{
int y;
y = *xX + 2;
*x = 2 * *x;
}

Answers to Quick-Check Exercises

1. actual arguments; formal parameters
input

addresses of variables/pointers
driver

stub

scope

xis 10,yis 11

xis 20,y is 22

PN TR W

Review Questions 363

Review Questions

1. Write a function called letter_grade that has a type int input parameter called
points and returns through an output parameter gradep the appropriate let-
ter grade using a straight scale (90-100 is an A, 80-89 is a B, and so on). Return
through a second output parameter (just_missedp) an indication of whether
the student just missed the next higher grade (true for 89, 79, and so on).

2. Why would you choose to write a function that computes a single numeric or
character value as a non void function that returns a result through a return
statement rather than to write a void function with an output parameter?

3. Explain the allocation of memory cells when a function is called. What is
stored in the function data area for an input parameter? Answer the same
question for an output parameter.

4. Which of the functions in the following program outline can call the function
grumpy? All function prototypes and declarations are shown; only executable
statements are omitted.

int grumpy(int dopey);
char silly(double grumpy);
double happy(int goofy, char greedy);

int
main(void)
{
double p, q, r;

int
grumpy (int dopey)
{
double silly;

char
silly(double grumpy)

{
double happy:;

364

Chapter 6 ¢ Pointers and Modular Programming

double
happy(int goofy, char greedy)
{
char grumpy;
¥

Sketch the data areas of functions main and silly as they appear imme-
diately before the return from the first call to silly in Quick-Check
Exercise 8.

Present arguments against these statements:

a. Itis foolish to use function subprograms because a program written with
functions has many more lines than the same program written without
functions.

b. The use of function subprograms leads to more errors because of mistakes
in using argument lists.

Programming Projects

1.

Write a program for an automatic teller machine that dispenses money.

The user should enter the amount desired (a multiple of 10 dollars) and the
machine dispenses this amount using the least number of bills. The bills dis-
pensed are 50s, 20s, and 10s. Write a function that determines how many of
each kind of bill to dispense.

A hospital supply company wants to market a program to assist with the cal-
culation of intravenous rates. Design and implement a program that interacts
with the user as follows:

INTRAVENOUS RATE ASSISTANT

Enter the number of the problem you wish to solve.

GIVEN A MEDICAL ORDER IN CALCULATE RATE IN
(1) ml/hr & tubing drop factor drops / min
(2) 1 L for n hr ml / hr
(3) mg/kg/hr & concentration in mg/ml ml / hr
(4) units/hr & concentration in units/ml ml / hr
(5) QUIT

Problem> 1

Enter rate in ml/hr=> 150

Enter tubing's drop factor(drops/ml)=> 15
The drop rate per minute is 38.

Programming Projects 365

Enter the number of the problem you wish to solve.

GIVEN A MEDICAL ORDER IN CALCULATE RATE IN
(1) ml/hr & tubing drop factor drops / min
(2) 1 L for n hr ml / hr
(3) mg/kg/hr & concentration in mg/ml ml / hr
(4) units/hr & concentration in units/ml ml / hr
(5) QUIT

Problem=> 2
Enter number of hours=> 8
The rate in milliliters per hour is 125.

Enter the number of the problem you wish to solve.

GIVEN A MEDICAL ORDER IN CALCULATE RATE IN
(1) ml/hr & tubing drop factor drops / min
(2) 1 L for n hr ml / hr
(3) mg/kg/hr & concentration in mg/ml ml / hr
(4) units/hr & concentration in units/ml ml / hr
(5) QUIT

Problem=> 3

Enter rate in mg/kg/hr=> 0.6

Enter patient weight in kg=> 70

Enter concentration in mg/ml=> 1

The rate in milliliters per hour is 42.

Enter the number of the problem you wish to solve.

GIVEN A MEDICAL ORDER IN CALCULATE RATE IN
(1) ml/hr & tubing drop factor drops / min
(2) 1 L for n hr ml / hr
(3) mg/kg/hr & concentration in mg/ml ml / hr
(4) units/hr & concentration in units/ml ml / hr
(5) QUIT

Problem=> 4

Enter rate in units/hr=> 1000

Enter concentration in units/ml=> 25
The rate in milliliters per hour is 40.

Enter the number of the problem you wish to solve.

GIVEN A MEDICAL ORDER IN CALCULATE RATE 1IN
(1) ml/hr & tubing drop factor drops / min
(2) 1 L for n hr ml / hr
(3) mg/kg/hr & concentration in mg/ml ml / hr
(4) units/hr & concentration in units/ml ml / hr

(5) QUIT

366 Chapter 6 ¢ Pointers and Modular Programming

Problem=> 5
Implement the following functions:

get_problem—Displays the user menu, then inputs and returns as the func-
tion value the problem number selected.

get_rate_drop_factor—Prompts the user to enter the data required for
problem 1, and sends this data back to the calling module via output
parameters.

get_kg_rate_conc—Prompts the user to enter the data required for prob-
lem 3, and sends this data back to the calling module via output para-
meters.

get_units_conc—Prompts the user to enter the data required for problem 4,
and sends this data back to the calling module via output parameters.

fig_drops_min—Takes rate and drop factor as input parameters and returns
drops/min (rounded to nearest whole drop) as function value.

fig_ml_hr—Takes as an input parameter the number of hours over which
one liter is to be delivered and returns ml/hr (rounded) as function value.

by_weight—Takes as input parameters rate in mg/kg/hr, patient weight in kg,
and concentration of drug in mg/ml and returns ml/hr (rounded) as func-
tion value.

by_units—Takes as input parameters rate in units/hr and concentration in
units/ml, and returns ml/hr (rounded) as function value.

(Hint: Use a sentinel-controlled loop. Call get_problem once before the loop

to initialize the problem number and once again at the end of the loop body to

update it.)

3. Write a program to dispense change. The user enters the amount paid and
the amount due. The program determines how many dollars, quarters,
dimes, nickels, and pennies should be given as change. Write a function
with four output parameters that determines the quantity of each kind of
coin.

4. The table below summarizes three commonly used mathematical models of
nonvertical straight lines.

Mode Equation Given
Two-point form m=22"0 G, y1), 0, o)
X3 =X

Point-slope form Y=y =mx-x) m, (X;, y1)

Slope-intercept form y=mx+b m, b

Programming Projects 367

Design and implement a program that permits the user to convert either
two-point form or point-slope form into slope-intercept form. Your program
should interact with the user as follows:

Select the form that you would like to convert to slope-intercept
form:

1) Two-point form (you know two points on the line)

2) Point-slope form (you know the line's slope and one point)
=> 2

Enter the slope=> 4.2
Enter the x-y coordinates of the point separated by a space=> 1 1

Point-slope form
y —1.00 = 4.20(x — 1.00)

Slope-intercept form
y = 4.20x — 3.20

Do another conversion (Y or N)=> Y

Select the form that you would like to convert to slope-intercept
form:

1) Two-point form (you know two points on the line)

2) Point-slope form (you know the line's slope and one point)
=> 1

Enter the x-y coordinates of the first point separated by a
space=> 4 3

Enter the x-y coordinates of the second point separated by a
space=> -2 1

Two-point form
(1.00 — 3.00)

(-2.00 — 4.00)

Slope-intercept form
y = 0.33x + 1.66

Do another conversion (Y or N)=> N
Implement the following functions:

get_problem—Displays the user menu, then inputs and returns as the func-
tion value the problem number selected.

get2_pt—Prompts the user for the x-y coordinates of both points, inputs the
four coordinates, and returns them to the calling function through output
parameters.

get_pt_slope—Prompts the user for the slope and x-y coordinates of the
point, inputs the three values and returns them to the calling function
through output parameters.

368

Chapter 6 ¢ Pointers and Modular Programming

slope_intcpt_from2_pt—Takes four input parameters, the x-y coordinates
of two points, and returns through output parameters the slope (m) and
y-intercept ().

intcpt_from_pt_slope—Takes three input parameters, the x-y coordinates of
one point and the slope, and returns as the function value the y-intercept.

display2_pt—Takes four input parameters, the x-y coordinates of two
points, and displays the two-point line equation with a heading.

display_pt_slope—Takes three input parameters, the x-y coordinates of one
point and the slope, and displays the point-slope line equation with a heading.

display_slope_intcpt—Takes two input parameters, the slope and y-inter-
cept, and displays the slope-intercept line equation with a heading.

Determine the following information about each value in a list of positive integers.

a. Is the value a multiple of 7, 11, or 13?
b. Is the sum of the digits odd or even?
c. Is the value a prime number?

