COE 561 Digital System Design \& Synthesis Multiple-Level Logic Synthesis

Dr. Aiman H. El-Maleh

Computer Engineering Department
King Fahd University of Petroleum \& Minerals
[Adapted from slides of Prof. G. De Micheli: Synthesis \& Optimization of Digital Circuits]

Outline

- Representations.
- Taxonomy of optimization methods.
- Goals: area/delay.
- Algorithms: Algebraic/Boolean.
- Rule-based methods.
- Examples of transformations.
- Algebraic model.
- Algebraic division.
- Algebraic substitution.
- Single-cube extraction.
- Multiple-cube extraction.
- Decomposition.
- Factorization.
- Fast extraction.

Outline

- External and internal don't care sets.
- Controllability don't care sets.
- Observability don't care sets.
- Boolean simplification and substitution.
- Testability properties of multiple-level logic.
- Synthesis for testability.
- Network delay modeling.
- Algorithms for delay minimization.
- Transformations for delay reduction.

Motivation

- Combinational logic circuits very often implemented as multiple-level networks of logic gates.
- Provides several degrees of freedom in logic design
- Exploited in optimizing area and delay.
- Different timing requirements on input/output paths.
- Multiple-level networks viewed as interconnection of single-output gates
- Single type of gate (e.g. NANDs or NORs).
- Instances of a cell library.
- Macro cells.
- Multilevel optimization is divided into two tasks
- Optimization neglecting implementation constraints assuming loose models of area and delay.
- Constraints on the usable gates are taken into account during optimization.

Circuit Modeling

- Logic network
- Interconnection of logic functions.
- Hybrid structural/behavioral model.
- Bound (mapped) networks
- Interconnection of logic gates.
- Structural model.

Example of Bound Network

Example of a Logic Network

$$
\begin{aligned}
p & =c e+d e \\
q & =a+b \\
r & =p+a^{\prime} \\
s & =r+b^{\prime} \\
t & =a c+a d+b c+b d+e \\
u & =q^{\prime} c+q c^{\prime}+q c \\
v & =a^{\prime} d+b d+c^{\prime} d+a e^{\prime} \\
w & =v \\
x & =s \\
y & =t \\
z & =u
\end{aligned}
$$

(a)

(b)

Network Optimization

- Two-level logic
- Area and delay proportional to cover size.
- Achieving minimum (or irredundant) covers corresponds to optimizing area and speed.
- Achieving irredundant cover corresponds to maximizing testability.
- Multiple-level logic
- Minimal-area implementations do not correspond in general to minimum-delay implementations and vice versa.
- Minimize area (power) estimate
- subject to delay constraints.
- Minimize maximum delay
- subject to area (power) constraints.
- Minimize power consumption.
- subject to delay constraints.
- Maximize testability.

Estimation

- Area
- Number of literals
- Corresponds to number of polysilicon strips (transistors)
- Number of functions/gates.
- Delay
- Number of stages (unit delay per stage).
- Refined gate delay models (relating delay to function complexity and fanout).
- Sensitizable paths (detection of false paths).
- Wiring delays estimated using statistical models.

Problem Analysis

■ Multiple-level optimization is hard.

- Exact methods
- Exponential complexity.
- Impractical.
- Approximate methods
- Heuristic algorithms.
- Rule-based methods.
- Strategies for optimization
- Improve circuit step by step based on circuit transformations.
- Preserve network behavior.
- Methods differ in
- Types of transformations.
- Selection and order of transformations.

Elimination

- Eliminate one function from the network.
- Perform variable substitution.
- Example

$$
\begin{aligned}
& { }^{s} s=r+b^{\prime} ; r=p+a^{\prime} \\
& \Rightarrow s=p+a^{\prime}+b^{\prime} .
\end{aligned}
$$

Decomposition

- Break one function into smaller ones.
- Introduce new vertices in the network.
- Example
- $v=a{ }^{\prime} d+b d+c$ 'd+ae'.
- $\Rightarrow \mathrm{j}=\mathrm{a}^{\prime}+\mathrm{b}+\mathrm{c}^{\prime} ; \mathrm{v}=\mathrm{jd}+\mathrm{ae}{ }^{\prime}$

Factoring

- Factoring is the process of deriving a factored form from a sum-of-products form of a function.
- Factoring is like decomposition except that no additional nodes are created.
- Example
- $F=a b c+a b d+a^{\prime} b^{\prime} c+a^{\prime} b^{\prime} d+a b{ }^{\prime} e+a b{ }^{\prime} f+a^{\prime} b e+a^{\prime} b f$ (24 literals)
- After factorization
- $F=\left(a b+a^{\prime} b^{\prime}\right)(c+d)+\left(a b^{\prime}+a^{\prime} b\right)(e+f)(12$ literals $)$

Extraction ...

- Find a common sub-expression of two (or more) expressions.
- Extract sub-expression as new function.
- Introduce new vertex in the network.
- Example
- $p=c e+d e ; \quad t=a c+a d+b c+b d+e ; \quad$ (13 literals)
- $p=(c+d) e ; \quad t=(c+d)(a+b)+e ;$
(Factoring:8 literals)
- $\Rightarrow \mathrm{k}=\mathrm{c}+\mathrm{d} ; \quad \mathrm{p}=\mathrm{ke} ; \quad \mathrm{t}=\mathrm{ka}+\mathrm{kb}+\mathrm{e}$; (Extraction:9 literals)

... Extraction

Simplification

- Simplify a local function (using Espresso).
- Example

$$
\begin{aligned}
& \text { - } u=q^{\prime} c+q c^{\prime}+q c^{\prime} \\
& \Rightarrow u=q+c ;
\end{aligned}
$$

Substitution

- Simplify a local function by using an additional input that was not previously in its support set.
- Example
- t = ka+kb+e.
- $\Rightarrow \mathrm{t}=\mathrm{kq}+\mathrm{e}$; because $\mathrm{q}=\mathrm{a}+\mathrm{b}$.

Example: Sequence of Transformations

Original Network (33 lit.) Transformed Network (20 lit.)

$$
\begin{aligned}
& p=c e+d e \\
& q=a+b \\
& r=p+a^{\prime} \\
& s=r+b^{\prime} \\
& t=a c+a d+b c+b d+e \\
& u=q^{\prime} c+q c^{\prime}+q c \\
& v=a^{\prime} d+b d+c^{\prime} d+a e^{\prime} \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
j & =a^{\prime}+b+c^{\prime} \\
k & =c+d \\
q & =a+b \\
s & =k e+a^{\prime}+b^{\prime} \\
t & =k q+e \\
u & =q+c \\
v & =j d+a e^{\prime}
\end{aligned}
$$

Optimization Approaches

- Algorithmic approach
- Define an algorithm for each transformation type.
- Algorithm is an operator on the network.
- Each operator has well-defined properties
- Heuristic methods still used.
- Weak optimality properties.
- Sequence of operators
- Defined by scripts.
- Based on experience.
- Rule-based approach (IBM Logic Synthesis System)
- Rule-data base
- Set of pattern pairs.
- Pattern replacement driven by rules.

Elimination Algorithm ...

- Set a threshold k (usually 0).
- Examine all expressions (vertices) and compute their values.
- Vertex value = $n^{*} \mathrm{l}-\mathrm{n}-\mathrm{I}$ (I is number of literals; n is number of times vertex variable appears in network)
- Eliminate an expression (vertex) if its value (i.e. the increase in literals) does not exceed the threshold.

```
ELIMINATE( Gn}(V,E),k)
    repeat {
        vx = selected vertex with value <k;
        if ( }\mp@subsup{v}{x}{}=\emptyset\mathrm{ ) return;
        replace x by }\mp@subsup{f}{x}{}\mathrm{ in the network;
        }
}
```


... Elimination Algorithm

- Example
- $q=a+b$
- $s=c e+d e+a^{\prime}+b^{\prime}$
- $t=a c+a d+b c+b d+e$
- $u=q^{\prime} c+q c^{\prime}+q c$
- $v=a \prime d+b d+c^{\prime} d+a e^{\prime}$
- Value of vertex $q=n * \mid-n-l=3 * 2-3-2=1$
- It will increase number of literals => not eliminated
- Assume \mathbf{u} is simplified to $\mathbf{u}=\mathbf{c}+\mathrm{q}$
- Value of vertex $q=n * 1-n-1=1 * 2-1-2=-1$
- It will decrease the number of literals by 1 => eliminated

MIS/SIS Rugged Script

- sweep; eliminate -1
- simplify -m nocomp
- eliminate -1
- sweep; eliminate 5
- simplify -m nocomp
- resub -a
- fx
- resub -a; sweep
- eliminate -1; sweep
- full-simplify -m nocomp

Sweep eliminates singleinput Vertices and those with a constant function.
resub -a performs
algebraic substitution of all vertex pairs
fx extracts double-cube and single-cube expression.

Boolean and Algebraic Methods

- Boolean methods
- Exploit Boolean properties of logic functions.
- Use don't care conditions induced by interconnections.
- Complex at times.
- Algebraic methods
- View functions as polynomials.
- Exploit properties of polynomial algebra.
- Simpler, faster but weaker.

... Boolean and Algebraic Methods

- Boolean substitution
- $h=a+b c d+e ; q=a+c d$
- $\Rightarrow h=a+b q+e$
- Because $a+b q+e=a+b(a+c d)+e=a+b c d+e ;$
- Relies on Boolean property $b+1=1$
- Algebraic substitution
- $t=k a+k b+e ; q=a+b$
- $\Rightarrow \mathrm{t}=\mathrm{kq}+\mathrm{e}$
- Because $k(a+b)=k a+k b ;$ holds regardless of any assumption of Boolean algebra.

The Algebraic Model ...

