COE 561 Digital System Design & Synthesis Multiple-Level Logic Synthesis

Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

Outline ...

Representations.

Taxonomy of optimization methods.

- Goals: area/delay.
- Algorithms: Algebraic/Boolean.
- Rule-based methods.

Examples of transformations.

Algebraic model.

- Algebraic division.
- Algebraic substitution.
- Single-cube extraction.
- Multiple-cube extraction.
- Decomposition.
- Factorization.
- Fast extraction.

... Outline

- External and internal *don't care* sets.
 - Controllability don't care sets.
 - Observability don't care sets.
- Boolean simplification and substitution.
- Testability properties of multiple-level logic.
- Synthesis for testability.
- Network delay modeling.
- Algorithms for delay minimization.
- Transformations for delay reduction.

Motivation

- Combinational logic circuits very often implemented as multiple-level networks of logic gates.
- Provides several degrees of freedom in logic design
 - Exploited in optimizing area and delay.
 - Different timing requirements on input/output paths.
- Multiple-level networks viewed as interconnection of single-output gates
 - Single type of gate (e.g. NANDs or NORs).
 - Instances of a cell library.
 - Macro cells.
- Multilevel optimization is divided into two tasks
 - Optimization neglecting implementation constraints assuming loose models of area and delay.
 - Constraints on the usable gates are taken into account during optimization.

Circuit Modeling

Logic network

- Interconnection of logic functions.
- Hybrid structural/behavioral model.

Bound (mapped) networks

- Interconnection of logic gates.
- Structural model.

Example of Bound Network

Example of a Logic Network

p = ce + de= a + br = p + a's = r + b't = ac + ad + bc + bd + eu = q'c + qc' + qcv = a'd + bd + c'd + ae'w= vsxtU \boldsymbol{z} -u

Network Optimization

Two-level logic

- Area and delay proportional to cover size.
- Achieving minimum (or irredundant) covers corresponds to optimizing area and speed.
- Achieving irredundant cover corresponds to maximizing testability.

Multiple-level logic

- Minimal-area implementations do not correspond in general to minimum-delay implementations and vice versa.
- Minimize area (power) estimate
 - subject to delay constraints.
- Minimize maximum delay
 - subject to area (power) constraints.
- Minimize power consumption.
 - subject to delay constraints.
- Maximize testability.

Estimation

Area

- Number of literals
 - Corresponds to number of polysilicon strips (transistors)
- Number of functions/gates.

Delay

- Number of stages (unit delay per stage).
- Refined gate delay models (relating delay to function complexity and fanout).
- Sensitizable paths (detection of false paths).
- Wiring delays estimated using statistical models.

Problem Analysis

Multiple-level optimization is hard.

Exact methods

- Exponential complexity.
- Impractical.

Approximate methods

- Heuristic algorithms.
- Rule-based methods.

Strategies for optimization

- Improve circuit step by step based on circuit transformations.
- Preserve network behavior.
- Methods differ in
 - Types of transformations.
 - Selection and order of transformations.

Elimination

- Eliminate one function from the network.
- Perform variable substitution.
- Example
 - s = r +b'; r = p+a'
 - \Rightarrow s = p+a'+b'.

Decomposition

- Break one function into smaller ones.
- Introduce new vertices in the network.
- Example
 - $\mathbf{v} = \mathbf{a}'\mathbf{d} + \mathbf{b}\mathbf{d} + \mathbf{c}'\mathbf{d} + \mathbf{a}\mathbf{e}'.$
 - \Rightarrow j = a'+b+c'; v = jd+ae'

Factoring

- Factoring is the process of deriving a factored form from a sum-of-products form of a function.
- Factoring is like decomposition except that no additional nodes are created.

Example

- F = abc+abd+a'b'c+a'b'd+ab'e+ab'f+a'be+a'bf (24 literals)
- After factorization
 - F=(ab+a'b')(c+d) + (ab'+a'b)(e+f) (12 literals)

Extraction

- Find a common sub-expression of two (or more) expressions.
- Extract sub-expression as new function.
- Introduce new vertex in the network.
- Example
 - p = ce+de; t = ac+ad+bc+bd+e; (13 literals)
 - p = (c+d)e; t = (c+d)(a+b)+e; (Factoring:8 literals)

• \Rightarrow k = c+d; p = ke; t = ka+ kb +e; (Extraction:9 literals)

... Extraction

Simplification

Simplify a local function (using Espresso).

- Example
 - u = q'c+qc' +qc;
 - \Rightarrow u = q +c;

Substitution

- Simplify a local function by using an additional input that was not previously in its support set.
- Example
 - t = ka+kb+e.
 - \Rightarrow t = kq +e; because q = a+b.