You should write a function with three type int output parameters that send
back the answers to these three questions. Some sample input data might be:

104 3773 13 121 77 30751

Develop a collection of functions to solve simple conduction problems using
various forms of the formula
kA(T, - T))

X

H =

where H is the rate of heat transfer in watts, k is the coefficient of thermal
conductivity for the particular substance, A is the cross-sectional area in m?
(square meters), T; and T are the kelvin temperatures on the two sides of the
conductor, and X is the thickness of the conductor in meters.

T2

T4

Programming Projects 369

Define a function for each variable in the formula. For example, function
calc_h would compute the rate of heat transfer, calc_k would figure the
coefficient of thermal conductivity, calc_a would find the cross-sectional
area, and so on.

Develop a driver function that interacts with the user in the following way:

Respond to the prompts with the data known. For the
unknown quantity, enter a question mark (?).
Rate of heat transfer (watts) >> 755.0
Coefficient of thermal conductivity (W/m-K) >> 0.8
Cross-sectional area of conductor (m"2) >> 0.12
Temperature on one side (K) >> 298
Temperature on other side (K) >> ?
Thickness of conductor (m) >> 0.003

kA (T2 - T1)

H = ccmmmmmemmeee
X

Temperature on the other side is 274 K.

H = 755.0 W T2 = 298 K

k = 0.800 W/m-K Tl = 274 K

A =0.120 m"2 X = 0.0003 m

(Hint: Input of the question mark when looking for a number will cause scanf
to return a value of 0. Be sure to check for this, and then scan the question
mark into a character variable before proceeding with the remaining prompts.)

The square root of a number N can be approximated by repeated calculation
using the formula

NG = 0.5(LG + N/LG)

where NG stands for next guess and LG stands for last guess. Write a function
that calculates the square root of a number using this method.
The initial guess will be the starting value of LG. The program will com-
pute a value for NG using the formula given. The difference between NG
and LG is checked to see whether these two guesses are almost identical. If
they are, NG is accepted as the square root; otherwise, the next guess (NG)
becomes the last guess (LG) and the process is repeated (another value is
computed for NG, the difference is checked, and so on). The loop should be
repeated until the difference is less than 0.005. Use an initial guess of 1.0.
Write a driver function and test your square root function for the numbers
4,120.5, 88, 36.01, 10,000, and 0.25.
InternetLite Corporation is an Internet service provider that charges cus-
tomers a flat rate of $7.99 for up to 10 hours of connection time. Additional
hours or partial hours are charged at $1.99 each. Write a function charges
that computes the total charge for a customer based on the number of hours

370

Chapter 6 ¢ Pointers and Modular Programming

of connection time used in a month. The function should also calculate the
average cost per hour of the time used (rounded to the nearest cent), so use
two output parameters to send back these results. Write a second function
round_money that takes a real number as an input argument and returns as
the function value the number rounded to two decimal places. Write a main
function that takes data from an input file usage . txt and produces an output
file charges.txt. The data file format is as follows:

Line 1: current month and year as two integers
Other lines: customer number (a 5-digit number) and number of hours used
Here is a sample data file and the corresponding output file:

Data file usage.txt

10 2009

15362 4.2
42768 11.1
11111 9.9

Output file charges.txt
Charges for 10/2009

Charge
Customer Hours used per hour Average cost
15362 4.2 7.99 1.90
42768 11.1 11.97 1.08
11111 9.9 7.99 0.81

When an aircraft or an automobile is moving through the atmosphere, it must
overcome a force called drag that works against the motion of the vehicle. The
drag force can be expressed as

:;—CDXAXpXVQ

where F is the force (in newtons), CD is the drag coefficient, A is the pro-
jected area of the vehicle perpendicular to the velocity vector (in m?), is the
density of the gas or fluid through which the body is traveling (kg/m?), and V
is the body’s velocity. The drag coefficient CD has a complex derivation and is
frequently an empirical quantity. Sometimes the drag coefficient has its own
dependencies on velocities: For an automobile, the range is from approxi-
mately 0.2 (for a very streamlined vehicle) through about 0.5. For simplicity,
assume a streamlined passenger vehicle is moving through air at sea level
(where p = 1.23 kg/m?®). Write a program that allows a user to input A and CD
interactively and calls a function to compute and return the drag force. Your

10.

11.

Programming Projects 371

program should call the drag force function repeatedly and display a table
showing the drag force for the input shape for a range of velocities from 0 m/s
to 40 m/s in increments of 5 m/s.

Write a program to model a simple calculator. Each data line should consist of
the next operation to be performed from the list below and the right operand.
Assume the left operand is the accumulator value (initial value of 0). You need
a function scan_data with two output parameters that returns the operator
and right operand scanned from a data line. You need a function do_next_op
that performs the required operation. do_next_op has two input parameters
(the operator and operand) and one input/output parameter (the accumulator).
The valid operators are:

+ add

- subtract

* multiply

/ divide

» power (raise left operand to power of right operand)
q quit

Your calculator should display the accumulator value after each operation. A
sample run follows.

+ 5.0

result so far is 5.0
~2

result so far is 25.0
/ 2.0

result so far is 12.5

q 0
final result is 12.5

After studying gross annual revenues of Broadway shows over a 20-year
period, you model the revenue as a function of time:

R(t) = 203.265 X (1.071)

where R is in millions of dollars and ¢ is the years since 1984. Create the fol-
lowing C functions to implement this model:

revenue—calculates and returns R for an input parameter of ¢.

predict—predicts the year in which revenues (in millions) will first equal or
exceed the value of the input parameter. For example, predict (200) would
return 1984.

Write a main function that calls predict to determine when revenues will
likely exceed $1 trillion (i.e., 1,000 million). Then create an output file that
contains a table of estimated revenues (in millions of dollars) for all the years

372 Chapter 6 ¢ Pointers and Modular Programming

FIGURE 6.19

Finite State
Machine for
Numbers and
Identifiers

12.

13.

from 1984 through the year when revenues should exceed $1 trillion. Round
revenue estimates to three decimal places.

Since communications channels are often noisy, numerous ways have been
devised to ensure reliable data transmission. One successful method uses a
checksum. A checksum for a message can be computed by summing the inte-
ger codes of the characters in the message and finding the remainder of this
sum divided by 64. The integer code for a space character is added to this
result to obtain the checksum. Since this value is within the range of the dis-
playable characters, it is displayed as a character as well. Write a program that
accepts single-line messages ending with a period and displays the checksum
character for each message. Your program should continue displaying check-
sums until the user enters a line with only a period.

A finite state machine (FSM) consists of a set of states, a set of transitions,
and a string of input data. In the FSM of Fig. 6.19, the named ovals repre-
sent states, and the arrows connecting the states represent transitions. The
FSM is designed to recognize a list of C identifiers and nonnegative integers,
assuming that the items are ended by one or more blanks and that a period
marks the end of all the data. The following table traces how the diagrammed
machine would process a string composed of one blank, the digits 9 and 5, two
blanks, the letter K, the digit 9, one blank, and a period. The machine begins
in the start state.

Output Identifier Message

Blank (8)

Period (2)

Output Number Message

Trace of Fig. 6.19 FSM on data “ 95 K9 .”

Programming Projects 373

State Next Character Transition

start 3

start '9' 1

build_num) 9

build_num v 10

number Output number message
start 3

start K 4

build_id '9' 6

build_id v 8

identifier Output identifier message
start 2

stop

Write a program that uses an enumerated type to represent the names
of the states. Your program should process a correctly formatted line of data,
identifying each data item. Here is a sample of correct input and output.

Input:

rate R2D2 48
Output:

rate — Identifier

R2D2 — Identifier
48 — Number

2 — Number

time — Identifier
555666 — Number

2 time

555666

Use the following code fragment in main, and design function transition
to return the next state for all the numbered transitions of the finite state
machine. If you include the header file ctype.h, you can use the library
function isdigit which returns 1 if called with a digit character, 0 other-
wise. Similarly, the function isalpha checks whether a character is a let-
ter. When your program correctly models the behavior of the FSM shown,
extend the FSM and your program to allow optional signs and optional
fractional parts (i.e., a decimal point followed by zero or more digits)

in numbers.

374

Chapter 6 ¢ Pointers and Modular Programming

14.

current_state = start;
do {

if (current_state == identifier) {
printf(" - Identifier\n");
current_state = start;

} else if (current_state == number) {
printf(" - Number\n");
current_state = start;

}

scanf("%c", &transition_char);

if (transition_char != ' ')

printf("%c", transition_char);
current_state = transition(current_state, transition_char);
} while (current_state != stop);

Harlan A. Brothers and John A. Knox discovered that as the value of x gets
2+ 1
2% — 1
a program that evaluates this expression for x = 1, 2, 3, and so on until the
absolute difference between the expression’s value and the value of e calcu-
lated by the library function exp is less than 0.000001. Display the value of x
that causes your loop to exit along with both the final approximation of ¢ and
the value of e calculated by the exp function. Show 7 decimal places.