- Represents local Boolean functions by algebraic expressions
- Multilinear polynomial (i.e. multi-variable with degree 1) over set of variables with unit coefficients.
- Algebraic transformations neglect specific features of Boolean algebra
- Only one distributive law applies
- a . $(b+c)=a b+a c$
- $a+(b, c) \neq(a+b) .(a+c)$
- Complements are not defined
- Cannot apply some properties like absorption, idempotence, involution and Demorgan's, $a+a^{\prime}=1$ and $a . a^{\prime}=0$
- Symmetric distribution laws.
- Don't care sets are not used.

... The Algebraic Model

- Algebraic expressions obtained by
- Modeling functions in sum of products form.
- Make them minimal with respect to single-cube containment.
- Algebraic operations restricted to expressions with disjoint support
- Preserve correspondence of result with sum-of-product forms minimal w.r.t single-cube containment.
- Example
- $(a+b)(c+d)=a c+a d+b c+b d ;$ minimal w.r.t SCC.
- $(a+b)(a+c)=a a+a c+a b+b c$; non-minimal.
- $(a+b)(a+c)=a a^{\prime}+a c+a^{\prime} b+b c ;$ non-minimal.

Algebraic Division ...

- Given two algebraic expressions $f_{\text {dividend }}$ and $f_{\text {divisor }}$, we say that $f_{\text {divisor }}$ is an Algebraic Divisor of $f_{\text {dividend }}$, $f_{\text {quotient }}=f_{\text {dividend }} / f_{\text {divisor }}$ when
- $f_{\text {dividend }}=f_{\text {divisor }} \cdot f_{\text {quotient }}+f_{\text {remainder }}$
- $f_{\text {divisor }} \cdot f_{\text {quotient }} \neq 0$
- and the support of $\mathrm{f}_{\text {divisor }}$ and $\mathrm{f}_{\text {quotient }}$ is disjoint.
- Example
- Let $\mathrm{f}_{\text {dividend }}=\mathrm{ac}+\mathrm{ad}+\mathrm{bc}+\mathrm{bd}+\mathrm{e}$ and $\mathrm{f}_{\text {divisor }}=\mathrm{a}+\mathrm{b}$
- Then $f_{\text {quotient }}=c+d \quad f_{\text {remainder }}=e$
- Because $(a+b)(c+d)+e=f_{\text {dividend }}$
- and $\{\mathrm{a}, \mathrm{b}\} \cap\{\mathrm{c}, \mathrm{d}\}=\varnothing$
- Non-algebraic division
- Let $f_{i}=a+b c$ and $f_{j}=a+b$.
- Let $f_{k}=a+c$. Then, $f_{i}=f_{j} \cdot f_{k}=(a+b)(a+c)=f_{i}$
- but $\{a, b\} \cap\{a, c\} \neq \varnothing$

... Algebraic Division

- An algebraic divisor is called a factor when the remainder is void.
- $a+b$ is a factor of $a c+a d+b c+b d$
- An expression is said to be cube free when it cannot be factored by a cube.
- $a+b$ is cube free
- ac+ad+bc+bd is cube free
- ac+ad is non-cube free
- abc is non-cube free

Algebraic Division Algorithm ...

$A=\left\{C_{j}^{A}, j=1,2, . . l\right\}$ set of cubes
(monomials) of the dividend
$B=\left\{C_{j}^{B}, j=1,2, \ldots n\right\}$ set of cubes
(monomials) of the divisor

- Quotient Q and remainder R are sum of cubes (monomials).
- Intersection is largest subset of common monomials.

```
ALGEBRAIC_DIVISION(A,B) {
    for ( }i=1\mathrm{ to n) {
        D={\mp@subsup{C}{j}{A}\mathrm{ such that }\mp@subsup{C}{j}{A}\supseteq\mp@subsup{C}{i}{B}};
        if ( D==\emptyset) return(\emptyset,A);
        Di=D with var. in sup( (Ci) dropped
    if i=1
        Q= Di;
        else
        Q=Q\capDi;
    }
R=A-Q\timesB;
    return(Q,R);
```


... Algebraic Division Algorithm ...

- Example
- $f_{\text {dividend }}=a c+a d+b c+b d+e$;
- $\mathrm{f}_{\text {divisor }}=\mathrm{a}+\mathrm{b}$;
- $A=\{a c, a d, b c, b d, e\}$ and $B=\{a, b\}$.
- $\mathrm{i}=1$
- $C_{1}^{B}=a, D=\{a c, a d\}$ and $D_{1}=\{c, d\}$.
- $\mathrm{Q}=\{\mathrm{c}, \mathrm{d}\}$.
- $\mathbf{i}=\mathbf{2}=\mathbf{n}$
- $\mathrm{C}_{2}=\mathrm{b}, \mathrm{D}=\{\mathrm{bc}, \mathrm{bd}\}$ and $\mathrm{D}_{2}=\{\mathrm{c}, \mathrm{d}\}$.
- Then $Q=\{c, d\} \cap\{c, d\}=\{c, d\}$.
- Result
- $Q=\{c, d\}$ and $R=\{e\}$.
- $f_{\text {quotient }}=c+d$ and $f_{\text {remainder }}=e$.

... Algebraic Division Algorithm

- Example

- Let $\mathrm{f}_{\text {dividend }}=\mathrm{axc}+\mathrm{axd}+\mathrm{bc}+\mathrm{bxd}+\mathrm{e} ; \mathrm{f}_{\text {divisor }}=\mathrm{ax}+\mathrm{b}$
- $\mathrm{i}=1, \mathrm{C}_{1}{ }_{1}=a x, \mathrm{D}=\{a x c, a x d\}$ and $\mathrm{D}_{1}=\{\mathrm{c}, \mathrm{d}\} ; \mathrm{Q}=\{\mathrm{c}, \mathrm{d}\}$
- $\mathrm{i}=2=\mathrm{n} ; \mathrm{C}_{2}=\mathrm{b}, \mathrm{D}=\{\mathrm{bc}, \mathrm{bxd}\}$ and $\mathrm{D}_{2}=\{\mathrm{c}, \mathrm{xd}\}$.
- Then $Q=\{c, d\} \cap\{c, x d\}=\{c\}$.
- $\mathrm{f}_{\text {quotient }}=\mathrm{c}$ and $\mathrm{f}_{\text {remainder }}=a x d+\mathrm{bxd}+\mathrm{e}$.
- Theorem: Given algebraic expressions f_{i} and f_{j}, then f_{i} / f_{j} is empty when
- f_{j} contains a variable not in f_{i}.
- f_{j} contains a cube whose support is not contained in that of any cube of f_{i}.
- f_{j} contains more cubes than f_{i}.
- The count of any variable in f_{j} larger than in f_{i}.

Substitution

- Substitution replaces a subexpression by a variable associated with a vertex of the logic network.
- Consider expression pairs.
- Apply division (in any order).
- If quotient is not void
- Evaluate area/delay gain
- Substitute $\mathrm{f}_{\text {dividend }}$ by j.f $\mathrm{f}_{\text {quotient }}+\mathrm{f}_{\text {remainder }}$ where $\mathrm{j}=\mathrm{f}_{\text {divisor }}$
- Use filters to reduce divisions.
- Theorem
- Given two algebraic expressions f_{i} and $f_{j}, f_{i} / f_{j}=\varnothing$ if there is a path from v_{i} to v_{j} in the logic network.

Substitution algorithm

```
SUBSTITUTE( G
    for (i=1,2,\ldots,|V|) {
        for (j=1,2,\ldots, |V|;j\not=i) {
        A= set of cubes of fi;
        B= set of cubes of fj;
        if (A,B pass the filter test ) {
        (Q,R)=ALGEBRAIC_DIVISION (A,B)
        if (Q\not=\emptyset) {
                        fquotient}=\mathrm{ sum of cubes of Q;
                        fremainder }=\mathrm{ sum of cubes of R;
                        if (substitution is favorable)
                                    fi}=j\cdotf fquotient + fremainder;
        }
        }
    }
    }
}
```


Extraction

- Search for common sub-expressions
- Single-cube extraction: monomial.
- Multiple-cube (kernel) extraction: polynomial
- Search for appropriate divisors.
- Cube-free expression
- Cannot be factored by a cube.
- Kernel of an expression
- Cube-free quotient of the expression divided by a cube (called co-kernel).
- Kernel set K(f) of an expression
- Set of kernels.

Kernel Example

- $f_{x}=$ ace+bce+de+g
- Divide f_{x} by a. Get ce. Not cube free.
- Divide f_{x} by b. Get ce. Not cube free.
- Divide f_{x} by c. Get ae+be. Not cube free.
- Divide f_{x} by ce. Get a+b. Cube free. Kernel!
- Divide f_{x} by d. Get e. Not cube free.
- Divide f_{x} by e. Get ac+bc+d. Cube free. Kernel!
- Divide f_{x} by g. Get 1. Not cube free.
- Expression f_{x} is a kernel of itself because cube free.
- $K\left(f_{x}\right)=\{(a+b) ;(a c+b c+d) ;(a c e+b c e+d e+g)\}$.

Theorem (Brayton and McMullen)

- Two expressions f_{a} and f_{b} have a common multiplecube divisor f_{d} if and only if
- there exist kernels $k_{a} \in K\left(f_{a}\right)$ and $k_{b} \in K\left(f_{b}\right)$ s.t. f_{d} is the sum of 2 (or more) cubes in $k_{a} \cap k_{b}$ (intersection is largest subset of common monomials)
- Consequence
- If kernel intersection is void, then the search for common subexpression can be dropped.
- Example

$$
\begin{array}{ll}
f_{x}=a c e+b c e+d e+g ; & K\left(f_{x}\right)=\{(a+b) ;(a c+b c+d) ;(a c e+b c e+d e+g)\} \\
f_{y}=a d+b d+c d e+g e ; & K\left(f_{y}\right)=\{(a+b+c e) ;(c d+g) ;(a d+b d+c d e+g e)\} \\
f_{z}=a b c ; & \text { The kernel set of } f_{z} \text { is empty. }
\end{array}
$$

Select intersection (a+b)

$$
\begin{array}{ll}
f_{w}=a+b & f_{x}=w c e+d e+g \\
f_{y}=w d+c d e+g e & f_{z}=a b c
\end{array}
$$

Kernel Set Computation ...