Example: Sequence of Transformations

Original Network (33 lit.) Transformed Network (20 lit.)

p = ce + deq = a + br = p + a's = r + b't = ac + ad + bc + bd + eu = q'c + qc' + qcv = a'd + bd + c'd + ae'w v = a'd + bd +c'd +ae p =ce+de r = p + as = r + b t = ac + ad + bc + bd + e У z q = a + bu = q'c + qc' + qc

$$j = a' + b + c'$$

$$k = c + d$$

$$q = a + b$$

$$s = ke + a' + b'$$

$$t = kq + e$$

$$u = q + c$$

$$v = jd + ae'$$

Optimization Approaches

Algorithmic approach

- Define an algorithm for each transformation type.
- Algorithm is an operator on the network.
- Each operator has well-defined properties
 - Heuristic methods still used.
 - Weak optimality properties.
- Sequence of operators
 - Defined by scripts.
 - Based on experience.

Rule-based approach (IBM Logic Synthesis System)

- Rule-data base
 - Set of pattern pairs.
- Pattern replacement driven by rules.

Elimination Algorithm ...

- Set a threshold k (usually 0).
- Examine all expressions (vertices) and compute their values.
- Vertex value = n*l n l (l is number of literals; n is number of times vertex variable appears in network)
- Eliminate an expression (vertex) if its value (i.e. the increase in literals) does not exceed the threshold.

```
ELIMINATE( G_n(V, E), k){

repeat {

v_x =  selected vertex with value < k;

if (v_x = \emptyset) return;

replace x by f_x in the network;

}
```

... Elimination Algorithm

Example

- q = a + b
- s = ce + de + a' + b'
- t = ac + ad + bc + bd + e
- u = q'c + qc' + qc
- v = a'd + bd + c'd + ae'
- Value of vertex q=n*l-n-l=3*2-3-2=1
 - It will increase number of literals => not eliminated
- Assume u is simplified to u=c+q
 - Value of vertex q=n*I_n_I=1*2-1-2=-1
 - It will decrease the number of literals by 1 => eliminated

MIS/SIS Rugged Script

- sweep; eliminate -1
- simplify -m nocomp
- eliminate -1
- sweep; eliminate 5
- simplify -m nocomp
- resub -a
- **f**X
- resub -a; sweep
- eliminate -1; sweep
- full-simplify -m nocomp

Sweep eliminates singleinput Vertices and those with a constant function.

resub –a performs algebraic substitution of all vertex pairs

<mark>fx</mark> extracts double-cube and single-cube expression.

Boolean and Algebraic Methods ...

Boolean methods

- Exploit Boolean properties of logic functions.
- Use don't care conditions induced by interconnections.
- Complex at times.

Algebraic methods

- View functions as polynomials.
- Exploit properties of polynomial algebra.
- Simpler, faster but weaker.

... Boolean and Algebraic Methods

Boolean substitution

- h = a+bcd+e; q = a+cd
- → h = a+bq +e
- Because a+bq+e = a+b(a+cd)+e = a+bcd+e;
 - Relies on Boolean property b+1=1

Algebraic substitution

- t = ka+kb+e; q=a+b
- \Rightarrow t = kq +e

 Because k(a+b) = ka+kb; holds regardless of any assumption of Boolean algebra.

The Algebraic Model ...

Represents local Boolean functions by algebraic expressions

 Multilinear polynomial (i.e. multi-variable with degree 1) over set of variables with unit coefficients.

 Algebraic transformations neglect specific features of Boolean algebra

- Only one distributive law applies
 - a . (b+c) = ab+ac
 - a + (b . c) ≠ (a+b).(a+c)
- Complements are not defined
 - Cannot apply some properties like absorption, idempotence, involution and Demorgan's, a+a'=1 and a.a'=0
- Symmetric distribution laws.
- Don't care sets are not used.

... The Algebraic Model

Algebraic expressions obtained by

- Modeling functions in sum of products form.
- Make them minimal with respect to single-cube containment.
- Algebraic operations restricted to expressions with disjoint support
 - Preserve correspondence of result with sum-of-product forms minimal w.r.t single-cube containment.

Example

- (a+b)(c+d)=ac+ad+bc+bd; minimal w.r.t SCC.
- (a+b)(a+c)= aa+ac+ab+bc; non-minimal.
- (a+b)(a'+c)=aa'+ac+a'b+bc; non-minimal.

Algebraic Division ...

- Given two algebraic expressions f_{dividend} and f_{divisor}, we say that f_{divisor} is an Algebraic Divisor of f_{dividend}, f_{quotient} = f_{dividend}/f_{divisor} when
 - f_{dividend} = f_{divisor} . f_{quotient} + f_{remainder}
 - f_{divisor} . $f_{\text{quotient}} \neq 0$
 - and the support of f_{divisor} and f_{quotient} is disjoint.

Example

- Let f_{dividend} = ac+ad+bc+bd+e and f_{divisor} = a+b
 - Then $f_{quotient} = c+d$ $f_{remainder} = e$
 - Because (a+b) (c+d)+e = f_{dividend}
 - and {a,b} ∩ {c,d} = Ø
- Non-algebraic division
 - Let $f_i = a+bc$ and $f_i = a+b$.
 - Let $f_k = a+c$. Then, $f_i = f_j$. $f_k = (a+b)(a+c) = f_i$
 - but {a,b} ∩ {a,c} ≠ Ø

... Algebraic Division

An algebraic divisor is called a factor when the remainder is void.

a+b is a factor of ac+ad+bc+bd

An expression is said to be cube free when it cannot be factored by a cube.