X
larger, the value of the expression () gets closer and closer to e. Write

Arrays

CHAPTER

CHAPTER OBIJECTIVES

To learn how to declare and use arrays for storing collections
of values of the same type

To understand how to use a subscript to reference the indi-
vidual values in an array

To learn how to process the elements of an array in sequential
order using loops

To understand how to pass individual array elements and en-
tire arrays through function arguments

To learn a method for searching an array
To learn a method for sorting an array

To learn how to use multidimensional arrays for storing tables
of data

To understand the concept of parallel arrays
To learn how to declare and use your own data types

data structure a
composite of related
data items stored under
the same name

array a collection of
data items of the same

type

7.1

array element adata
item that is part of an
array

subscripted

variable a variable
followed by a subscript
in brackets, designating
an array element

array subscript a
value or expression
enclosed in brackets
after the array name,
specifying which array
element to access

S imple data types use a single memory cell to store a variable. To solve many
programming problems, it is more efficient to group data items together in main
memory than to allocate an individual memory cell for each variable. A program
that processes exam scores for a class, for example, would be easier to write if all
the scores were stored in one area of memory and were able to be accessed as a
group. C allows a programmer to group such related data items together into a
single composite data structure. In this chapter, we look at one such data struc-
ture: the array.

Declaring and Referencing Arrays

An array is a collection of two or more adjacent memory cells, called array elements,

that are associated with a particular symbolic name. To set up an array in memory, we

must declare both the name of the array and the number of cells associated with it.
The declaration

double x[8];

instructs the compiler to associate eight memory cells with the name x; these
memory cells will be adjacent to each other in memory. Each element of array x may
contain a single type double value, so a total of eight such numbers may be stored
and referenced using the array name x.

To process the data stored in an array, we reference each individual element
by specifying the array name and identifying the element desired (for example,
element 3 of array x). The subscripted variable x[0] (read as x sub zero) may
be used to reference the initial or Oth element of the array x, x[1] the next ele-
ment, and x[7] the last element. The integer enclosed in brackets is the array
subscript, and its value must be in the range from 0 to one less than the number
of memory cells in the array.

EXAMPLE 7.1

Let x be the array shown in Fig. 7.1. Notice that x[1] is the second array ele-
ment and x[7], not x[8], is the last array element. A sequence of statements
that manipulate this array is shown in Table 7.1. The contents of array x after
execution of these statements are shown after Table 7.1. Only x(21 and x[3] are

changed.

7.1 ¢ Declaring and Referencing Arrays 377

FIGURE 7.1 double x[8];

The Eight Elements Array x

ofArrayx x[0] =x[1] =x[2] =x[3] x[4] x[5] x[6] x[7]

16.0|12.0| 6.0 | 8.0 2.5]12.0|14.0 |-54.5

TABLE 7.1 Statements That Manipulate Array x

Statement Explanation

printf("%.1f", x[0]); Displays the value of x[0], whichis 16.0.

X[3] = 25.0; Stores the value 25.0 in x[3].

sum = X[0] + xX[1]; Stores the sum of x[0] and x[11, whichis 28.0 in

the variable sum.

sum += x[2]; Adds x[2] to sum. The new sum is 34.0.
x[3] += 1.0; Adds 1.0 tox[3]. Thenew x[3]i526.0.
x[2] = x[0] + x[1]; Stores the sumof x[0] and x[1] inx[2].

The new x[2]is28.0.

Array x

x[0] x[1] =x[2] x[3] x[4] x[5] x[6] x[7]

16.0112.0|28.0| 26.0| 2.5]12.0|14.0 |-54.5

EXAMPLE 7.2 You can declare more than one array in a single type declaration. The statements

double cactus[5], needle, pins[6];
int factor[12], n, index;

declare cactus and pins to be arrays with five and six type double elements,
respectively. The variable factor is an array with 12 type int elements. In addition,
individual memory cells will be allocated for storage of the simple variables need1le,
n, and index.

378

Chapter 7 e Arrays

Array Initialization
We can initialize a simple variable when we declare it:
int sum = 0;

We can also initialize an array in its declaration. We can omit the size of an array
that is being fully initialized since the size can be deduced from the initialization list.
For example, in the following statement, we initialize a 25-element array with the
prime numbers less than 100. Array element prime_1t_100[241]is 97.

int prime 1lt_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97};

Array Declaration

SYNTAX: element-type aname [sizel; /*uninitialized */
element-type aname [size] = {initialization list}; /* initialized */

EXAMPLE: #define A _SIZE 5
double a[A SIZE];
char vowels[] = {'A', 'E', 'I', 'O', 'U'};

INTERPRETATION: The general uninitialized array declaration allocates storage space for
array aname consisting of size memory cells. Each memory cell can store one data item
whose data type is specified by element-type (i.e., double, int, or char). The individual
array elements are referenced by the subscripted variables aname[0], aname[1], . . .,
aname[size —11]. A constant expression of type int is used to specify an array's size.

In the initialized array declaration shown, the size shown in brackets is optional since
the array’s size can also be indicated by the length of the initialization list. The initialization
list consists of constant expressions of the appropriate element-type separated by commas.
Element 0 of the array being initialized is set to the first entry in the initialization list, element
1 to the second, and so forth.

Storing a String in an Array of Characters

The previous syntax display shows that you can store individual characters in an
array by writing each character in the initialization list. If the list is long, you can do
this more easily by using a string instead of an initialization list.

char vowels[] = "This is a long string";

£

7.2 e Array Subscripts 379

In this case, vowels[0] stores the character 'T', vowels[] stores the character
*h', and so on. We will discuss this further in Sections 8.1 and 8.2.

Self-Check

1. What is the difference in meaning between x3 and x[317
2. For the declaration

int 1list[8];

how many memory cells are allocated for data storage? What type of data can
be stored there? How does one refer to the initial array element? To the final
array element?

3. Declare one array for storing the square roots of the integers from 0 through
10 and a second array for storing the cubes of the same integers.

7.2 Array Subscripts

We use a subscript to differentiate between the individual array elements and to
specify which array element is to be manipulated. We can use any expression of
type int as an array subscript. However, to create a valid reference, the value of
this subscript must lie between 0 and one less than the declared size of the array.

EXAMPLE 7.3

Understanding the distinction between an array subscript value and an array ele-
ment value is essential. The original array x from Fig. 7.1 follows. The subscripted
variable x[i] references a particular element of this array. If i has the value o,
the subscript value is 0, and x[0] is referenced. The value of x[07] in this case is
16.0. If i has the value 2, the subscript value is 2, and the value of x[1] is 6.0. If
i has the value 8, the subscript value is 8, and we cannot predict the value of x[1i]
because the subscript value is out of the allowable range.

Array x

x[0] =x[1] =x[2] =x[3] x[4] =x[5] x[6] x[7]

16.0)12.0| 6.0 | 8.0 2.5]112.0|14.0 |-54.5

EXAMPLE 7.4

Table 7.2 lists some sample statements involving the array x above. The variable i is
assumed to be of type int with value 5. Make sure you understand each statement.

380

Chapter 7 e Arrays

TABLE 7.2 Code Fragment That Manipulates Array x

Statement Explanation
i=5;
printf("%d %.1f", 4, x[4]); Displays 4 and 2.5 (value of x[41])
printf("sd %.1£f", i, x[i]); Displays 5 and 12.0 (value of x[51])
printf("%.1f", x[i] + 1); Displays 13.0 (value of x[5] plus 1)
printf("%.1£f", x[i] + 1i); Displays 17 .0 (value of x[51] plus 5)
printf("%.1f", x[i + 1]); Displays 14 .0 (value of x[61)
printf("%.1£f", xX[i + i]); Invalid. Attempt to display x[10]
printf("%.1f", x[2 * 1i]); Invalid. Attempt to display x[10]
printf("$.1£f", x[2 * i - 31); Displays =54 .5 (value of x[71)
printf("%.1£f", x[(int)x[4]]); Displays 6.0 (value of x[21])
printf("%.1£f", x[i++]); Displays 12 .0 (value of x[51) ;
then assigns 6 to i
printf("%.1£f", x[--1]); Assigns 5 (6 - 1)to i and then
displays 12.0 (value of x[517)
X[1i - 1] = x[1]; Assigns 12.0 (value of x[5]) to x[4]
x[1] = x[1 + 17; Assigns 14.0 (value of x[6])to X[5]
x[i] - 1 = x[1]; lllegal assignment statement

The two attempts to display element x[101, which is not in the array, may result in
a run-time error, but they are more likely to print incorrect results. Consider the
call to printf that uses (int)x[4] as a subscript expression. Since this expression

evaluates to 2, the value of x[2] (not x[41) is printed. If the value of (int)x[4]

were outside the range 0 through 7, its use as a subscript expression would not ref-

erence a valid array element.