- Naive method
- Divide function by elements in power set of its support set.
- Weed out non cube-free quotients.
- Smart way
- Use recursion
- Kernels of kernels are kernels of original expression.
- Exploit commutativity of multiplication.
- Kernels with co-kernels ab and ba are the same
- A kernel has level 0 if it has no kernel except itself.
- A kernel is of level n if it has
- at least one kernel of level n-1
- no kernels of level n or greater except itself

...Kernel Set Computation

- Y= adf + aef + bdf + bef + cdf + cef + g $=(a+b+c)(d+e) f+g$

Kernels	Co-Kernels	Level
$(a+b+c)$	$d f$, ef	0
$(d+e)$	$a f, b f$, ff	0
$(a+b+c)(d+e)$	f	1
$(a+b+c)(d+e) f+g$	1	2

Recursive Kernel Computation: Simple Algorithm

```
R_KERNELS(f){
    K=\emptyset;
    foreach variable }x\in\operatorname{sup}(f)
        if(|CUBES(f,x)|\geq2) {
            f}=\mathrm{ largest cube containing }x\mathrm{ ,
            s.t. CUBES(f,C)=CUBES(f,x);
            K=K\cupR_KERNELS(f/fC);
        }
    }
    K=K\cupf;
    return(K);
}
    CUBES(f,C){
    return the cubes of f}\mathrm{ whose support }\supseteqC\mathrm{ ;
}
```

- f is assumed to be cube-free
- If not divide it by its largest cube factor

Recursive Kernel Computation Example

- f=ace+bce+de+g
- Literals a or b. No action required.
- Literal c. Select cube ce:
- Recursive call with argument (ace+bce+de+g)/ce =a+b;
- No additional kernels.
- Adds a+b to the kernel set at the last step.
- Literal d. No action required.
- Literal e. Select cube e:
- Recursive call with argument $a c+b c+d$
- Kernel $a+b$ is rediscovered and added.
- Adds $a c+b c+d$ to the kernel set at the last step.
- Literal g. No action required.
- Adds ace+bce+de+g to the kernel set.
- $\mathrm{K}=\{(\mathrm{ace}+\mathrm{bce}+\mathrm{de}+\mathrm{g}) ;(\mathrm{a}+\mathrm{b}) ;(\mathrm{ac}+\mathrm{bc}+\mathrm{d}) ;(\mathrm{a}+\mathrm{b})$. .

Analysis

- Some computation may be redundant
- Example
- Divide by a and then by b.
- Divide by b and then by a.
- Obtain duplicate kernels.
- Improvement
- Keep a pointer to literals used so far denoted by j.
- J initially set to 1.
- Avoids generation of co-kernels already calculated
- $\operatorname{Sup}(f)=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ (arranged in lexicographic order)
- f is assumed to be cube-free
- If not divide it by its largest cube factor
- Faster algorithm

Recursive Kernel Computation

```
KERNELS(f,j){
    K=\emptyset;
    for i= j to n {
        if(|CUBES(f, \mp@subsup{x}{i}{})|\geq2) {
        f}=\mathrm{ largest cube containing }x\mathrm{ ,
        s.t. CUBES(f,C)=CUBES(f, \mp@subsup{x}{i}{});
        if ( }\mp@subsup{x}{k}{}\not\inC\forallk<i
        K=K\cupKERNELS(f/ff},i+1)
    }
    }
K=K\cupf;
return(K);
}
```


Recursive Kernel Computation Examples...

- f=ace+bce+de+g; $\quad \sup (f)=\{a, b, c, d, e, g\}$
- Literals a or b. No action required.
- Literal c. Select cube ce:
- Recursive call with arguments: (ace+bce+de+g)/ce =a+b; pointer j = $3+1=4$.
- Call considers variables \{d, e, g\}. No kernel.
- Adds a+b to the kernel set at the last step.
- Literal d. No action required.
- Literal e. Select cube e:
- Recursive call with arguments: ac+bc+d and pointer $\mathrm{j}=5+1=6$.
- Call considers variable $\{g\}$. No kernel.
- Adds ac+bc+d to the kernel set at the last step.
- Literal g. No action required.
- Adds ace+bce+de+g to the kernel set.
- K = \{(ace+bce+de+g); (ac+bc+d); (a+b)\}.
...Recursive Kernel Computation Examples
- Y= adf + aef + bdf + bef + cdf + cef + g=(d+e)(a+b+c)f+g
- Lexicographic order \{a, b, c, d, e, f, g\}

Matrix Representation of Kernels ...

- Boolean matrix
- Rows: cubes. Columns: variables (in both true and complement form as needed).
- Rectangle (R, C)
- Subset of rows and columns with all entries equal to 1.
- Prime rectangle
- Rectangle not inside any other rectangle.
- Co-rectangle ($\mathrm{R}, \mathrm{C}^{\prime}$) of a rectangle (R, C)
- C' are the columns not in C.
- A co-kernel corresponds to a prime rectangle with at least two rows.

... Matrix Representation of Kernels

- $f_{x}=$ ace+bce+de+g
- Rectangle (prime): (\{1, 2\}, $\{3,5\})$
- Co-kernel ce.
- Co-rectangle: (\{1, 2\}, $\{1,2,4,6\}$).
- Kernel a+b.

	var	a	b	c	d	e	g
cube	$R \backslash C$	1	2	3	4	5	6
$a c e$	1	1	0	1	0	1	0
$b c e$	2	0	1	1	0	1	0
$d e$	3	0	0	0	1	1	0
g	4	0	0	0	0	0	1

Matrix Representation of Kernels

- Theorem: K is a kernel of f iff it is an expression corresponding to the co-rectangle of a prime rectangle of f.
- The set of all kernels of a logic expression are in 1-1 correspondence with the set of all co-rectangles of prime rectangles of the corresponding Boolean matrix.
- A level-0 kernel is the co-rectangle of a prime rectangle of maximal width.
- A prime rectangle of maximum height corresponds to a kernel of maximal level.

... Matrix Representation of Kernels

- Example
- $\mathrm{F}=\mathrm{abc}+\mathrm{abd}+\mathrm{ae}$

	Cube	1	b	3 c	d	5 e
1	abc	1	1	1		
2	abd	1	1		1	
3	ae	1				1

- Prime Rectangles \& Co-Rectangles
- PR:\{(1,2),(1,2)\}: corresponding to co-kernel ab
- CR:\{(1,2),(3,4,5)\}: corresponding to kernel ($\mathrm{c}+\mathrm{d}$)
- PR:\{(1,2,3),(1)\}: corresponding to co-kernel a
- CR:\{(1,2,3), (2,3,4,5)\}: corresponding to kernel (bc+bd+e)

Single-Cube Extraction ...

- Form auxiliary function
- Sum of all product terms of all functions.
- Form matrix representation
- A rectangle with at least two rows represents a common cube.
- Rectangles with at least two columns may result in savings.
- Best choice is a prime rectangle.
- Use function ID for cubes
- Cube intersection from different functions.

... Single-Cube Extraction

- Expressions
- $f_{x}=a c e+b c e+d e+g$
- $f_{s}=c d e+b$
- Auxiliary function
- $f_{\text {aux }}=a c e+b c e+d e+g+c d e+b$
- Matrix:

		var	a	b	c	d	e	g
cube	ID	$R \backslash C$	1	2	3	4	5	6
$a c e$	\times	1	1	0	1	0	1	0
$b c e$	\times	2	0	1	1	0	1	0
$d e$	\times	3	0	0	0	1	1	0
g	x	4	0	0	0	0	0	1
$c d e$	s	5	0	0	1	1	1	0
b	s	6	0	1	0	0	0	0

- Prime rectangle: (\{1, 2, 5\}, $\{3,5\})$
- Extract cube ce.

Single-Cube Extraction Algorithm

CUBE_EXTRACT($\left.G_{n}(V, E)\right)\{$
while (some favorable common cube exist) \{
$C=$ select common cube to extract; Generate new label l; Add to network v_{l} and $f_{l}=f^{C}$; Replace all functions f, where f_{l} is a divisor, by $l \cdot f_{\text {quotient }}+f_{\text {remainder }}$; \}
\}

Extraction of an I-variable cube with multiplicity n saves (\boldsymbol{n} I - \boldsymbol{n} - I) literals

Multiple-Cube Extraction ...

- We need a kernel/cube matrix.
- Relabeling
- Cubes by new variables.
- Kernels by cubes.
- Form auxiliary function
- Sum of all kernels.
- Extend cube intersection algorithm.

... Multiple-Cube Extraction

- $f_{p}=a c e+b c e$.
- $K\left(f_{p}\right)=\{(a+b)\}$.
- $f_{q}=a e+b e+d$.
- $K\left(f_{q}\right)=\{(a+b),(a e+b e+d)\}$.
- $f_{r}=a e+b e+d e$.
- $K\left(\mathrm{f}_{\mathrm{r}}\right)=\{(\mathrm{a}+\mathrm{b}+\mathrm{d})\}$.
- Relabeling
- $x_{a}=a ; x_{b}=b ; x_{a e}=a e ; x_{b e}=b e ; x_{d}=d ;$
- $K\left(f_{p}\right)=\left\{\left(\mathrm{x}_{\mathrm{a}}, \mathrm{x}_{\mathrm{b}}\right)\right\}$
- $K\left(f_{q}\right)=\left\{\left(x_{a}, x_{b}\right) ;\left(x_{a e}, x_{b e}, x_{d}\right)\right\}$.
- $K\left(f_{r}\right)=\left\{\left(x_{a}, x_{b}, x_{d}\right)\right\}$.
- $f_{a u x}=x_{a} x_{b}+x_{a} x_{b}+x_{a e} x_{b e} x_{d}+x_{a} x_{b} x_{d}$.
- Common cube: $x_{a} x_{b}$.