- a+b is cube free
- ac+ad+bc+bd is cube free
- ac+ad is non-cube free
- abc is non-cube free

Algebraic Division Algorithm ...

 $A = \{C_j^A, j = 1, 2, ... l\} set of cubes$ (monomials) of the dividend

 $B = \{C_j^B, j = 1, 2, ..., n\} set of cubes$ (monomials) of the divisor

- Quotient Q and remainder R are sum of cubes (monomials).
- Intersection is largest subset of common monomials.

 $ALGEBRAIC_DIVISION(A, B)$ { for (i = 1 to n) { $D = \{C_i^A \text{ such that } C_i^A \supseteq C_i^B\};$ if $(D = \emptyset)$ return (\emptyset, A) ; $D_i = D$ with var. in $sup(C_i^B)$ dropped if i = 1 $Q = D_i;$ else $Q = Q \cap D_i;$ $R = A - Q \times B;$ return(Q, R);

... Algebraic Division Algorithm ...

Example

- f_{dividend} = ac+ad+bc+bd+e;
- f_{divisor} = a+b;
- A = {ac, ad, bc, bd, e} and B = {a, b}.

• i = 1

- $C_{1}^{B} = a, D = \{ac, ad\} and D_{1} = \{c, d\}.$
- Q = {c, d}.

• i = 2 = n

- C^B₂ = b, D = {bc, bd} and D₂ = {c, d}.
- Then $Q = \{c, d\} \cap \{c, d\} = \{c, d\}$.

Result

- Q = {c, d} and R = {e}.
- $f_{quotient} = c+d$ and $f_{remainder} = e$.

... Algebraic Division Algorithm

Example

- Let f_{dividend} = axc+axd+bc+bxd+e; f_{divisor} = ax+b
- i=1, C^B₁ = ax, D = {axc, axd} and D₁ = {c, d}; Q={c, d}
- i = 2 = n; $C_2^B = b$, $D = \{bc, bxd\}$ and $D_2 = \{c, xd\}$.
- Then Q = $\{c, d\} \cap \{c, xd\} = \{c\}.$
- f_{quotient} = c and f_{remainder} = axd+bxd+e.

Theorem: Given algebraic expressions f_i and f_j, then f_i/f_j is empty when

- f_i contains a variable not in f_i.
- f_j contains a cube whose support is not contained in that of any cube of f_i.
- f_i contains more cubes than f_i.
- The count of any variable in f_i larger than in f_i.

Substitution

- Substitution replaces a subexpression by a variable associated with a vertex of the logic network.
- Consider expression pairs.
- Apply division (in any order).
- If quotient is not void
 - Evaluate area/delay gain
 - Substitute f_{dividend} by j.f_{quotient} + f_{remainder} where j = f_{divisor}
- Use filters to reduce divisions.

Theorem

• Given two algebraic expressions f_i and f_j , $f_i/f_j = \emptyset$ if there is a path from v_i to v_j in the logic network.

Substitution algorithm

$$\begin{array}{l} SUBSTITUTE(\ G_n(V,E)\) \\ \mbox{for } (i=1,2,\ldots,|V|) \ \\ \mbox{for } (j=1,2,\ldots,|V|; j\neq i) \ \\ A=\ set \ of \ cubes \ of \ f_i; \\ B=\ set \ of \ cubes \ of \ f_j; \\ \mbox{if } (A,B\ pass \ the \ filter \ test\) \ \\ (Q,R) = ALGEBRAIC_DIVISION(A,B) \\ \mbox{if } (Q\neq \emptyset) \ \\ f_{quotient} = \ sum \ of \ cubes \ of \ Q; \\ f_{remainder} = \ sum \ of \ cubes \ of \ R; \\ \mbox{if } (\ substitution \ is \ favorable) \\ f_i = j \cdot f_{quotient} + f_{remainder}; \\ \\ \end{array} \right\}$$

Extraction

Search for common sub-expressions

- Single-cube extraction: monomial.
- Multiple-cube (kernel) extraction: polynomial
- Search for appropriate divisors.
- Cube-free expression
 - Cannot be factored by a cube.

Kernel of an expression

- Cube-free quotient of the expression divided by a cube (called co-kernel).
- Kernel set K(f) of an expression
 - Set of kernels.

Kernel Example

- f_x = ace+bce+de+g
- Divide f_x by a. Get ce. Not cube free.
- Divide f_x by b. Get ce. Not cube free.
- Divide f_x by c. Get ae+be. Not cube free.
- Divide f_x by ce. Get a+b. Cube free. Kernel!
- Divide f_x by d. Get e. Not cube free.
- Divide f_x by e. Get ac+bc+d. Cube free. Kernel!
- Divide f_x by g. Get 1. Not cube free.
- Expression f_x is a kernel of itself because cube free.
- K(f_x) = {(a+b); (ac+bc+d); (ace+bce+de+g)}.