Array Subscripts
SYNTAX: aname [subscript]
EXAMPLE: b[i + 1]

INTERPRETATION: The subscript may be any expression of type int. Each time a subscripted
variable is encountered in a program, the subscript is evaluated and its value determines
which element of array aname is referenced.

£

7.3 ¢ Using for Loops for Sequential Access 381

Note: It is the programmer’s responsibility to verify that the subscript is within the declared
range. If the subscript is in error, an invalid reference will be made. Although occasionally
a run-time error message will be printed, more often an invalid reference will cause a side
effect whose origin is difficult for the programmer to pinpoint. The side effect can also lead
to incorrect program results.

Self-Check

1. Show the contents of array x after executing the valid statements in Table 7.2.
2. For the new array derived in Exercise 1, describe what happens when the
valid statements in Table 7.2 are executed for i = 2.

7.3 Using for Loops for Sequential Access

Very often, we wish to process the elements of an array in sequence, starting with
element zero. An example would be scanning data into the array or printing its
contents. In C, we can accomplish this processing easily using an indexed £or loop,
a counting loop whose loop control variable runs from 0 to one less than the array
size. Using the loop counter as an array index (subscript) gives access to each array
element in turn.

EXAMPLE 7.5

The following array square will be used to store the squares of the integers 0
through 10 (e.g., square[0] is 0, square[10] is 100). We assume that the name
s1zE has been defined to be 11.

int square[SIZE], 1i;
The for loop

for (i = 0; i < SIZE; ++i)
square[i] = 1 * 1i;

initializes this array, as shown.
Array square

(01 11 [21 (31 [4] [5] ([6] [71 (8] [9] [10]

0 1 4 9 16 25 36 49 64 81 | 100

382

O

14.
5
16.
17.
18.
1%k,
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.

Chapter 7 e Arrays

Statistical Computations Using Arrays

One common use of arrays is for storage of a collection of related data values. Once the
values are stored, we can perform some simple statistical computations. In Fig. 7.2, we

use the array x for this purpose.

FIGURE 7.2 Program to Print a Table of Differences

/*

* Computes the mean and standard deviation of an array of data and displays

* the difference between each value and the mean.

*/

#include <stdio.h>
#include <math.h>

#define MAX ITEM 8 /* maximum number of items in list of data

int
main(void)

{
double x[MAX ITEM], /*
mean, /*
st_dev, /*
sum, /*
sum_sqr; /*

int i;

/* Gets the data

data list

mean (average) of the data
standard deviation of the data
sum of the data

sum of the squares of the data

*/

*/
*/
*/
*/
*/

*/

printf ("Enter %d numbers separated by blanks or <return>s\n> ",

MAX ITEM);
for (i = 0; i < MAX_ITEM; ++i)
scanf ("$1f", &x[i]);

/* Computes the sum and the sum of

sum = 0;
sum_sqr = 0;

for (i = 0; i < MAX ITEM; ++i) {

sum += x[i];
sum_sqr += x[i] *

x[i];

the squares of all data

*/

(continued)

34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45,
46.
47.

7.3 ¢ Using for Loops for Sequential Access 383

FIGURE 7.2 (continued)

/* Computes and prints the mean and standard deviation */
mean = sum / MAX_ ITEM;

st_dev = sqgrt(sum_sqr / MAX ITEM - mean * mean);

printf("The mean is %.2f.\n", mean);

printf("The standard deviation is %.2f.\n", st _dev);

/* Displays the difference between each item and the mean */
printf("\nTable of differences between data values and mean\n");
printf ("Index Item Difference\n");
for (i = 0; i < MAX_ITEM; ++i)
printf("%3d%4c%9.2£%5¢c%9.2f\n", i, ' ', x[i], ' ', X[1] - mean);

return (0);

}

Enter 8 numbers separated by blanks or <return>s
> 16 12 6 8 2.5 12 14 -54.5

The mean is 2.00.

The standard deviation is 21.75.

Table of differences between data values and mean

Index Item Difference
0 16.00 14.00
1 12.00 10.00
2 6.00 4.00
3 8.00 6.00
4 2.50 0.50
5 12.00 10.00
6 14.00 12.00
7 -54.50 -56.50

The program in Fig. 7.2 uses three for loops to process the array x. The constant
macro MAX_ITEM determines the size of the array. The variable i is used as the loop
control variable and array subscript in each loop.

The first for loop,

for (i = 0; i < MAX_ITEM; ++i)
scanf ("$1f", &x[i]);

stores one input value into each element of array x (the first item is placed in x[01,
the next in x[11, and so on). The call to scanf is repeated for each value of i from
0 to 7; each repetition gets a new data value and stores it in x[1]. The subscript i
determines which array element receives the next data value.

384

Chapter 7 e Arrays

The second for loop accumulates (in sum) the sum of all values stored in the array.
The loop also accumulates (in sum_sqr) the sum of the squares of all element val-
ues. This loop implements the formulas

MAX_ITEM — 1
sum=x[0] + x[1]+- - +X[6] +x[7] = 2 X[i]

MAX_ITEM -1
Sumisqr:x[O]2+x[l]2+~--+x[6]2+x[7]2: _20 x[i]12
i=

This loop will be discussed in detail later.
The last for loop,

for (i = 0; i < MAX_ITEM; ++i)
printf("$3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',
xX[1i] - mean);

displays a table. Each line of the table displays an array subscript, an array element,
and the difference between that element and the mean, x[i] - mean. Notice that
the placeholders in the format string of the call to printf cause each column of
values in the output table to be lined up under its respective column heading.

Now that we have seen the entire program, we will take a closer look at the compu-
tation for loop:

/* Computes the sum and the sum of the squares of all data */
sum = 0;
sum_sqgr = 0;
for (i = 0; i < MAX ITEM; ++i) {
sum += x[1];
sum_sqr += x[1] * x[i];

}

This loop accumulates the sum of all eight elements of array x in the variable sum.
Each time the loop body executes, the next element of array x is added to sum. Then
this array element value is squared, and its square is added to the sum being accumu-
lated in sum_sqr. We trace the execution of this program fragment in Table 7.3 for
the first three repetitions of the loop.

The standard deviation of a set of data is a measure of the spread of the data values
around the mean. A small standard deviation indicates that the data values are all
relatively close to the average value. For Max_ITEM data items, if we assume that x is
an array whose lowest subscript is 0, the standard deviation is given by the formula

MAX_ITEM-1
standard deviation = > x[i]?
i=0 9

— mean
MAX_ITEM

7.3 ¢ Using for Loops for Sequential Access 385

TABLE 7.3 Partial Trace of Computing for Loop

Statement i x[il sum sum_sqr Effect
sum = 0; 0.0 Initializes sum
sum_sqr = 0; 0.0 Initializes sum_sqr
for (i = 0; 0 16.0 Initializes 1 to 0
i < MAX_ITEM; which is less than 8
++1)
sum += x[1i]; 16.0 Adds x[0] to sum
sum_sqr +=
x[i] * x[1i]; 256.0 Adds 256 .0 to sum_sqr
increment and test i 1 12.0 1 < 8istrue
sum += x[i]; 28.0 Adds x[1] to sum
sum_sqr +=
x[1] * x[1]; 400.0 Adds 144.0 to sum_sqr
increment and test i 2 6.0 2 < 8istrue
sum += x[i]; 34.0 Adds x[2] to sum
sum_sqr +=
x[1i] * x[1i];
436.0 Adds 36.0 to sum_sqr

In Fig. 7.2, this formula is implemented by the statement

st_dev = sgrt(sum_sgr / MAX ITEM - mean * mean);

Program Style Using Loop Control Variables as Array Subscripts

In Fig. 7.2, the variable i, which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition. The use of the loop
control variable as an array subscript is common, because it allows the programmer to
specify easily the sequence in which the elements of an array are to be manipulated.
Each time the value of the loop control variable is increased, the next array element
is automatically selected. Note that the same loop control variable is used in all three
loops. This reuse is not necessary, but is permitted since the loop control variable is
always initialized at loop entry. Thus, 1 is reset to 0 when each loop is entered.