- $x_{\mathrm{a}} \mathrm{x}_{\mathrm{b}}$ corresponds to kernel intersection $\mathrm{a}+\mathrm{b}$.
- Extract $a+b$ from f_{p}, f_{q} and f_{r}.

Kernel Extraction Algorithm ...

$K E R N E L_{-} E X T R A C T\left(G_{n}(V, E), n, k\right)\{$
while (some favorable common kernel intersection exist)
Compute kernel set of level $\leq k$; for ($i=1$ to n) \{

Compute kernel intersections;
$f=$ select kernel intersection to extract;
Generate new label l;
Add v_{l} to the network with expression $f_{l}=f$; Replace all functions f where f_{l} is a divisor
by $l \cdot f_{\text {quotient }}+f_{\text {remainder }}$;
\}
\}
\}

N indicates the rate at which kernels are recomputed K indicates the maximum level of the kernel computed

... Kernel Extraction Algorithm

- Example

- F1= ac+bc;	Kernels: $\{(a+b)\}$
- F2=ad+bd+cd;	Kernels: $\{(a+b+c)\}$
- F3=ab+ac;	Kernels: $\{(b+c)\}$

Cube
$x_{a} x_{b}$
$x_{\mathrm{a}} x_{b} x_{c}$
$x_{b} x_{c}$

After extracting kernel $(a+b)$, kernel ($b+c$) is no longer a common kernel. This is why kernel intersections need to be recomputed.

Tradeoffs in Kernel Extraction

k	n	time	no. of Literals in factored form	no. of kemels in first iteration	no. of intersections in first ileration
0	1	181.0	760	209	23
	2	93.1	767		
	5	45.9	759		
	10	26.8	773		
999	1	302.8	754	597	196
	2	172.0	754		
	5	98.0	766		
	10	72.3	773		

Area Value of a Kernel ...

- Let n be the number of times a kernel is used
- Let I be the number of literals in a kernel and c be the number of cubes in a kernel
- Let CK_{i} be the co-kernel for kernel i
- Initial cost $=\sum_{i=1 \text { to }}\left(\mid \mathrm{CK}_{\mathrm{i}}{ }^{*} \mathbf{c}+\mathrm{l}\right)=\mathrm{nl}+\mathrm{c}{ }^{*} \sum_{i=1 \text { to } n}\left|\mathrm{CK}_{\mathrm{i}}\right|$
- Resulting cost $=1+\sum_{i=1}$ to $n\left(\left|\mathrm{CK}_{\mathrm{i}}\right|+1\right)=\mathrm{n}+\mathrm{I}+\sum_{\mathrm{i}=1 \text { to } \mathrm{n}}\left|\mathrm{CK}_{\mathrm{i}}\right|$
- Value of a kernel = initial cost - resulting cost
$=\left\{n \mid+c^{*} \sum_{i=1}\right.$ to $\left.n\left|C K_{i}\right|\right\}-\left\{n+1+\sum_{i=1}\right.$ to $\left.n\left|C K_{i}\right|\right\}$
$=n \mathrm{nl}-\mathrm{n}-\mathrm{l}+(\mathrm{c}-1)^{*} \sum_{\mathrm{i}=1 \text { to } \mathrm{n}}\left|\mathrm{CK}_{\mathrm{i}}\right|$

... Area Value of a Kernel

- Example:
- $X=a c d+b c d=(a+b) c d \quad$ (6 literals)
- Y = adef + bdef $=(a+b)$ def (8 lietrals)
- Initial cost = 14 literals
- After Kernel extraction:
- $Z=a+b$
- $X=Z$ cd
- Y=Zdef
(2 literals)
(3 literals)
(4 lietrals)
- Resulting cost = 9 literals
- Savings = $14-9=5$ literals
- Value of kernel = nl - $\mathbf{n}-\mathbf{l}+(\mathbf{c}-1)^{*} \sum_{i=1}$ to $n\left|\mathrm{CK}_{\mathrm{i}}\right|$
- $=2^{*} 2-2-2+(2-1)^{*}(2+3)=5$ literals

Issues in Common Cube and Multiple-Cube Extraction

- Greedy approach can be applied in common cube and multiple-cube extraction
- Rectangle selection
- Matrix update
- Greedy approach may be myopic
- Local gain of one extraction considered at a time
- Non-prime rectangles can contribute to lower cost covers than prime rectangles
- Quine's theorem cannot be applied to rectangles

Decomposition ...

- Goals of decomposition
- Reduce the size of expressions to that typical of library cells.
- Small-sized expressions more likely to be divisors of other expressions.
- Different decomposition techniques exist.
- Algebraic-division-based decomposition
- Give an expression f with $f_{\text {divisor }}$ as one of its divisors.
- Associate a new variable, say t, with the divisor.
- Reduce original expression to $\mathrm{f}=\mathrm{t}$. $\mathrm{f}_{\text {quotient }}+\mathrm{f}_{\text {remainder }}$ and $\mathrm{t}=\mathrm{f}_{\text {divisor. }}$.
- Apply decomposition recursively to the divisor, quotient and remainder.
- Important issue is choice of divisor
- A kernel.
- A level-0 kernel.
- Evaluate all kernels and select most promising one.

... Decomposition

- $f_{x}=a c e+b c e+d e+g$
- Select kernel ac+bc+d.
- Decompose: $\mathrm{f}_{\mathrm{x}}=\mathrm{te}+\mathrm{g} ; \mathrm{f}_{\mathrm{t}}=\mathrm{ac}+\mathrm{bc}+\mathrm{d}$;
- Recur on the divisor f_{t}
- Select kernel a+b
- Decompose: $\mathrm{f}_{\mathrm{t}}=\mathrm{sc}+\mathrm{d} ; \mathrm{f}_{\mathrm{s}}=\mathrm{a}+\mathrm{b}$;

Decomposition Algorithm

```
DECOMPOSE( G
    repeat {
        vx}=\mathrm{ selected vertex with expression
        whose size is above k;
        if ( }\mp@subsup{v}{x}{}=\emptyset\mathrm{ ) return;
        decompose expression }\mp@subsup{f}{x}{}\mathrm{ ;
        }
}
```

K is a threshold that determines the size of nodes to be decomposed.

Factorization Algorithm

- FACTOR(f)

If (the number of literals in f is one) return f
K =choose_Divisor(f)
(h, r) = Divide(f, k)
Return (FACTOR(k) FACTOR(h) + FACTOR(r))

- Quick factoring: divisor restricted to first level-0 kernel found
- Fast and effective
- Used for area and delay estimation
- Good factoring: best kernel divisor is chosen
- Example: $\mathbf{f = a b + a c + b d + c e + c g}$
- Quick factoring: $\mathrm{f}=\mathrm{a}(\mathrm{b}+\mathrm{c})+\mathrm{c}(\mathrm{e}+\mathrm{g})+\mathrm{bd} \quad$ (8 literals)
- Good factoring: $\mathrm{f}=\mathrm{c}(\mathrm{a}+\mathrm{e}+\mathrm{g})+\mathrm{b}(\mathrm{a}+\mathrm{d})$

One-Level-0-Kernel

One-Level-0-Kernel(f)
If $(|f| \leq 1)$ return 0
If $(\mathrm{L}=$ Literal_Count $(\mathrm{f}) \leq 1)$ return f
For $(\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{n} ; \mathrm{i}++)\{$ If $(\mathrm{L}(\mathrm{i})>1)\{$
C= largest cube containing is.t. CUBES(f,C)=CUBES(f,i) return One-Level-0-Kernel(f/f/ ${ }^{\text {C }}$)
\}
\}

- Literal_Count returns a vector of literal counts for each literal.
- If all counts are ≤ 1 then f is a level- 0 kernel
- The first literal with a count greater than one is chosen.

Fast Extraction (FX) ...

- Very efficient extraction method
- Based on extraction of double-cube divisors along with their complements and,
- Single-cube divisors with two literals.
- Number of divisors in polynomial domain.
- Preserves single stuck-at fault testability.
- [Rajski and Vasudevamurthy 1992].
- Double-cube divisors are cube-free multiple-cube divisors having exactly two cubes.
- The set of double-cube divisors of a function f, denoted $D(f)=\left\{d \mid d=\left\{c_{i} \backslash\left(c_{i} \cap c_{j}\right), c_{j} \backslash\left(c_{i} \cap c_{j}\right)\right\}\right\}$ for $i, j=1, . . n$, $i \neq j$
- n is number of cubes in f.
- $\left(c_{i} \cap c_{j}\right)$ is called the base of a double-cube divisor.
- Empty base is allowed.

... Fast Extraction (FX) ...

- Example: f = ade + ag + bcde +bcg.
- Double-cube divisors and their bases:

Double-cube divisors	Base
de+g	a, bc
$\mathrm{a}+\mathrm{bc}$	g, de
ade+bcg	$\}$
ag+bcde	$\}$

- A subset of double-cube divisors is represented by $D_{x, y, s}$
- x is number of literals in first cube
- y is number of literals in second cube
- s is number of variables in support of D
- A subset of single-cube divisors is denoted by S_{k} where k is number of literals in single-cube divisor.