Theorem (Brayton and McMullen)

Two expressions f_a and f_b have a common multiplecube divisor f_d if and only if

• there exist kernels $k_a \in K(f_a)$ and $k_b \in K(f_b)$ s.t. f_d is the sum of 2 (or more) cubes in $k_a \cap k_b$ (intersection is largest subset of common monomials)

Consequence

If kernel intersection is void, then the search for common subexpression can be dropped.

Example

- $f_v = ad+bd+cde+ge;$ $f_{z} = abc;$
- $f_x = ace+bce+de+g;$ $K(f_x) = \{(a+b); (ac+bc+d); (ace+bce+de+g)\}$ $K(f_v) = \{(a+b+ce); (cd+g); (ad+bd+cde+ge)\}$ The kernel set of f_{z} is empty.

Select intersection (a+b)

 $f_w = a+b$ $f_x = wce+de+g$ $f_v = wd+cde+ge$ $f_{z} = abc$

Kernel Set Computation ...

Naive method

- Divide function by elements in power set of its support set.
- Weed out non cube-free quotients.

Smart way

- Use recursion
 - Kernels of kernels are kernels of original expression.
- Exploit commutativity of multiplication.
 - Kernels with co-kernels *ab* and *ba* are the same

A kernel has level 0 if it has no kernel except itself.

- A kernel is of level n if it has
 - at least one kernel of level n-1
 - no kernels of level n or greater except itself
...Kernel Set Computation

Y = adf + aef + bdf + bef + cdf + cef + g = (a+b+c)(d+e) f + g

Kernels	Co-Kernels	Level
(a+b+c)	df, ef	0
(d+e)	af, bf, cf	0
(a+b+c)(d+e)	f	1
(a+b+c)(d+e)f+g	1	2

Recursive Kernel Computation: Simple Algorithm

```
R_{KERNELS}(f)
    K = \emptyset:
    foreach variable x \in sup(f) {
       if(|CUBES(f, x)| > 2) {
          f^C = largest cube containing x,
            s.t. CUBES(f, C) = CUBES(f, x);
          K = K \cup R_{KERNELS}(f/f^{C});
       }
    K = K \cup f:
    return(K);
}
CUBES(f,C){
    return the cubes of f whose support \supset C;
```

• *f* is assumed to be cube-free

If not divide it by its largest cube factor

Recursive Kernel Computation Example

f = ace+bce+de+g

- Literals a or b. No action required.
- Literal c. Select cube ce:
 - Recursive call with argument (ace+bce+de+g)/ce =a+b;
 - No additional kernels.
 - Adds a+b to the kernel set at the last step.
- Literal d. No action required.
- Literal e. Select cube e:
 - Recursive call with argument ac+bc+d
 - Kernel a+b is rediscovered and added.
 - Adds ac + bc + d to the kernel set at the last step.
- Literal g. No action required.
- Adds ace+bce+de+g to the kernel set.
- K = {(ace+bce+de+g); (a+b); (ac+bc+d); (a+b)}.

Analysis

Some computation may be redundant

- Example
 - Divide by a and then by b.
 - Divide by b and then by a.
- Obtain duplicate kernels.

Improvement

- Keep a pointer to literals used so far denoted by j.
- *J* initially set to 1.
- Avoids generation of co-kernels already calculated
- $Sup(f) = \{x_1, x_2, \dots, x_n\}$ (arranged in lexicographic order)
- f is assumed to be cube-free
 - If not divide it by its largest cube factor
- Faster algorithm

Recursive Kernel Computation

```
KERNELS(f, j){
   K = \emptyset;
   for i = j to n {
      if(|CUBES(f, x_i)| \ge 2) {
          f^C = largest cube containing x,
            s.t. CUBES(f, C) = CUBES(f, x_i);
          if (x_k \notin C \ \forall k < i)
              K = K \cup KERNELS(f/f^C, i+1);
   K = K \cup f;
   return(K);
```

Recursive Kernel Computation Examples...

- f = ace+bce+de+g; sup(f)={a, b, c, d, e, g}
- Literals a or b. No action required.
- Literal c. Select cube ce:
 - Recursive call with arguments: (ace+bce+de+g)/ce =a+b; pointer j = 3+1=4.
 - Call considers variables {d, e, g}. No kernel.
 - Adds a+b to the kernel set at the last step.
- Literal d. No action required.
- Literal e. Select cube e:
 - Recursive call with arguments: ac+bc+d and pointer j = 5+1=6.
 - Call considers variable {g}. No kernel.
 - Adds ac+bc+d to the kernel set at the last step.
- Literal g. No action required.
- Adds ace+bce+de+g to the kernel set.
- K = {(ace+bce+de+g); (ac+bc+d); (a+b)}.

Matrix Representation of Kernels ...

Boolean matrix

 Rows: cubes. Columns: variables (in both true and complement form as needed).

Rectangle (R, C)

Subset of rows and columns with all entries equal to 1.

Prime rectangle

Rectangle not inside any other rectangle.

Co-rectangle (R, C') of a rectangle (R, C)

C' are the columns not in C.