Self-Check

1. Write an indexed for loop to fill the arrays described in Exercise 3 at the end
of Section 7.1. Each array element should be assigned the value specified for it.

386 Chapter 7 ¢ Arrays

Programming

1. Write an indexed for loop to fill an array prime such that element prime[0]
contains the first prime number, prime[1] the second prime number, and so
on. The prime numbers will be provided as data. Also, write a loop that calcu-
lates the sum of all the prime numbers stored.

7.4 Using Array Elements as Function Arguments

Figure 7.2 uses x[i] as an argument for functions scanf and printf. The actual
array element referenced depends on the value of i. The call

printf("%3d%4c%9.2£%5c%9.2f\n", i, ' ', x[i], "' ',
x[1i] - mean);

uses array element x[i] as an input argument to function printf. When i is 3, the
value of x[37] or 8.0 is passed to printf and displayed.
The call

scanf ("$1lf", &x[i]);

uses array element x[1i] as an output argument of scanf. When i is 4, the address
of array element x[4] is passed to scanf, and scanf stores the next value scanned
(2.5) in element x[4].

You can also pass array elements as arguments to functions that you write. Each
array element must correspond to a formal parameter that is the same simple type
as the array element.

EXAMPLE 7.6

The function prototype below shows one type double input parameter (arg_1) and
two type double * output parameters (arg2_p and arg3_p).

void do_it (double arg_1l, double *arg2 p, double *arg3 p);
If p, g, and r are declared as type double variables in the calling module, the statement
do_it (p, &q, &r);

passes the value of p to function do_it and returns the function results to variables
q and r. If x is declared as an array of type double elements in the calling module,
the statement

do_it(x[0], &x[1l], &x[2]);

uses the first three elements of array x as actual arguments. Array element x[0] is
an input argument and x[1] and x[2] are output arguments (see Fig. 7.3). In func-
tion do_it, you can use statements like

*arg2 p = ...

*arg3_p

FIGURE 7.3

Data Area for
Calling Module
and Function do_it

7.4 * Using Array Elements as Function Arguments

[0]
[11
[2]
[3]
[4]
[5]
[6]

[7]

X

16.0

12.0

Data Area for
Calling Module

A

A

12.0

14.0

Data Area for
Functiondo_it

arg 1

16.0

arg2_p

arg3_p

387

to return values to the calling module. These statements use indirection to follow the
pointers arg2_p and arg3_p to send the function results back to the calling module.
Because the function parameters arg2_p and arg3_p contain addresses of array ele-
ments x[1] and x[21], the function execution changes the values of those elements.

Self-Check

1. Write a statement that assigns to seg_1len the length of a line segment from

xy; to x;,1y;.; using the formula

\/(xiﬂ -

- yi>2

Assume that x; represents the ith element of array x, y, represents the ith ele-
ment of array y, and the minimum i is 0.
2. Write a for loop that sums the odd values from the L1sT_s1zE element array

list. For example, the sum for this list would be 113 (51 +17+45).

Array list

list[0]list[1]1list[2]1list[3]1list[4]1list[5]

30

12

51

17

45

62

388 Chapter 7 ¢ Arrays

3. Write a for loop that sums the even-numbered elements (elements 0, 2, and
4) from array list. For the list shown in Exercise 2, the sum would be 126
(30+51+45).

Programming

1. Write a program to store an input list of ten integers in an array; then display
a table similar to the following, showing each data value and what percentage
each value is of the total of all ten values.

n % of total
8 4.00
12 6.00
18 9.00
25 12.50
24 12.00
30 15.00
28 14.00
22 11.00
23 11.50
10 5.00

7.5 Array Arguments

Besides passing individual array elements to functions, we can write functions that
have arrays as arguments. Such functions can manipulate some, or all, of the ele-
ments corresponding to an actual array argument.

Formal Array Parameters

When an array name with no subscript appears in the argument list of a function call,
what is actually stored in the function’s corresponding formal parameter is the address
of the initial array element. In the function body, we can use subscripts with the
formal parameter to access the array’s elements. However, the function manipulates
the original array, not its own personal copy, so an assignment to one of the array ele-
ments by a statement in the function changes the contents of the original array.

EXAMPLE 7.7

Figure 7.4 shows a function that stores the same value (in_value) in all elements of
the array corresponding to its formal array parameter 1ist. The statement

list[i] = in_value;

stores in_value in element i of its actual array argument.

L I e e e e)
QL VIEESWEIDES O RO

OO =

7.5 ¢ Array Arguments 389

FIGURE 7.4 Function fill_array

/*
* Sets all elements of its array parameter to in_value.
* Pre: n and in_value are defined.

* Post: list[i] = in_value, for 0 <= i < n.
*/
void
fill array (int list[], /* output - list of n integers */
int n, /* input - number of list elements */
int in_value) /* input - initial value */
{
int 1i; /* array subscript and loop control */

for (i = 0; i < n; ++i)
list[i] = in_value;

In function £i11_array, the array parameter is declared as
int list[]

Notice that the parameter declaration does not indicate how many elements are in
list. Because C does not allocate space in memory for a copy of the actual array,
the compiler does not need to know the size of the array parameter. In fact, since
we do not provide the size, we have the flexibility to pass to the function an array of
any number of integers.

Argument Correspondence for Array Parameters

To call function £ill_array, you must specify the actual array argument, the
number of array elements, and the value to be stored in the array. If y is an array
with ten type int elements, the function call

fill array(y, 10, num);

stores the value of num in the ten elements of array y. If x is a five-element array of
type int values, the statement

fill array(x, 5, 1);

causes function £i11_array to store 1 in all elements of array x.
Figure 7.5 shows the data areas just before the return from the function call

fill array(x, 5, 1);

390 Chapter 7 ¢ Arrays

FIGURE 7.5

Data Areas Before
Return from
fill _array
(x, 5, 1);

Calling Function Function £i11 array
Data Area Data Area
X list
(o1l 1 <
[1] 1
n
[21| 1
5
[3] 1
[41 1 in_value
1
i
5

Notice that C stores the address of the type int variable x[0] in 1ist. In fact, the call
fill array(&x[0], 5, 1);

would execute exactly like the call above. However, this call may lead the reader of
the code to expect that £111_array may be using only the array element x[0] as
an output argument. For readability, you should use the name of an array (with no
subscript) when you call a function that processes the list the array represents.

Use of *1ist Instead of 1ist[] in a Formal Parameter List
In the declaration for function £i11_array, we can use either parameter declaration:

int list[]
int *list

The first tells us that the actual argument is an array. However, because C passes an
array argument by passing the address of its initial element, the second declaration
would be equally valid for an integer array parameter. In this text, we will usually
use the first form to declare a parameter representing an array, saving the second
form to represent simple output parameters. You should take care, however, to
remember that a formal parameter of the form

type, *param

is compatible with an actual argument that is an array of type; values.

7.5 ¢ Array Arguments 391

Arrays as Input Arguments

ANSI C provides a qualifier that we can include in the declaration of the array for-
mal parameter in order to notify the C compiler that the array is only an input to
the function and that the function does not intend to modify the array. This quali-
fier allows the compiler to mark as an error any attempt to change an array element
within the function.

EXAMPLE 7.8

Function get_max in Fig. 7.6 can be called to find the largest value in an array. It
uses the variable 1ist as an array input parameter. If x is a five-element array of
type int values, the statement

x_large = get_max(x, 5);

causes function get_max to search array x for its largest element; this value is returned
and stored in x_large. As in the call to function £i11_array shown in Fig. 7.5, formal
parameter list actually contains the address of the type int variable x[0].

FIGURE 7.6 Function to Find the Largest Element in an Array

1. /=*

2. * Returns the largest of the first n values in array list

3. * Pre: First n elements of array list are defined and n > 0

4. =/

5. int

6. get max(const int list[], /* input - list of n integers */
7. int n) /* input - number of list elements to examine */
8. {

9. int i,

10. cur_large; /* largest value so far */
11.

12. /* Initial array element is largest so far. */
13. cur_large = list[0];

14.