Properties of Double-Cube and Single-

 Cube Divisors- Example:

$$
\begin{aligned}
& \cdot x y+y^{\prime} z p \in D_{2,3,4} \\
& a b \in S_{2}
\end{aligned}
$$

- $D_{1,1,1}$ and $D_{1,2,2}$ are null set.
- For any $d \in D_{1,1,2}, d^{\prime} \in S_{2}$.
- For any $d \in D_{1,2,3}, d^{\prime} \notin D^{\prime}$.
- For any $d \in D_{2,2,2}, d$ is either XOR or XNOR and d' \in $\mathrm{D}_{2,2,2}$.
- For any $d \in D_{2,2,3}, d^{\prime} \in D_{2,2,3^{*}}$.
- For any $d \in D_{2,2,4}, d^{\prime} \notin D$.

Extraction of Double-cube Divisor along with its Complement

- Theorem: Let f and g be two expressions. Then, f has neither a complement double-cube divisor nor a complement single-cube divisor in g if
- $d_{i} \neq s_{j}^{\prime}$ for every $d_{i} \in D_{1,1,2}(f), s_{j} \in S_{2}(g)$
- $d_{i} \neq s_{j}^{\prime}$ for every $d_{i} \in D_{1,1,2}(g), s_{j} \in S_{2}(f)$
- $d_{i} \neq d_{j}^{\prime}$ for every $d_{i} \in D_{\text {xor }}(f), d_{j} \in D_{\text {xnor }}(g)$
- $d_{i} \neq d_{j}^{\prime}$ for every $d_{i} \in D_{\text {xnor }}(f), d_{j} \in D_{\text {xor }}(g)$
- $d_{i} \neq d_{j}^{\prime}$ for every $d_{i} \in D_{2,2,3}(f), d_{j} \in D_{2,2,3}(g)$

Weights of Double-cube Divisors and Single-Cube Divisors

- Divisor weight represents literal savings.
- Weight of a double-cube divisor $d \in D_{x, y, s}$ is $w(d)=(p-1)(x+y)-p+\sum_{i=1}$ to $\left|b_{i}\right|+C$
- p is the number of times double-cube divisor is used - Includes complements that are also double-cube divisors
- $\left|\mathrm{b}_{\mathrm{i}}\right|$ is the number of literals in base of double-cube divisor
- C is the number of cubes containing both a and b in case cube $a b$ is a complement of $d \in D_{1,1,2}$
- $(p-1)(x+y)$ accounts for the number of literals saved by implementing d of size ($x+y$) once
- -p accounts for number of literals needed to connect din its p occurrences
- Weight of a single-cube divisor $c \in S_{2}$ is $k-2$
- K is the number of cubes containing c .

Fast Extraction Algorithm

Generate double-cube divisors with weights

Repeat

Select a double-cube divisor d that has a maximum weight $W_{\text {dmax }}$
Select a single-cube divisor s having a maximum weight $\mathrm{W}_{\text {smax }}$
If $W_{\text {dmax }}>W_{\text {smax }}$ select d else select s
$\mathrm{W}=\max \left(\mathrm{W}_{\text {dmax }}, \mathrm{W}_{\text {smax }}\right)$
If $\mathrm{W}>0$ then substitute selected divisor
Recompute weights of affected double-cube divisors
Until (W<=0)

Fast Extraction Example

- F = abc + a'b'c + ab'd + a'bd + acd + a'b'd' (18 literals)

d	Base	Weight
$a b+a^{\prime} b^{\prime}$	c	4
$b c+b^{\prime} d$	a	0
$a c+a^{\prime} d$	b	0
$b+d^{\prime}$	$a c$	2
$a b c+a^{\prime} b^{\prime} d^{\prime}$	$\}$	-1
$a^{\prime} c+a d$	b^{\prime}	0
$b^{\prime} c+b d$	a^{\prime}	0
$a^{\prime} b^{\prime}+a d$	c	0
$c^{\prime}+d^{\prime}$	$a^{\prime} b^{\prime}$	1
$a b^{\prime}+a^{\prime} b$	d^{\prime}	4
$b^{\prime}+c$	$a d$	1
$a d^{\prime}+a^{\prime} d^{\prime}$	b^{\prime}	0
$a^{\prime} b+a^{\prime} c$	d	0
$b d^{\prime}+b^{\prime} d^{\prime}$	a^{\prime}	0
$a c d+a^{\prime} b^{\prime} d^{\prime}$	$\}$	-1

Single-cube divisors with $W_{\text {smax }}$ are either ac or a'b' or ad with weight of 0

Double-cube divisor=ab + $a^{\prime} b^{\prime}$ is selected

$$
\begin{aligned}
& {[1]=a b+a^{\prime} b^{\prime}} \\
& F=[1] c+[1]^{\prime} d+a c d+a^{\prime} b^{\prime} d^{\prime} \\
& \text { (14 literals) }
\end{aligned}
$$

Boolean Methods

- Exploit Boolean properties.
- Don't care conditions.
- Minimization of the local functions.
- Slower algorithms, better quality results.
- Don't care conditions related to embedding of a function in an environment
- Called external don't care conditions
- External don't care conditions
- Controllability
- Observability

External Don't Care Conditions ...

- Controllability don't care set CDC $_{\text {in }}$
- Input patterns never produced by the environment at the network's input.
- Observability don't care set ODC ${ }_{\text {out }}$
- Input patterns representing conditions when an output is not observed by the environment.
- Relative to each output.
- Vector notation used: ODC ${ }_{\text {out }}$.

... External Don't Care Conditions

- Inputs driven by a decoder.
- $\mathrm{CDC}_{\text {in }}=x_{1}{ }^{\prime} x_{2}{ }^{\prime} x_{3}{ }^{\prime} x_{4}{ }^{\prime}+x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}$.
- Outputs observed when $x_{1}+x_{4}=1$.

$$
\text { ODC }_{\text {out }}=\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{1}^{\prime} \\
x_{4}^{\prime} \\
x_{4}^{\prime}
\end{array}\right]
$$

$$
\mathbf{D C}_{e x t}=\mathbf{C D C}_{i n}+\mathbf{O D C}_{o u t}=\left[\begin{array}{l}
x_{1}^{\prime}+x_{2}+x_{3}+x_{4} \\
x_{1}^{\prime}+x_{2}+x_{3}+x_{4} \\
x_{4}^{\prime}+x_{2}+x_{3}+x_{1} \\
x_{4}^{\prime}+x_{2}+x_{3}+x_{1}
\end{array}\right]
$$

Internal Don't Care Conditions ...

- Induced by the network structure.
- Controllability don't care conditions
- Patterns never produced at the inputs of a subnetwork.
- Observability don't care conditions
- Patterns such that the outputs of a subnetwork are not observed.

... Internal Don't Care Conditions

- Example: $x=a^{\prime}+b ; y=a b x+a \prime c x$

- CDC of v_{y} includes $a b^{\prime} \mathrm{x}+\mathrm{a}^{\prime} \mathrm{x}^{\prime}$.
- $a b$ ' $\Rightarrow x=0 ; a b$ ' x is a don't care condition
- $a^{\prime} \Rightarrow x=1$; $a^{\prime} x^{\prime}$ is a don't care condition
- Minimize f_{y} to obtain: $f_{y}=a x+a$ 'c.

Satisfiability Don't Care Conditions

- Invariant of the network
- $\mathrm{x}=\mathrm{f}_{\mathrm{x}} \rightarrow \mathrm{x} \neq \mathrm{f}_{\mathrm{x}} \subseteq$ SDC.

$$
S D C=\sum_{v_{x} \in V^{G}} x \oplus f_{x}
$$

- Useful to compute controllability don't cares.
- Example
- Assume $x=a^{\prime}+b$
- Since $x \neq\left(a^{\prime}+b\right)$ is not possible, $x \oplus\left(a^{\prime}+b\right)=x^{\prime} a^{\prime}+x^{\prime} b+x a b{ }^{\prime}$ is a don't care condition.

CDC Computation ...

- Network traversal algorithm
- Consider different cuts moving from input to output.
- Initial CDC is CDC ${ }_{\text {in }}$.
- Move cut forward.
- Consider SDC contributions of predecessors.
- Remove unneeded variables by consensus.
- Consensus of a function f with respect to variable x is $\mathrm{f}_{\mathrm{x}} \cdot \mathrm{f}_{\mathrm{x}^{\prime}}$

... CDC Computation ...

CONTROLLABILITY $\left(G_{n}(V, E), C D C_{i n}\right)\{$
$C=V^{I}$;
$C D C_{c u t}=C D C_{i n}$;
foreach vertex $v_{x} \in V$ in topological order \{

$$
\begin{aligned}
& C=C \cup v_{x} \\
& C D C_{c u t}=C D C_{c u t}+f_{x} \oplus x \\
& D=\{v \in C \text { s.t. all dir. suct } \\
& \text { foreach vertex } v_{y} \in D \\
& \quad C D C_{c u t}=\mathcal{C}_{y}\left(C D C_{c u t}\right) \\
& C=C-D
\end{aligned}
$$

$$
D=\{v \in C \text { s.t. all dir. succ. of } v \text { are in } C\}
$$

\};
$C D C_{o u t}=C D C_{c u t} ;$

... CDC Computation ...

- Assume CDC $_{\text {in }}=\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{4}{ }^{\prime}$.
- Select vertex V_{a}
- Contribution to $\mathrm{CDC}_{\text {cut }}: ~ a \oplus\left(\mathrm{x}_{2} \oplus \mathrm{x}_{3}\right)$. - $\mathrm{CDC}_{\text {cut }}=\mathrm{x}_{1} \mathrm{x}_{4}{ }^{\prime}+\mathrm{a} \oplus\left(\mathrm{x}_{2} \oplus \mathrm{x}_{3}\right)$.
- Drop variables $D=\left\{x_{2}, x_{3}\right\}$
- $\mathrm{CDC}_{\text {cut }}=\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{4}{ }^{\prime}$.