A co-kernel corresponds to a prime rectangle with at least two rows.

... Matrix Representation of Kernels ...

- $f_x = ace+bce+de+g$
- Rectangle (prime): ({1, 2}, {3, 5})
 - Co-kernel ce.
- Co-rectangle: ({1, 2}, {1, 2, 4, 6}).
 - Kernel a+b.

	var	a	b	c	d	e	g
cube	$R \backslash C$	1	2	3	4	5	6
ace	1	1	0	1	0	1	0
bce	2	0	1	1	0	1	0
de	3	0	0	0	1	1	0
g	4	0	0	0	0	0	1

... Matrix Representation of Kernels ...

- Theorem: K is a kernel of f iff it is an expression corresponding to the co-rectangle of a prime rectangle of f.
- The set of all kernels of a logic expression are in 1-1 correspondence with the set of all co-rectangles of prime rectangles of the corresponding Boolean matrix.
- A level-0 kernel is the co-rectangle of a prime rectangle of maximal width.
- A prime rectangle of maximum height corresponds to a kernel of maximal level.

... Matrix Representation of Kernels

Example

F = abc + abd + ae

		1	2	3	4	5
	Cube	<u>a</u>	b	С	d	e
1	abc	1	1	1		
2	abd	1	1		1	
3	ae	1				1

- Prime Rectangles & Co-Rectangles
 - PR:{(1,2),(1,2)}: corresponding to co-kernel ab
 - CR:{(1,2),(3,4,5)}: corresponding to kernel (c+d)
 - PR:{(1,2,3),(1)}: corresponding to co-kernel a
 - CR:{(1,2,3),(2,3,4,5)}: corresponding to kernel (bc+bd+e)

Single-Cube Extraction ...

Form auxiliary function

Sum of all product terms of all functions.

Form matrix representation

- A rectangle with at least two rows represents a common cube.
- Rectangles with at least two columns may result in savings.
- Best choice is a prime rectangle.

Use function ID for cubes

Cube intersection from different functions.

... Single-Cube Extraction

Expressions

- f_x = ace+bce+de+g
- f_s = cde+b
- Auxiliary function
 - faux = ace+bce+de+g + cde+b

Matrix:

- Prime rectangle: ({1, 2, 5}, {3, 5})
- Extract cube ce.

Single-Cube Extraction Algorithm

 $\begin{array}{l} CUBE_EXTRACT(\ G_n(V,E)\) \{ \\ \mbox{ while (some favorable common cube exist) } \{ \\ C = select common cube to extract; \\ Generate new label l; \\ Add to network v_l and f_l = f^C; \\ Replace all functions f, where f_l is a divisor, \\ by l \cdot f_{quotient} + f_{remainder}; \\ \end{array} \right\}$

Extraction of an I-variable cube with multiplicity n saves (n I – n – I) literals

Multiple-Cube Extraction ...

We need a kernel/cube matrix.

Relabeling

- Cubes by new variables.
- Kernels by cubes.
- Form auxiliary function
 - Sum of all kernels.

Extend cube intersection algorithm.

... Multiple-Cube Extraction

f_p = ace+bce. • $K(f_p) = \{(a+b)\}.$ f_q = ae+be+d. K(f_a) = {(a+b), (ae +be+d)}. • $f_r = ae+be+de$. • $K(f_r) = \{(a+b+d)\}.$ Relabeling • $x_a = a; x_b = b; x_{ae} = ae; x_{be} = be; x_d = d;$ • $K(f_p) = \{(x_a, x_b)\}$ • $K(f_q) = \{(x_a, x_b); (x_{ae}, x_{be}, x_d)\}$. $\frac{x_a x_b}{x_a x_b}$ Cube $f_{aux} = x_a x_b + x_a x_b + x_{ae} x_{be} x_d + x_a x_b x_d.$ $X_a X_b X_d$ **Common cube:** $x_a x_b$. • $x_a x_b$ corresponds to kernel intersection a+b. Extract a+b from f_p, f_a and f_r.

Kernel Extraction Algorithm ...

N indicates the rate at which kernels are recomputed K indicates the maximum level of the kernel computed

... Kernel Extraction Algorithm

Example

- F1= ac+bc;
- F2= ad+bd+cd;
- F3= ab+ac;

Kernels: {(a+b)} Kernels: {(a+b+c)} Kernels: {(b+c)}

After extracting kernel (a+b), kernel (b+c) is no longer a common kernel. This is why kernel intersections need to be recomputed.

Tradeoffs in Kernel Extraction

k	n	time	no. of literals in factored form	no. of kernels in first iteration	no. of intersections in first iteration	
	1	181.0	760	209		
	_2	93.1	767		23	
	5	45.9	759			
	10	10 26.8 773				
	1	302.8	754			
999	2	172.0	754	507	106	
	5	98.0	766	397	190	
	10	72.3	773			

Area Value of a Kernel ...