15. /* Compare each remaining list element to the largest so far;

16. save the larger */
17. for (i = 1; i < n; ++1i)

18. if (list[i] > cur_large)

19. cur_large = list[i];
20.
21 return (cur_large);

N
g

392 Chapter 7 ¢ Arrays

Array Input Parameter

SYNTAX: const element-type array-name []
or
const element-type *array-name
EXAMPLE:
int
get_min_sub(const double data[], /* input - array
of numbers */
int data_size) /* input -
number of elements */

{
int i,
small sub; /* subscript of smallest value
so far */
small sub = 0; /* Assume first element is
smallest. */
for (i = 1; i < data_size; ++1i)
if (data[i] < data[small_sub])
small sub = ij;
return (small_sub);
}

INTERPRETATION: In a formal parameter list, the reserved word const indicates that the
array variable declared is strictly an input parameter and will not be modified by the function.
This fact is important because the value of the declared formal parameter will be the address
of the actual argument array; if const were omitted, modification of the argument would
be possible. The data type of an array element is indicated by element-type. The [] after
array_name means that the corresponding actual argument will be an array. What is actually
stored in the formal parameter when the function is called is the address of the initial element
of the actual argument array. Since this value is a pointer to a location used to store a value
of type element-type, the second syntax option is equivalent to the first.

Returning an Array Result

In C, it is not legal for a function’s return type to be an array; therefore, defining a
function of the variety modeled in Fig. 7.7 requires use of an output parameter to
send the result array back to the calling module.

In Section 6.2, we saw that when we use simple output parameters, the calling
function must declare variables into which the function subprogram will store its
results. Similarly, a function returning an array result depends on its caller to provide

7.5 e Array Arguments 393

FIGURE 7.7
(
) input q array output
Diagram of a parameters] ety > result parameter)
Function That —>

Computes an
Array Result

an array variable into which the result can be stored. We have already seen an exam-
ple of a function with an array output parameter (function £i11_array in Fig. 7.4).
The next example shows a function with two input array parameters and an output
array parameter that returns an array result.

EXAMPLE 7.9 Function add_arrays in Fig. 7.8 adds two arrays. The sum of arrays ar1 and ar2
is defined as arsum such that arsum[i] is equal to ar1[i] + ar2[i] for each
subscript i. The last parameter, n, specifies how many corresponding elements
are summed.

FIGURE 7.8 Function to Add Two Arrays

e /

2. * Adds corresponding elements of arrays arl and ar2, storing the result in
3. * arsum. Processes first n elements only.

4. * Pre: First n elements of arl and ar2 are defined. arsum’s corresponding

5. * actual argument has a declared size >= n (n >= 0)

6. */

7. void

8. add_arrays(const double arl[], /* input - */
9. const double ar2[], /* arrays being added */
10. double arsum[], /* output - sum of corresponding

11. elements of arl and ar2 */
12. int n) /* input - number of element

13. pairs summed */
14. {

15. int 1i;

16.

17. /* Adds corresponding elements of arl and ar2 */
18. for (i = 0; i < n; ++i)

19. arsum[i] = arl[i] + ar2[i];

N
=
-~

394 Chapter 7 ¢ Arrays

FIGURE 7.9

Function Data
Areas for add_
arrays(x, Y,
x_plus_y, 5);

The formal parameter list declaration

const double arl[],
const double ar2[],
double arsum[],
int n

indicates that formal parameters ar1, ar2, and arsum stand for actual argument
arrays whose elements are of type double and that ar1 and ar2 are strictly input
parameters, as is n. The function can process type double arrays of any size as long
as the preconditions stated in the initial block comment are met.

If we assume that a calling function has declared three five-element arrays x, y, and
x_plus_y and has filled x and y with data, the call

add_arrays(x, y, X_plus_y, 5);

would lead to the memory setup pictured in Fig. 7.9.

oJea oo er

oofes el er[os

7.5 ¢ Array Arguments 395

After execution of the function, x_plus_y[0] will contain the sum of x[0] and
y[01], or 3.5; x_plus_y[1] will contain the sum of x[1] and y[1], or 6.7; and
so on. Input argument arrays x and y will be unchanged; output argument array
x_plus_y will have these new contents:

x_plus_y after call to add_arrays

3.5 6.7 4.7 9.1 |12.2

Address-of Operator Not Used

Note carefully that in the call to add_arrays there is no notational difference
between the references to input argument arrays x and y and the reference to
output argument array x_plus_y. Specifically, the & (address-of) operator is not
applied to the name of the output array argument. We discussed earlier the fact that
C always passes whole arrays used as arguments by storing the address of the initial
array element in the corresponding formal parameter. Since the output parameter
arsum is declared with no const qualifier, function add_arrays automatically has
access and authority to change the corresponding actual array argument.

Partially Filled Arrays

Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length. In order to reuse an array for processing more than one
data set, the programmer often declares an array large enough to hold the largest
data set anticipated. This array can be used for processing shorter lists as well, pro-
vided that the program keeps track of how many array elements are actually in use.

EXAMPLE 7.10

FIGURE 7.10

Diagram of
Function
fill_to_sentinel

The purpose of function £i11_to_sentinel is to fill a type double array with data
until the designated sentinel value is encountered in the input data. Figure 7.10
shows both the input parameters that £i11_to_sentinel requires and the results
that are communicated through its output parameters.

When we use an array that may be only partially filled (such as dbl_arr in Fig. 7.10),
we must deal with two array sizes. One size is the array’s declared size, represented by
the input parameter dbl_max, shown in Fig. 7.10. The other is the size counting only

dbl max dbl arr
—_— —_—

fill to_sentinel
sentinel dbl sizep
— > _—

396

o R =

iC

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

Chapter 7 e Arrays

the elements in use, represented by the output parameter dbl_sizep. The declared
size is only of interest at the point in a program where the array is being filled, for
it is important not to try to store values beyond the array’s bounds. However, once
this input step is complete, the array size relevant in the rest of the processing is the
number of elements actually filled. Figure 7.11 shows an implementation of function

fill to_sentinel.

FIGURE 7.11 Function Using a Sentinel-Controlled Loop to Store Input Data in an Array

/*

* Gets data to place in dbl_arr until value of sentinel is encountered in

* the input.
* Returns number of values stored through dbl_sizep.

* Stops input prematurely if there are more than dbl max data values before

* the sentinel or if invalid data is encountered.

* Pre: sentinel and dbl max are defined and dbl max is the declared size

* of dbl arr
*/
void
fill to_sentinel(int dbl max, /* input - declared size of dbl_arr
double sentinel, /* input - end of data value in

input list

double dbl_arr[], /* output - array of data
int *dbl sizep) /* output - number of data values
stored in dbl_arr

double data;
int i, status;

/* Sentinel input loop
i=0;
status = scanf("%1f", &data);

while (status == 1 && data != sentinel && i < dbl max) {

dbl arr[i] = data;
++1i;
status = scanf("%1f", &data);

/* Issues error message on premature exit
if (status != 1) {
printf("\n*** Error in data format ***\n");

printf("*** Using first %d data values ***\n",

i)

’

*/

*/
*/

*/

*/

*/

(continued)

34.
35.
36.
37.
38.
39.
40.
41.

| | R N N Q. N N U U . G —" Y
© ©© 0 NEO TR WENE SO

OO O R NS =

7.5 ¢ Array Arguments 397

FIGURE 7.11 (continued)

} else if (data != sentinel) {
printf("\n*** Error: too much data before sentinel ***\n");
printf("*** Using first %d data values ***\n", 1i);

/* Sends back size of used portion of array */
*dbl sizep = i;

Figure 7.12 shows a main function that calls £i11_to_sentinel. The main function
is using batch mode; it issues no prompting message, but it does echo print its input
data. Notice that after the call to £i11_to_sentinel, the expression used as the
upper bound on the subscripting variable in the loop that echo prints the data is not
the array’s declared size, A_s1zE. Rather, it is the variable in_use that designates
how many elements of arr are currently filled.

In the call to £i11_to_sentinel in Fig. 7.12, we see another example of the differ-
ence between the way an array output argument is passed to a function and the way

FIGURE 7.12 Driver for Testing fill_to_sentinel

/* Driver to test fill to_sentinel function */

#define A SIZE 20
#define SENT -1.0

int
main(void)
{
double arr[A SIZE];
int in_use, /* number of elements of arr in use */

i;
fill to_sentinel(A _SIZE, SENT, arr, &in_use);
printf("List of data values\n");
for (i = 0; i < in_use; ++1i)

printf("%13.3f\n", arr[i]);

return (0);

398 Chapter 7 ¢ Arrays

pop remove the top
element of a stack

push insert a new
element at the top of
the stack

a simple output argument is passed. Both arr and in_use are output arguments,
but the address-of operator & is applied only to the 51mple variable in_use. Since
arr is an array name with no subscript, it already represents an address, “the address
of the initial array element.