- Select vertex \mathbf{v}_{b}
- Contribution to $\mathrm{CDC}_{\text {cut }}: \mathrm{b} \oplus\left(\mathrm{x}_{1}+\mathrm{a}\right)$.
- $\mathrm{CDC}_{\text {cut }}=\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{4}{ }^{\prime}+\mathrm{b} \oplus\left(\mathrm{x}_{1}+\mathrm{a}\right)$.
- Drop variable $\mathrm{D}=\left\{\mathrm{x}_{1}\right\}$
- $\mathrm{CDC}_{\text {cut }}=\mathrm{b}^{\prime} \mathrm{x}_{4}{ }^{\prime}+\mathrm{b}^{\prime} \mathrm{a}$.

... CDC Computation

- Select vertex \mathbf{v}_{c}
- Contribution to $\mathrm{CDC}_{\text {cut }} \mathrm{c} \oplus\left(\mathrm{x}_{4}+\mathrm{a}\right)$.
- $\mathrm{CDC}_{\text {cut }}=\mathrm{b}^{\prime} \mathrm{x}_{4}{ }^{\prime}+\mathrm{b}^{\prime} \mathrm{a}+\mathrm{c} \oplus\left(\mathrm{x}_{4}+\mathrm{a}\right)$.
- Drop variables $D=\left\{a, x_{4}\right\}$
- $\mathrm{CDC}_{\text {cut }}=$ b'c'.
- Select vertex v_{d}
- Contribution to $\mathrm{CDC}_{\text {cut }} \mathrm{d} \oplus(\mathrm{bc})$.
- $\mathrm{CDC}_{\text {cut }}=\mathrm{b}^{\prime} \mathrm{c}^{\prime}+\mathrm{d} \oplus(\mathrm{bc})$.
- Select vertex \mathbf{v}_{e}
- Contribution to $\mathrm{CDC}_{\text {cut }}: \oplus(\mathrm{b}+\mathrm{c})$.
- $\mathrm{CDC}_{\mathrm{cut}}=\mathrm{b}^{\prime} \mathrm{c}^{\prime}+\mathrm{d} \oplus(\mathrm{bc})+\mathrm{e} \oplus(\mathrm{b}+\mathrm{c})$.
- Drop variables $D=\{b, c\}$
- $\mathrm{CDC}_{\text {cut }}=\mathrm{e}^{\prime}$.
$-C D C_{\text {cut }}=e^{\prime}=z_{2}^{\prime}$.

Network Perturbation

- Modify network by adding an extra input δ.
- Extra input can flip polarity of a signal \mathbf{x}.
- Replace local function f_{x} by $\mathrm{f}_{\mathrm{x}} \oplus \delta$.
- Perturbed terminal behavior: $\mathrm{f}^{\mathrm{x}}(\delta)$.
- A variable is observable if a change in its polarity is perceived at an output.
- Observability don't-care set ODC for variable x is $\left(f^{x}(0) \oplus f^{x}(1)\right)^{\prime}$
- $f^{x}(0)=a b c$
- $\mathrm{f}^{x}(1)=a^{\prime} b c$
- ODC $_{x}=\left(a b c \oplus a^{\prime} b c\right)^{\prime}=b^{\prime}+c^{\prime}$
- Minimizing $f_{x}=a b$ with ODC $_{x}=b^{\prime}+c^{\prime}$ leads to $f_{x}=a$.

(b)

(c)

Observability Don't Care Conditions

- Conditions under which a change in polarity of a signal x is not perceived at the outputs.
- Complement of the Boolean Difference
- $\partial f / \partial x=\left.\left.f\right|_{x=1} \oplus f\right|_{x=0}$
- Equivalence of perturbed function: $\left(f^{x}(0) \oplus f^{x}(1)\right)$ '.
- Observability don't care computation
- Problem
- Outputs are not expressed as function of all variables.
- If network is flattened to obtain f, it may explode in size.
- Requirement
- Local rules for ODC computation.
- Network traversal.

Observability Don't Care Computation ...

- Assume single-output network with tree structure.
- Traverse network tree.
- At root
- $\mathrm{ODC}_{\text {out }}$ is given.
- At internal vertices assuming y is the output of \mathbf{x}
- $\mathrm{ODC}_{\mathrm{x}}=\left(\partial \mathrm{of}_{y} / \partial \mathrm{x}\right)^{\prime}+\mathrm{ODC}_{\mathrm{y}}=\left(\mathrm{f}_{\mathrm{y}} \mathrm{l}_{x=1} \oplus \mathrm{f}_{\mathrm{y}} \mathrm{l}_{\mathrm{x}=0}\right)^{\prime}+\mathrm{ODC}_{y}$
- Example
- Assume $\mathrm{ODC}_{\text {out }}=\mathrm{ODC}_{\mathrm{e}}=0$.
- $\mathrm{ODC}_{\mathrm{b}}=\left(\partial \mathrm{of}_{\mathrm{e}} / \partial \mathrm{b}\right)^{\prime}$
$=\left(\left.\left.(b+c)\right|_{b=1} \oplus(b+c)\right|_{b=0}\right)^{\prime}=c$.
- $\mathrm{ODC}_{\mathrm{c}}=\left(\partial \mathrm{f}_{\mathrm{e}} / \partial \mathrm{c}\right)^{\prime}=\mathrm{b}$.
- $\mathrm{ODC}_{\mathrm{x} 1}=\mathrm{ODC}_{\mathrm{b}}+\left(\partial \mathrm{f}_{\mathrm{b}} / \partial \mathrm{x}_{1}\right)^{\prime}=\mathrm{c}+\mathrm{a} 1$.

$$
\begin{aligned}
& e=b+c \\
& b=x_{1}+a_{1} \\
& c=x_{4}+a_{2}
\end{aligned}
$$

... Observability Don't Care Computation

- General networks have fanout re-convergence.
- For each vertex with two (or more) fanout stems
- The contribution of the ODC along the stems cannot be added.
- Wrong assumption is intersecting them
- $\mathrm{ODC}_{\mathrm{a}, \mathrm{b}}=\mathrm{x}_{1}+\mathrm{c}=\mathrm{x}_{1}+\mathrm{a}+\mathrm{x}_{4}$
- ODC $_{\mathrm{a}, \mathrm{c}}=\mathrm{x}_{4}+\mathrm{b}=\mathrm{x}_{4}+\mathrm{a}+\mathrm{x}_{1}$
- $\mathrm{ODC}_{\mathrm{a}, \mathrm{b}} \cap \mathrm{ODC}_{\mathrm{a}, \mathrm{c}}=\mathrm{x}_{1}+\mathrm{a}+\mathrm{x}_{4}$
- Variable a is not redundant
- Interplay of different paths.
- More elaborate analysis.

Two-way Fanout Stem ...

- Compute ODC sets associated with edges.
- Combine ODCs at vertex.
- Formula derivation
- Assume two equal perturbations on the
 edges.

$$
\begin{aligned}
\text { ODC }_{x}= & \mathbf{f}^{x_{1}, x_{2}}(1,1) \bar{\oplus} \mathbf{f}^{x_{1}, x_{2}}(\mathrm{O}, \mathrm{O}) \\
= & \mathbf{f}_{x_{1}, x_{2}}(1,1) \bar{\oplus} \mathbf{f}^{x_{1}, x_{2}}(\mathrm{O}, \mathrm{O}) \\
& \bar{\oplus}\left(\mathbf{f}^{x_{1}, x_{2}}(\mathrm{O}, 1) \bar{\oplus} \overline{\left.x^{x_{1}, x_{2}}(\mathrm{O}, 1)\right)}\right. \\
= & \left(\mathbf{f}^{x_{1}, x_{2}}(1,1) \bar{\oplus} \mathbf{f}^{x_{1}, x_{2}}(\mathrm{O}, 1)\right) \\
= & \left(\mathbf{f}^{x_{1}, x_{2}}(\mathrm{O}, 1) \bar{\oplus} \mathbf{f}^{x_{1}, x_{2}}(\mathrm{O}, \mathrm{O})\right) \\
= & \left.\left.\mathbf{O D C}_{x, y}\right|_{\delta_{2}=1} ^{\oplus} \bar{\oplus} \mathbf{O D C}_{x, z}\right|_{\delta_{1}=0} \\
= & \left.\left.\mathbf{O D C}_{x, y}\right|_{x_{2}=x^{\prime}} ^{\oplus} \mathbf{O D C}_{x, z}\right|_{x_{1}=x} \\
= & \left.\mathbf{O D C}_{x, y}\right|_{x=x^{\prime}} ^{\oplus} \mathbf{O D C}_{x, z}
\end{aligned}
$$

... Two-way Fanout Stem

- ODC $_{\mathrm{a}, \mathrm{b}}=\mathrm{x}_{1}+\mathrm{c}=\mathrm{x}_{1}+\mathrm{a}_{2}+\mathrm{x}_{4}$
- ODC $_{\mathrm{a}, \mathrm{c}}=\mathrm{x}_{4}+\mathrm{b}=\mathrm{x}_{4}+\mathrm{a}_{1}+\mathrm{x}_{1}$
- $\mathrm{ODC}_{\mathrm{a}}=\left(\mathrm{ODC}_{\mathrm{a}, \mathrm{b} \mid \mathrm{a} 2=\mathrm{a}^{\prime}} \oplus \mathrm{ODC}_{\mathrm{a}, \mathrm{c}}\right)^{\prime}$

$$
\begin{aligned}
& =\left(\left(x_{1}+a^{\prime}+x_{4}\right) \oplus\left(x_{4}+a+x_{1}\right)\right)^{\prime} \\
& =x_{1}+x_{4}
\end{aligned}
$$