- Let n be the number of times a kernel is used
- Let I be the number of literals in a kernel and c be the number of cubes in a kernel
- Let CK_i be the co-kernel for kernel i
- Initial cost = $\sum_{i=1 \text{ to } n} (|CK_i|^*c+I) = nI + c \sum_{i=1 \text{ to } n} |CK_i|$
- Resulting cost = $I+\sum_{i=1 \text{ to } n} (|CK_i|+1) = n+I+\sum_{i=1 \text{ to } n} |CK_i|$
- Value of a kernel = initial cost resulting cost
 - = {nI + c * $\sum_{i=1 \text{ to } n} |CK_i|$ } {n+I+ $\sum_{i=1 \text{ to } n} |CK_i|$ }
 - = $nl n l + (c-1) * \sum_{i=1 \text{ to } n} |CK_i|$

... Area Value of a Kernel

Example:

- X = acd + bcd = (a+b)cd
- Y = adef + bdef = (a+b)def
- Initial cost = 14 literals

After Kernel extraction:

- Z=a+b
- X=Zcd
- Y=Zdef

Resulting cost = 9 literals

• Savings = 14 - 9 = 5 literals

Value of kernel = nl – n –l + (c-1) * $\sum_{i=1 \text{ to } n} |CK_i|$

=2*2-2-2+(2-1)*(2+3)=5 literals

(6 literals) (8 lietrals)

- (2 literals)
- (3 literals)
- (4 lietrals)

Issues in Common Cube and Multiple-Cube Extraction

- Greedy approach can be applied in common cube and multiple-cube extraction
 - Rectangle selection
 - Matrix update

Greedy approach may be myopic

- Local gain of one extraction considered at a time
- Non-prime rectangles can contribute to lower cost covers than prime rectangles

Quine's theorem cannot be applied to rectangles

Decomposition ...

Goals of decomposition

- Reduce the size of expressions to that typical of library cells.
- Small-sized expressions more likely to be divisors of other expressions.
- Different decomposition techniques exist.

Algebraic-division-based decomposition

- Give an expression f with f_{divisor} as one of its divisors.
- Associate a new variable, say t, with the divisor.
- Reduce original expression to f= t . f_{quotient} + f_{remainder} and t= f_{divisor}.
- Apply decomposition recursively to the divisor, quotient and remainder.

Important issue is choice of divisor

- A kernel.
- A level-0 kernel.
- Evaluate all kernels and select most promising one.

... Decomposition

- $f_x = ace+bce+de+g$
- Select kernel ac+bc+d.
- Decompose: $f_x = te+g$; $f_t = ac+bc+d$;
- Recur on the divisor f_t
 - Select kernel a+b
 - Decompose: f_t = sc+d; f_s = a+b;

K is a threshold that determines the size of nodes to be decomposed.

Factorization Algorithm

FACTOR(f)

If (the number of literals in f is one) return f
K =choose_Divisor(f)
(h, r) = Divide(f, k)
Return (FACTOR(k) FACTOR(h) + FACTOR(r))

Quick factoring: divisor restricted to first level-0 kernel found

- Fast and effective
- Used for area and delay estimation
- Good factoring: best kernel divisor is chosen
- Example: f = ab + ac + bd + ce + cg
 - Quick factoring: f = a (b+c) + c (e+g) + bd (8 literals)
 - Good factoring: f = c (a+e+g) + b(a+d)

(7 literals)

One-Level-0-Kernel

One-Level-0-Kernel(f)

}

```
 \begin{array}{l} \mbox{If (|f| \leq 1) return 0} \\ \mbox{If (L = Literal_Count(f) \leq 1) return f} \\ \mbox{For (i=1; i \leq n; i++)} \\ \mbox{If (L(i) > 1)} \\ \mbox{C= largest cube containing i s.t. CUBES(f,C)=CUBES(f,i)} \\ \mbox{return One-Level-0-Kernel(f/f^C)} \end{array}
```

Literal_Count returns a vector of literal counts for each literal.

- If all counts are ≤1 then f is a level-0 kernel
- The first literal with a count greater than one is chosen.

Fast Extraction (FX)

Very efficient extraction method

- Based on extraction of double-cube divisors along with their complements and,
- Single-cube divisors with two literals.
- Number of divisors in polynomial domain.
- Preserves single stuck-at fault testability.
- [Rajski and Vasudevamurthy 1992].
- Double-cube divisors are cube-free multiple-cube divisors having exactly two cubes.

The set of double-cube divisors of a function f, denoted D(f) = {d | d= {c_i \ (c_i ∩ c_i), c_i \ (c_i ∩ c_i) } } for i,j=1,..n, i≠j

- n is number of cubes in f.
- $(c_i \cap c_i)$ is called the base of a double-cube divisor.
- Empty base is allowed.

.... Fast Extraction (FX)

- Example: f = ade + ag + bcde +bcg.
- Double-cube divisors and their bases:

Double-cube divisors	Base
de+g	a, bc
a+bc	g, de
ade+bcg	{ }
ag+bcde	{}

- A subset of double-cube divisors is represented by D_{x,v,s}
 - x is number of literals in first cube
 - y is number of literals in second cube
 - s is number of variables in support of D

A subset of single-cube divisors is denoted by S_k where k is number of literals in single-cube divisor.