Stacks

A stack is a data structure in which only the top element can be accessed. To illus-
trate, the plates stored in the spring-loaded device in a buffet line perform like a
stack. A customer always takes the top plate; when a plate is removed, the plate
beneath it moves to the top.

The following diagram shows a stack of three characters. The letter C, the char-
acter at the top of the stack, is the only one we can access. We must remove C from
the stack in order to access the symbol +. Removing a value from a stack is called
popping the stack, and storing an item in a stack is called pushing it onto the
stack.

C
+
2

Figure 7.13 shows functions pop and push. The formal parameter top points
to the variable that stores the subscript of the element at the top of the stack. Each
push operation increments the value pointed to by top before storing the new item
at the top of the stack (i.e., in element stack[*top]). Each pop operation returns
the item currently at the top of the stack and then decrements the value pointed
to by top. The if condition in push checks that there is room on the stack before
storing a new item. The if condition in pop checks that the stack is not empty
before popping it. If the stack is empty, STACK_EMPTY (a previously defined constant
macro) is returned instead.

We can use the array s declared next to store a stack of up to STACK_SIZE
characters where s_top stores the subscript of the element at the top of the stack.
Giving s_top an initial value of -1 ensures that the first item pushed onto the stack
will be stored in the stack element s[07.

char s[STACK SIZE]; /* a stack of characters */
int s_top = -1; /* stack s is empty */

The statements

push(s, '2', &s_top, STACK SIZE);
push(s, '+', &s_top, STACK_SIZE);
push(s, 'C', &s_top, STACK_SIZE);

create the stack shown earlier where the last character pushed (c) is at the top of the
stack (array element s[21).

N NN N N N NN d @ cd e e o -
NOUWRWNSOCOLRINPUBPRWNZDW

OO =

7.5 e Array Arguments 399

FIGURE 7.13 Functions push and pop

void

push(char stack[], /* input/output - the stack */
char item, /* input - data being pushed onto the stack */
int *top, /* input/output - pointer to top of stack */
int max_size) /* input - maximum size of stack */

{

if (*top < max_size-1) {
++(*top);

stack[*top] = item;
}
}
char
pop(char stack[], /* input/output - the stack */
int *top) /* input/output - pointer to top of stack */
{
char item; /* value popped off the stack */
if (*top >= 0) {
item = stack[*top];
--(*top);
} else {
item = STACK_EMPTY;
}
return (item);
}

L]

Self-Check

1. When is it better to pass an entire array of data to a function rather than indi-
vidual elements?

2. Assume a main function contains declarations for three type double arrays—
¢, d, and e, each with six elements. Also, assume that values have been stored
in all array elements. Explain the effect of each valid call to add_arrays (see
Fig. 7.8). Explain why each invalid call is invalid.

a. add_arrays(arl, ar2, c, 6);
b. add_arrays(c[6], d[6], e[6], 6);

400

Chapter 7 e Arrays

add_arrays(c, d, e, 6);
add_arrays(c, d, e, 7);
add_arrays(c, d, e, 5);
add_arrays(c, d, 6, 3);
add_arrays(e, d, ¢, 6);

0 o oo

add_arrays(c, ¢, ¢, 6);

add_arrays(c, d, e, c[1]); (ifc[1]is4.3?
ifer1yis91.7?)

j. add_arrays(&c[2], &d[2], &e[2], 4);

—-

Modify function £i11_to_sentinel from Fig. 7.11 so its return type is int
rather than void. Have the function return the value 1 if no error conditions
occur and 0 if there is an error. In all other respects, leave the function’s pur-
pose unchanged.

Can you think of a way to combine the following two statements from the body
of the while loop of function £i11_to_sentinel into just one statement?

dbl arr[i] = data;
++i;

Assume stack s is a stack of MAx_sSIzE characters and s_top is the subscript
of the element at the top of stack s. Perform the following sequence of opera-
tions. Indicate the result of each operation and the new stack if it is changed.
Rather than draw the stack each time, use the notation |2+c/ to represent a
stack of four characters, where the last symbol on the right (/) is at the top of
the stack.

/* Start with an empty stack. */

s_top = -1;
push(s, '$', &s_top, MAXSIZE);
push(s, '-', &s_top, MAXSIZE);

ch = pop(s, &s_top);

Programming

1.

Define a function multiply that computes and returns the product of the type
int elements of its array input argument. The function should have a second
input argument telling the number of array elements to use.

Define a function abs_table that takes an input array argument with type
double values and displays a table of the data and their absolute values like
the table shown below.

x x|
38.4 38.4
-101.7 101.7

-2.1 2.1

7.6 ¢ Searching and Sorting an Array 401

3. Write a function that negates the type double values stored in an array. The
first argument should be the array (an input/output parameter), and the sec-
ond should be the number of elements to negate.

4. Write a function that takes two type int array input arguments and their
effective size and produces a result array containing the sums of correspond-
ing elements. For example, for the three-element input arrays 5 -1 7 and
2 4 -2, the result would be an array containing 7 3 5.

5. Rewrite operators push and pop for a stack of integers. Also, write a new function
retrieve that accesses the element at the top of the stack without removing it.

7.6 Searching and Sorting an Array

This section discusses two common problems in processing arrays: searching an
array to determine the location of a particular value and sorting an array to rear-
range the array elements in numerical order. As an example of an array search, we
might want to search an array of student exam scores to determine which student,
if any, got a particular score. An example of an array sort would be rearranging the
array elements so that they are in increasing order by score. Sorting an array would
be helpful if we wanted to display the list in order by score or if we needed to locate
several different scores in the array.

Array Search

In order to search an array, we need to know the array element value we are seek-
ing, or the search target. Then, we can perform the search by examining in turn
each array element using a loop and by testing whether the element matches the
target. The search loop should be exited when the target value is found; this proc-
ess is called a linear search. The following algorithm for linear search sets a flag (for
loop control) when the element being tested matches the target.

ALGORITHM

1. Assume the target has not been found.
2. Start with the initial array element.
3. repeat while the target is not found and there are more array elements
4. if the current element matches the target
5. Set aflag to indicate that the target has been found.
else
6. Advance to the next array element.
7. if the target was found
8. Return the target index as the search result.
else
9. Return -1 as the search result.

402

OO O

W W W W WNNNNMNNNMNMNNNNNSDQQQ@Q@© @ @ @2
PWN_SOCOINOURWNROCLINDINPWNRD

Chapter 7 e Arrays

Figure 7.14 shows a function that implements this algorithm. This function
returns the index of the target if it is present in the array; otherwise, it returns -1.
The local variable i (initial value 0) selects the array element that is compared to
the target value.

FIGURE 7.14 Function That Searches for a Target Value in an Array

#define NOT_FOUND -1 /* Value returned by search function if target not
found */

/*

* Searches for target item in first n elements of array arr

* Returns index of target or NOT_FOUND

* Pre: target and first n elements of array arr are defined and n>=0

*/

int
search(const int arr[], /* input - array to search */
int target, /* input - value searched for */
int n) /* input - number of elements to search */
{
int 1,
found = 0, /* whether or not target has been found */
where; /* index where target found or NOT_FOUND */
/* Compares each element to target */
i=0;
while (!found && i < n) {
if (arr[i] == target)
found = 1;
else
++i;
}
/* Returns index of element matching target or NOT_FOUND */
if (found)
where = i;
else

where = NOT_FOUND;

return (where);

7.6 e Searching and Sorting an Array 403

The type int variable found is used to represent the logical concept of whether
the target has been found yet and is tested in the loop repetition condition. The
variable is initially set to 0 for false (the target is certainly not found before we begin
searching for it) and is reset to 1 for true only if the target is found. After found
becomes true or the entire array has been searched, the loop is exited, and the deci-
sion statement following the loop defines the value returned.

If array ids is declared in the calling function, the assignment statement

index = search(ids, 4902, ID_SIZE);

calls function search to search the first ID_sIzE elements of array ids for the tar-
get ID 4902. The subscript of the first occurrence of 4902 is saved in index. If 4902
is not found, then index is set to -1.

Sorting an Array

Many programs execute more efficiently if the data they process are sorted before
processing begins. For example, a check-processing program executes more quickly
if all checks are in order by checking account number. Other programs produce
more understandable output if the information is sorted before it is displayed. For
example, your university might want your instructor’s grade report sorted by student
ID number. In this section, we describe one simple sorting algorithm from among
the many that have been studied by computer scientists.