Multi-Way Stems Theorem

- Let $\mathbf{v}_{\mathrm{x}} \in \mathbf{V}$ be any internal or input vertex.
- Let $\left\{x_{i} ; i=1,2, \ldots, p\right\}$ be the edge variables corresponding to $\left\{\left(x, y_{i}\right) ; i=1,2, \ldots, p\right\}$.
- Let $\mathrm{ODC}_{\mathrm{x}, \mathrm{yi}} ; \mathrm{i}=1,2, \ldots, \mathrm{p}$ be the edge ODCs.

$$
\mathbf{O D C}_{x}=\bar{\bigoplus}_{i=1}^{p} \text { ODC }\left._{x, y_{i}}\right|_{x_{i+1}=\cdots=x_{p}=x^{\prime}}
$$

- For a 3-fanout stem variable x :
$O D C_{x}=O D C_{x, y 1 \mid x 2=x 3=x^{\prime}} \oplus O D C_{x, y 2 \mid x 3=x^{\prime}} \oplus O D C_{x, y 3}$

Observability Don't Care Algorithm ...

```
OBSERVABILITY (G}\mp@subsup{|}{n}{}(V,E),\mp@subsup{\mathrm{ ODC }}{\mathrm{ out }}{})
    foreach vertex vx}\in\mathbb{V}\mathrm{ in reverse topological order {
        for (i=1 to p)
            ODC }\mp@subsup{\underbrace}{x,\mp@subsup{y}{i}{}}{}=(\partial\mp@subsup{f}{\mp@subsup{y}{i}{}}{}/\partialx\mp@subsup{)}{}{\prime}\mathbf{1}+\mp@subsup{\mathbf{ODC}}{\mp@subsup{y}{i}{}}{}
        ODC
    }
}
```

- For each variable, intersection of ODC at all outputs yields condition under which output is not observed
- Global ODC of a variable
- The global ODC conditions of the input variables is the input observability don't care set ODC ${ }_{\text {in }}$.
- May be used as external ODC sets for optimizing a network feeding the one under consideration

Observability Don't Care Algorithm

$$
\begin{gathered}
\mathrm{ODC}_{d}=\binom{0}{1} ; \mathrm{ODC}_{e}=\binom{1}{0} ; \mathrm{ODC}_{c}=\binom{b^{\prime}}{b} ; \mathrm{ODC}_{b}=\binom{c^{\prime}}{c} \\
\mathrm{ODC}_{a, b}=\binom{c^{\prime}+x_{1}}{c+x_{1}}=\binom{a^{\prime} x_{4}^{\prime}+x_{1}}{a+x_{4}+x_{1}} \\
\mathrm{ODC}_{a, c}=\binom{b^{\prime}+x_{4}}{b+x_{4}}=\binom{a^{\prime} x_{1}^{\prime}+x_{4}}{a+x_{1}+x_{4}} \\
\mathrm{ODC}_{a}=\left.\mathbf{O D C}_{a, b}\right|_{a=a^{\prime}} \bar{\oplus} \mathbf{O D C}_{a, c}=\binom{a x_{4}^{\prime}+x_{1}}{a^{\prime}+x_{4}+x_{1}} \bar{\oplus}\binom{a^{\prime} x_{1}^{\prime}+x_{4}}{a+x_{1}+x_{4}}= \\
=\binom{x_{1} x_{4}}{x_{1}+x_{4}}
\end{gathered}
$$

Global ODC of a is $(x 1 \times 4)(x 1+x 4)=x 1 \times 4$

Transformations with Don't Cares

- Boolean simplification
- Use standard minimizer (Espresso).
- Minimize the number of literals.
- Boolean substitution
- Simplify a function by adding an extra input.
- Equivalent to simplification with global don't care conditions.
- Example
- Substitute $q=a+c d$ into $f_{h}=a+b c d+e$ to get $f_{h}=a+b q+e$.
- SDC set: $q \oplus(a+c d)=q^{\prime} a+q^{\prime} c d+q a^{\prime}(c d)^{\prime}$.
- Simplify $f_{h}=a+b c d+e$ with q'a+q'cd+qa'(cd)' as don't care.
- Simplication yields $f_{h}=a+b q+e$.
- One literal less by changing the support of f_{h}.

Single-Vertex Optimization

```
SIMPLIFY_SV( G
    repeat {
        vx = selected vertex ;
        Compute the local don't care set DCx}\mathrm{ ;
        Optimize the function f}\mp@subsup{f}{x}{}\mathrm{ ;
    }until (no more reduction is possible)
}
```


Optimization and Perturbations ...

- Replace f_{x} by g_{x}.
- Perturbation $\delta_{x}=f_{x} \oplus g_{x}$.
- Condition for feasible replacement
- Perturbation bounded by local don't care set
- $\delta_{x} \subseteq \mathrm{DC}_{\text {ext }}+\mathrm{ODC}_{\mathrm{x}}$
- If f_{x} and g_{x} have the same support set $\mathrm{S}(\mathrm{x})$ then
- $\delta_{x} \subseteq \mathrm{DC}_{\text {ext }}+\mathrm{ODC}_{\mathrm{x}}+\mathrm{CDC}_{\mathrm{S}(\mathrm{x})}$
- If $S\left(g_{x}\right)$ includes network variables
- $\delta_{x} \subseteq \mathrm{DC}_{\text {ext }}+\mathrm{ODC}_{\mathrm{x}}+\mathrm{SDC}_{\mathrm{x}}$

$$
S D C_{x}=\sum_{v_{y} \in V: v_{y} \neq V_{x}} y \oplus f_{y}
$$

Optimization and Perturbations

- No external don't care set.
- Replace AND by wire: $\mathrm{g}_{\mathrm{x}}=\mathbf{a}$
- Analysis
- $\delta_{x}=f_{x} \oplus g_{x}=a b \oplus a=a b^{\prime}$.
- $\mathrm{ODC}_{\mathrm{x}}=\mathrm{y}^{\prime}=\mathrm{b}^{\prime}+\mathrm{c}^{\prime}$.
- $\delta_{\mathrm{x}}=\mathrm{ab} \mathrm{b}^{\prime} \subseteq \mathrm{DC}_{\mathrm{x}}=\mathrm{b}^{\prime}+\mathrm{c}^{\prime} \Rightarrow$ feasible!

Synthesis and Testability

- Testability
- Ease of testing a circuit.
- Assumptions
- Combinational circuit.
- Single or multiple stuck-at faults.
- Full testability
- Possible to generate test set for all faults.
- Synergy between synthesis and testing.
- Testable networks correlate to small-area networks.
- Don't care conditions play a major role.

Test for Stuck-at-Faults

- Net y stuck-at 0
- Input pattern that sets y to true.
- Observe output.
- Output of faulty circuit differs.
- $\left\{t \mid y(t)\right.$. ODC' $\left.{ }_{y}(t)=1\right\}$.
- Net y stuck-at 1
- Same, but set y to false.
- $\left\{t \mid y^{\prime}(t)\right.$. ODC $\left._{y}^{\prime}(t)=1\right\}$.
- Need controllability and observability.

Using Testing Methods for Synthesis

- Redundancy removal.
- Use ATPG to search for untestable faults.
- If stuck-at 0 on net \mathbf{y} is untestable
- Set y = 0 .
- Propagate constant.
- If stuck-at 1 on y is untestable
- Set $\mathrm{y}=1$.
- Propagate constant.

... Using Testing Methods for Synthesis

(b)

Redundancy Removal and Perturbation Analysis

- Stuck-at 0 on y .
- y set to 0 . Namely $g_{x}=\left.f_{x}\right|_{y=0}$.
- Perturbation

$$
\delta=f_{x} \oplus f_{x} l_{y=0}=y . \partial f_{x} / \partial y .
$$

- Perturbation is feasible \Leftrightarrow fault is untestable.
- $\delta=y . \partial f_{x} / \partial y \subseteq D_{x} \Leftrightarrow$ fault is untestable
- Making f_{x} prime and irredundant with respect to D_{x} guarantees that all single stuck-at faults in f_{x} are testable.

Synthesis for Testability

- Synthesize networks that are fully testable.
- Single stuck-at faults.
- Multiple stuck-at faults.
- Two-level forms
- Full testability for single stuck-at faults
- Prime and irredundant cover.
- Full testability for multiple stuck-at faults
- Prime and irredundant cover when
- Single-output function.
- No product term sharing.
- Each component is PI.

... Synthesis for Testability

- A complete single-stuck-at fault test set for a singleoutput sum-of-product circuit is a complete test set for all multiple stuck-at faults.
- Single stuck-at fault testability of multiple-level network does not imply multiple stuck-at fault testability.
- Fast extraction transformations are single stuck-at fault test-set preserving transformations.
- Algebraic transformations preserve multiple stuck-at fault testability but not single stuck-at fault testability
- Factorization
- Substitution (without complement)
- Cube and kernel extraction

Synthesis of Testable Multiple-Level Networks ...

- A logic network $\mathbf{G}_{\mathrm{n}}(\mathbf{V}, \mathrm{E})$, with local functions in sum of product form.
- Prime and irredundant (PI)
- No literal nor implicant of any local function can be dropped.
- Simultaneously prime and irredundant (SPI)
- No subset of literals and/or implicants can be dropped.
- A logic network is Pl if and only if
- its AND-OR implementation is fully testable for single stuckat faults.
- A logic network is SPI if and only if
- its AND-OR implementation is fully testable for multiple stuckat faults.

... Synthesis of Testable Multiple-Level

 Networks- Compute full local don't care sets.
- Make all local functions PI w.r. to don't care sets.
- Pitfall
- Don't cares change as functions change.
- Solution
- Iteration (Espresso-MLD).
- If iteration converges, network is fully testable.
- Flatten to two-level form.
- When possible -- no size explosion.
- Make SPI by disjoint logic minimization.
- Reconstruct multiple-level network
- Algebraic transformations preserve multifault testability.