Properties of Double-Cube and Single-Cube Divisors

Example:

- $xy+y'zp \in D_{2,3,4}$ • $ab \in S_2$
- D_{1,1,1} and D_{1,2,2} are null set.
- For any $d \in D_{1,1,2}$, $d' \in S_2$.
- For any $d \in D_{1,2,3}$, $d' \notin D$.
- For any $d \in D_{2,2,2}$, d is either XOR or XNOR and $d' \in D_{2,2,2}$.
- For any $d \in D_{2,2,3}$, $d' \in D_{2,2,3}$.
- For any $d \in D_{2,2,4}$, $d' \notin D$.

Extraction of Double-cube Divisor along with its Complement

- Theorem: Let f and g be two expressions. Then, f has neither a complement double-cube divisor nor a complement single-cube divisor in g if
 - $\stackrel{\bullet}{} d_i \neq s_j' \text{ for every } d_i \in D_{1,1,2} \left(f \right)$, $s_j \in S_2(g)$
 - $d_i \neq s_j$ ' for every $d_i \in D_{1,1,2}(g)$, $s_j \in S_2(f)$
 - $d_i \neq d_j$ ' for every $d_i \in D_{xor}(f)$, $d_j \in D_{xnor}(g)$
 - $d_{i} \neq d_{j}$ ' for every $d_{i} \in D_{xnor}(f)$, $d_{j} \in D_{xor}(g)$
 - $d_i \neq d_j$ ' for every $d_i \in D_{2,2,3}(f)$, $d_j \in D_{2,2,3}(g)$

Weights of Double-cube Divisors and Single-Cube Divisors

- Divisor weight represents literal savings.
- Weight of a double-cube divisor $d \in D_{x,y,s}$ is

 $w(d) = (p-1)(x+y) - p + \sum_{i=1 \text{ to } p} |b_i| + C$

- p is the number of times double-cube divisor is used
 - Includes complements that are also double-cube divisors
- |b_i| is the number of literals in base of double-cube divisor
- C is the number of cubes containing both a and b in case cube ab is a complement of d ∈ D_{1.1.2}
- (p-1)(x+y) accounts for the number of literals saved by implementing d of size (x+y) once
- -p accounts for number of literals needed to connect d in its p occurrences

• Weight of a single-cube divisor $c \in S_2$ is k - 2

K is the number of cubes containing c.

Fast Extraction Algorithm

Generate double-cube divisors with weights

Repeat

Select a double-cube divisor d that has a maximum weight W_{dmax} Select a single-cube divisor s having a maximum weight W_{smax} If W_{dmax} > W_{smax} select d else select s W = max(W_{dmax}, W_{smax}) If W > 0 then substitute selected divisor Recompute weights of affected double-cube divisors

Until (W<=0)

Fast Extraction Example

F = abc + a'b'c + ab'd + a'bd + acd + a'b'd' (18 literals)

d	Base	Weight
ab+a'b'	C	4
bc+b'd	а	0
ac+a'd	b	0
b+d	ac	2
abc+a'b'd'	0	-1
a'c+ad	b'	0
b'c+bd	a'	0
a'b'+ad	С	0
c+d'	a'b'	1
ab'+a'b	d	4
b'+c	ad	1
ad+a'd'	b'	0
a'b+ac	d	0
bd+b'd'	a'	0
acd+a'b'd'	0	-1

Single-cube divisors with W_{smax} are either ac or a'b' or ad with weight of 0

Double-cube divisor=ab + a'b' is selected

[1]=ab + a'b' F= [1]c + [1]'d + acd + a'b'd'

(14 literals)

Boolean Methods

- Exploit Boolean properties.
 - Don't care conditions.
- Minimization of the local functions.
- Slower algorithms, better quality results.
- Don't care conditions related to embedding of a function in an environment
 - Called external don't care conditions
- External don't care conditions
 - Controllability
 - Observability

External Don't Care Conditions ...

Controllability don't care set CDC_{in}

- Input patterns never produced by the environment at the network's input.
- Observability don't care set ODC_{out}
 - Input patterns representing conditions when an output is not observed by the environment.
 - Relative to each output.
 - Vector notation used: ODC_{out}.

... External Don't Care Conditions

Inputs driven by a decoder.

• $CDC_{in} = x_1'x_2'x_3'x_4' + x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4.$

• Outputs observed when $x_1 + x_4 = 1$.

$$\mathsf{ODC}_{out} = \begin{bmatrix} x_1' \\ x_1' \\ x_4' \\ x_4' \end{bmatrix}$$

$$\mathbf{DC}_{ext} = \mathbf{CDC}_{in} + \mathbf{ODC}_{out} = \begin{bmatrix} x_1' + x_2 + x_3 + x_4 \\ x_1' + x_2 + x_3 + x_4 \\ x_4' + x_2 + x_3 + x_1 \\ x_4' + x_2 + x_3 + x_1 \end{bmatrix}$$

Internal Don't Care Conditions ...