The selection sort is a fairly intuitive (but not very efficient) sorting algorithm.
To perform a selection sort of an array with n elements (subscripts 0 through n-1),
we locate the smallest element in the array and then switch the smallest element
with the element at subscript 0, thereby placing the smallest element in the first
position. Then we locate the smallest element remaining in the subarray with sub-
scripts 1 through n-1 and switch it with the element at subscript 1, thereby placing
the second smallest element in the second position. Then we locate the smallest
element remaining in the subarray with subscripts 3 through n-1 and switch it with
the element at subscript 3, and so on.

ALGORITHM FOR SELECTION SORT

1. for each value of £i11 from 0 to n-2
2. Find index_of_ min, the index of the smallest element in the
unsorted subarray 1ist[£i11] through list[n-1].
3. if £i11 is not the position of the smallest element (index_of_min)
4. Exchange the smallest element with the one at position
fill.

Figure 7.15 traces the operation of the selection sort algorithm on an array
of length 4. The first array shown is the original array. Then we show each step

404 Chapter 7 e Arrays

FIGURE 7.15

Trace of Selection
Sort

74 45 83 16

£i11is 0. Find the smallest element in subarray
list[1] through 1ist[3] and swap it with 1ist[0].

(01 11 r21 (31

16 45 83 74

£i11 is 1. Find the smallest element in subarray
list[1] through 1ist[3]—no exchange needed.

(o1 (11 21 I[3]

16 45 83 74

£i11 is 2. Find the smallest element in subarray
list[2] through 1ist[3] and swap it with 1ist[2].

(01 11 21 131

16 45 74 83

as the next smallest element is moved to its correct position. Each array diagram
has two parts: a subarray that is sorted (in color) and a subarray that has not yet
been sorted. After each pass through the array, the sorted subarray contains an
additional element. Notice that, at most, n-1 exchanges will be required to sort an
array with n elements.

We will use function get_min_range to perform step 2. Function select_
sort in Fig. 7.16 performs a selection sort on the array represented by parameter
list, which is an input/output parameter. Notice that its declaration is of the same
form as the output parameter arrays discussed in the previous section. Local vari-
able index_of_min holds the index of the smallest value found so far in the cur-
rent subarray. At the end of each pass, if index_of_min and £ill are not equal,
the statements

temp = list[index of min];
list[index of min] = list[fill];
list[fill] = temp;

exchange the array elements with subscripts £i11 and index_of_min. After function
select_sort executes, the values in its corresponding array argument will form
an increasing sequence. See Programming Exercise 1 for a description of function
get_min_range.

W W W W WNNMNMNNNNNNMNMNNNNRD@Q @QQ @2 @2 Q2
FPWNSOCORINPURWNROLINONRPWNRO®

CORSINOYSUINERLURIDE-S

7.6 ¢ Searching and Sorting an Array

FIGURE 7.16 Function select_sort

405

* Finds the position of the smallest element in the subarray
* list[first] through list[last].

* Pre: first < last and elements 0 through last of array list are defined.

* Post: Returns the subscript k of the smallest element in the subarray;
* i.e., list[k] <= list[i] for all i in the subarray
*/

int get_min_range(int list[], int first, int last);

/*
* Sorts the data in array list
* Pre: first n elements of list are defined and n >= 0
*/
void
select_sort(int list[], /* input/output - array being sorted
int n) /* input - number of elements to sort

int fill, /* first element in unsorted subarray
temp, /* temporary storage
index of min; /* subscript of next smallest element

for (£ill = 0; fill < n-1; ++£fill) {
/* Find position of smallest element in unsorted subarray */
index of min = get min_range(list, fill, n-1);

/* Exchange elements at fill and index_of_min */
if (£ill != index _of min) {
temp = list[index_of min];
list[index_of min] = list[fill];
list[fill] = temp;

*/
*/

*/
*/
*/

406 Chapter 7 ¢ Arrays

|

Self-Check

1.

For the search function in Fig. 7.14, what happens if:

a. the last ID stored matches the target?
b. several ID’s match the target?

Trace the execution of the selection sort on the following two lists:
8 53 32 54 74 3 7 18 28 37 42 42

Show the arrays after each exchange occurs. How many exchanges are required
to sort each list? How many comparisons?

How could you modify the selection sort algorithm to get the scores in
descending order (largest score first)?

Programming

1.

Write function get_min_range based on function get_min_sub in the syntax
display for array input parameter (see page 392). Function get_min_range
returns the subscript of the smallest value in a portion of an array containing
type int values. It has three arguments: an array, the first subscript in the sub-
array, and the last subscript in the subarray.

Another method of performing the selection sort is to place the largest value
in position n-1, the next largest in position n-2, and so on. Write this version.
Modify the heading and declarations of function select_sort so it would sort
an array of type double values. Be careful—some variables should still be of
type int!

7.7 Parallel Arrays and Enumerated Types

In this section, we discuss a collection of arrays called parallel arrays that have the
same number of elements. If there are n-elements, these parallel arrays contain data
for n-objects of the same kind. Further, all array elements at subscript i contain data
for the ith object in this group of n-objects.

parallel arrays two

or more arrays with

the same number

of elements used

for storing related
information about a
collection of data objects

EXAMPLE 7.11

int

We declare two parallel arrays for a student records program as follows:

id[NUM_STUDENTS];

double gpa[NUM_STUDENTS];

enumerated type a
data type whose list of
values is specified by
the programmer in a
type declaration

enumeration
constant an identifier
that is one of the values
of an enumerated type

7.7 * Parallel Arrays and Enumerated Types 407

Here we assume that NuM_STUDENTS has already appeared in a #define directive
such as

#define NUM_STUDENTS 50

The arrays id and gpa each have 50 elements. Each element of array id can be used
to store an integer value; each element of array gpa can be used to store a value
of type double. If you use these declarations in a problem to assess the range and
distribution of grade point averages, you can store the first student’s ID in id[01],
and store the same student’s gpa in gpa[0]. Samples of these arrays are shown next.

id[0] |5503 gpa[0] | 2.71
id[1] | 4556 gpa[l] | 3.09
id[2] |5691 gpa[2] | 2.98
id[49] [9146 gpal[49] | 1.92

Figure 7.17 shows a simple program that reads data into these two parallel arrays
and displays the information stored. We show just the output for the first two ele-
ments of each array.

Enumerated Types

Good solutions to many programming problems require new data types. For exam-
ple, in a budget program you might distinguish among the following categories of
expenses: entertainment, rent, utilities, food, clothing, automobile, insurance, and
miscellaneous. ANSI C allows you to associate a numeric code with each category by
creating an enumerated type that has its own list of meaningful values.

For example, the enumerated type expense_t has eight possible values:

typedef enum
{entertainment, rent, utilities, food, clothing,
automobile, insurance, miscellaneous}
expense_t;

Our new type name expense_t is used just as we would use a standard type such as
int or double. Here is a declaration of variable expense kind:

expense_t expense_kind;

Defining type expense_t as shown causes the enumeration constant enter-
tainment to be represented as the integer 0, constant rent to be represented as

408

o O

Chapter 7 e Arrays

FIGURE 7.17 Student Data in Parallel Arrays

/* Read data for parallel arrays and echo stored data. */

#include <stdio.h>
#define NUM_STUDENTS 50

int

main(void) {

{

int id[NUM_STUDENTS];
double gpa[NUM STUDENTS];
int i;

for (i = 0;

i < NUM_STUDENTS; ++i) {

printf("Enter the id and gpa for student %d: ", i);
scanf ("%d%lf", &id[i], &gpa[il]);
printf ("% %4.2f\n", id[i], gpa[i]);

return (0);

Enter the id and gpa for student 0: 5503 2.71

5503

2.71

Enter the id and gpa for student 1: 4556 3.09

4556

3.09

integer 1, utilities as 2, and so on. Variable expense_kind and the eight enu-
meration constants can be manipulated just as one would handle any other integers.
Flgure 7.18 shows a program that scans an integer representing an expense code
and calls a function that uses a switch statement to display the code meaning.

The scope rules for identifiers (see Section 6.4) apply to enumerated types and
enumeration constants. Enumeration constants must be identifiers; they cannot be
numeric, character, or string literals (e.g., "entertainment" cannot be a value for
an enumerated type). We recommend that you place type definitions immediately
after any #define and #include directives (see Fig. 7.18) so that you can use the
types throughout all parts of your program. The reserved word typedef can be used
to name many varieties of user-defined types. We will study some of these uses in
Chapters 10 and 13.

W W Wwwwwwww wWNNNNMNMNNNMNNNNNDQ@QQQ@Q @ @ Q@ a
CONINAPUNSROOINOINRWNSOCOLININPWNRD®

O O =

7.7 o Parallel Arrays and Enumerated Types

FIGURE 7.18 Enumerated Type for Budget Expenses

409

/* Program demonstra