Timing Issues in Multiple-Level Logic Optimization

- Timing optimization is crucial for achieving competitive logic design.
- Timing verification: Check that a circuit runs at speed
- Satisfies I/O delay constraints.
- Satisfies cycle-time constraints.
- Delay modeling.
- Critical paths.
- The false path problem.
- Algorithms for timing optimization.
- Minimum area subject to delay constraints.
- Minimum delay (subject to area constraints).

Delay Modeling

- Gate delay modeling
- Straightforward for bound networks.
- Approximations for unbound networks.
- Network delay modeling
- Compute signal propagation
- Topological methods.
- Logic/topological methods.
- Gate delay modeling for unbound networks
- Virtual gates: Logic expressions.
- Stage delay model: Unit delay per vertex.
- Refined models: Depending on size and fanout.

Network Delay Modeling ...

- For each vertex $\mathbf{v}_{\mathbf{i}}$.
- Propagation delay d_{i}.
- Data-ready time t_{i}.
- Denotes the time at which the data is ready at the output.
- Input data-ready times denote when inputs are available.
- Computed elsewhere by forward traversal

$$
t_{i}=d_{i}+\max _{j \mid\left(v_{j}, v_{i}\right) \in E} t_{j}
$$

- The maximum data-ready time occurring at an output vertex
- Corresponds to the longest propagation delay path
- Called topological critical path

... Network Delay Modeling ...

$$
\begin{aligned}
& t_{g}=3+0=3 \\
& t_{h}=8+3=11 \\
& t_{k}=10+3=13 \\
& t_{n}=5+10=15 \\
& t_{p}=2+\max \{15,3\}=17 \\
& t_{t}=3+\max \{13,17\}=20 \\
& t_{m}=1+\max \{3,11,20\}=21 \\
& t_{x}=2+21=23 \\
& t_{\mathrm{q}}=2+20=22 \\
& t_{y}=3+22=25
\end{aligned}
$$

- Assume $t_{a}=0$ and $t_{b}=10$.
- Propagation delays
- $d_{g}=3 ; d_{h}=8 ; d_{m}=1 ; d_{k}=10 ; d_{1}=3 ;$
- $\mathrm{d}_{\mathrm{n}}=5 ; \mathrm{d}_{\mathrm{p}}=2 ; \mathrm{d}_{\mathrm{q}}=2 ; \mathrm{d}_{\mathrm{x}}=2 ; \mathrm{d}_{\mathrm{y}}=3$;
- Maximum data-ready time is $\mathrm{t}_{\mathrm{y}}=25$
- Topological critical path: $\left(\mathrm{v}_{\mathrm{b}}, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{l}}, \mathrm{v}_{\mathrm{q}}, \mathrm{v}_{\mathrm{y}}\right)$.

... Network Delay Modeling ...

- For each vertex v_{i}.
- Required data-ready time \bar{t}_{i}.
- Specified at the primary outputs.
- Computed elsewhere by backward traversal

$$
\bar{t}_{i}=\min _{j \mid\left(v_{i}, v_{j}\right) \in E} \bar{t}_{j}-d_{j}
$$

- Slack s_{i}.
- Difference between required and actual data-ready times

$$
s_{i}=\bar{t}_{i}-t_{i}
$$

Network Delay Modeling

- Required data-ready times
- $\overline{\mathrm{t}}_{\mathrm{x}}=25$ and $\overline{\mathrm{t}}_{\mathrm{y}}=25$.

$$
\begin{aligned}
& \text { Required Times \& Slack: } \\
& s_{x}=2 ; s_{y}=0 \\
& t_{m}=25-2=23 ; s_{m}=23-21=2 \\
& t_{q}=25-3=22 ; s_{q}=22-22=0 \\
& \frac{t_{1}}{}=\min \{23-1,22-2\}=20 ; s_{p}=0 \\
& t_{h}=23-1=22 ; s_{h}=22-11=11 \\
& \hline t_{k}=20-3=17 ; s_{k}=17-13=4 \\
& t_{t_{b}}=20-3=17 ; s_{p}=17-17=0 \\
& \frac{t_{n}}{}=17-2=15 ; s_{n}=15-15=0 \\
& t_{b}=15-5=10 ; s_{b}=10-10=0 \\
& t_{g}=\min \{22-8 ; 17-10 ; 17-2\}=7 ; s_{g}=4 \\
& t_{a}=7-3=4 ; s_{a}=4-0=4
\end{aligned}
$$

Propagation Delays :

$$
\begin{aligned}
& d_{\mathrm{g}}=3 ; \mathrm{d}_{\mathrm{h}}=8 ; \mathrm{d}_{\mathrm{m}}=1 ; \mathrm{d}_{\mathrm{k}}=10 ; \\
& \mathrm{d}_{\mathrm{l}}=3 ; \mathrm{d}_{\mathrm{n}}=5 ; \mathrm{d}_{\mathrm{p}}=2 ; \mathrm{d}_{\mathrm{q}}=2 ; \\
& \mathrm{d}_{\mathrm{x}}=2 ; \mathrm{d}_{\mathrm{y}}=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { Data-Ready Times: } \\
& t_{g}=3+0=3 \\
& t_{h}=8+3=11 \\
& t_{k}=10+3=13 \\
& t_{n}=5+10=15 \\
& t_{p}=2+\max \{15,3\}=17 \\
& t_{t}=3+\max \{13,17\}=20 \\
& t_{m}=1+\max \{3,11,20\}=21 \\
& t_{x}=2+21=23 \\
& t_{q}=2+20=22 \\
& t_{y}=3+22=25
\end{aligned}
$$

Topological Critical Path ...

- Assume topologic computation of
- Data-ready by forward traversal.
- Required data-ready by backward traversal.
- Topological critical path
- Input/output path with zero slacks.
- Any increase in the vertex propagation delay affects the output data-ready time.
- A topological critical path may be false.
- No event can propagate along that path.
- False path does not affect performance

... Topological Critical Path

Topological critical path: $\left(\mathrm{v}_{\mathrm{b}}, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{l}}, \mathrm{v}_{\mathrm{a}}, \mathrm{v}_{\mathrm{y}}\right)$.

False Path Example

- All gates have unit delay.
- All inputs ready at time 0 .
- Longest topological path: ($\mathbf{v}_{\mathrm{a}}, \mathbf{v}_{\mathbf{c}}, \mathbf{v}_{\mathrm{d}}, \mathbf{v}_{\mathbf{y}}, \mathbf{v}_{\mathbf{z}}$).
- Path delay: 4 units.
- False path: event cannot propagate through it
- Critical true path: $\left(\mathbf{v}_{\mathrm{a}}, \mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{d}}, \mathbf{v}_{\mathrm{y}}\right)$.
- Path delay: 3 units.

Algorithms for Delay Minimization ...

- Alternate
- Critical path computation.
- Logic transformation on critical vertices.
- Consider quasi critical paths
- Paths with near-critical delay.
- Small slacks.
- Small difference between critical paths and largest delay of a non-critical path leads to smaller gain in speeding up critical paths only.

... Algorithms for Delay Minimization

- Most critical delay optimization algorithms have the following framework:

```
REDUCE_DELAY( Gn}(V,E),\epsilon)
    repeat {
    Compute critical paths and critical delay }\tau\mathrm{ ;
    Set output required data-ready times to }\tau\mathrm{ ;
    Compute slacks;
    U = vertex subset with slack lower than \epsilon;
    W = select vertices in U;
    Apply transformations to vertices W;
    }until (no transformation can reduce \tau );
}
```


Transformations for Delay Reduction ...

- Reduce propagation delay.
- Reduce dependencies from critical inputs.
- Favorable transformation
- Reduces local data-ready time.
- Any data-ready time increase at other vertices is bounded by the local slack.
- Example
- Unit gate delay.
- Transformation: Elimination.
- Always favorable.
- Obtain several area/delay trade-off points.

... Transformations for Delay Reduction

- W is a minimum-weight separation set from U.
- Iteration 1
- Values of $\mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{q}}, \mathrm{v}_{\mathrm{u}}=-1$
- Value of $\mathrm{v}_{\mathrm{s}}=0$.
- Eliminate $\mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{q}}$. (No literal increase.)
- Iteration 2
- Value of $v_{s}=2$, value of $v_{u}=-1$.
- Eliminate v_{u}. (No literal increase.)
- Iteration 3
- Eliminate $\mathrm{v}_{\mathrm{r}}, \mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{t}}$. (Literals
 increase.)

More Refined Delay Models

- Propagation delay grows with the size of the expression and with fanout load.
- Elimination
- Reduces one stage.
- Yields more complex and slower gates.
- May slow other paths.

- Substitution
- Adds one dependency.
- Loads and slows a gate.
- May slow other paths.
- Useful if arrival time of critical input is larger than other inputs

Speed-Up Algorithm ...

- Decompose network into two-input NAND gates and inverters.
- Determine a subnetwork W of depth d.
- Collapse subnetwork by elimination.
- Duplicate input vertices with successors outside W
- Record area penalty.
- Resynthesize W by timing-driven decomposition.
- Heuristics
- Choice of W.
- Monitor area penalty and potential speed-up.

... Speed-Up Algorithm

- Example
- NAND delay =2.
- INVERTER delay=1.
- All input data-ready=0 except $\mathrm{t}_{\mathrm{d}}=3$.
- Critical Path: from V_{d} to $\mathrm{V}_{\mathrm{x}}(11$ delay units)
- Assume V_{x} is selected and $\mathrm{d}=5$.
- New critical path: 8 delay units.