- Induced by the network structure.
- Controllability don't care conditions
 - Patterns never produced at the inputs of a subnetwork.
- Observability don't care conditions
 - Patterns such that the outputs of a subnetwork are not observed.

... Internal Don't Care Conditions

Example: x = a'+b; y= abx + a'cx

CDC of v_v includes ab'x+a'x'.

- $ab' \Rightarrow x=0$; ab'x is a don't care condition
- a' \Rightarrow x=1; a'x' is a don't care condition

• Minimize f_v to obtain: $f_v = ax+a'c$.

Satisfiability Don't Care Conditions

■ Invariant of the network • $x = f_x \rightarrow x \neq f_x \subseteq SDC$.

$$SDC = \sum_{v_x \in V^G} x \oplus f_x$$

Useful to compute controllability don't cares.

Example

- Assume x = a' + b
- Since x ≠ (a' + b) is not possible, x ⊕ (a' + b)=x'a' + x'b + xab' is a *don't care* condition.

CDC Computation ...

Network traversal algorithm

- Consider different cuts moving from input to output.
- Initial CDC is CDC_{in}.
- Move cut forward.
 - Consider SDC contributions of predecessors.
 - Remove unneeded variables by consensus.

Consensus of a function f with respect to variable x is f_x. f_x[']

... CDC Computation ...

CONTROLLABILITY($G_n(V, E)$, CDC_{in}) { $C = V^I;$ $CDC_{cut} = CDC_{in};$ **foreach** vertex $v_x \in V$ in topological order { $C = C \cup v_x$: $CDC_{cut} = CDC_{cut} + f_x \oplus x;$ $D = \{v \in C \text{ s.t. all dir. succ. of } v \text{ are in } C\}$ foreach vertex $v_y \in D$ $CDC_{cut} = C_y(CDC_{cut});$ C = C - D;}; $CDC_{out} = CDC_{cut};$

... CDC Computation ...

• Assume $CDC_{in} = x_1'x_4'$.

Select vertex v_a

- Contribution to CDC_{cut} : $a \oplus (x_2 \oplus x_3)$. • $CDC_{cut} = x_1'x_4' + a \oplus (x_2 \oplus x_3)$.
- Drop variables $D = \{x_2, x_3\}$
- $CDC_{cut} = x_1'x_4'$.

Select vertex v_b

- Contribution to CDC_{cut} : b \oplus (x₁ +a).
 - $CDC_{cut} = x_1'x_4' + b \oplus (x_1 + a).$
- Drop variable $D = \{x_1\}$
- $CDC_{cut} = b'x_4' + b'a.$

... CDC Computation

Select vertex v_c

- Contribution to CDC_{cut} : $c \oplus (x_4 + a)$.
 - $CDC_{cut} = b'x_4' + b'a + c \oplus (x_4 + a).$
- Drop variables $D = \{a, x_4\}$
- CDC_{cut} = b'c'.

Select vertex v_d

- Contribution to CDC_{cut} : d \oplus (bc).
- $CDC_{cut} = b'c' + d \oplus (bc)$.

Select vertex v_e

- Contribution to CDC_{cut}: e ⊕ (b + c).
 CDC_{cut} = b'c' + d ⊕ (bc) + e ⊕ (b + c).
- Drop variables D = {b, c}
- $CDC_{cut} = e'$.

CDC_{cut} =
$$e' = z_2'$$
.

x4

Network Perturbation

- Modify network by adding an extra input δ.
- Extra input can flip polarity of a signal x.
- **Replace local function f_x by f_x \oplus \delta.**
- **Perturbed terminal behavior:** $f^{x}(\delta)$.
- A variable is observable if a change in its polarity is perceived at an output.
- Observability don't-care set ODC for variable x is (f^x(0) ⊕ f^x(1))'
 - f^x(0)=abc
 - f^x(1)=a'bc
 - $ODC_x = (abc \oplus a'bc)' = b'+c'$
 - Minimizing f_x=ab with ODC_x= b'+c' leads to f_x=a.

Observability Don't Care Conditions

- Conditions under which a change in polarity of a signal x is not perceived at the outputs.
- Complement of the Boolean Difference
 - $\partial \mathbf{f} / \partial \mathbf{x} = \mathbf{f} |_{\mathbf{x}=1} \oplus \mathbf{f} |_{\mathbf{x}=0}$
- Equivalence of perturbed function: $(f^{x}(0) \oplus f^{x}(1))^{2}$.
- Observability don't care computation
 - Problem
 - Outputs are not expressed as function of all variables.
 - If network is flattened to obtain f, it may explode in size.
 - Requirement
 - Local rules for ODC computation.
 - Network traversal.

Observability Don't Care Computation ...

- Assume single-output network with tree structure.
- Traverse network tree.
- At root
 - ODC_{out} is given.
- At internal vertices assuming y is the output of x

• ODC_x = $(\partial f_y / \partial x)'$ + ODC_y = $(f_y|_{x=1} \oplus f_y|_{x=0})'$ + ODC_y

- Example
 - Assume $ODC_{out} = ODC_{e} = 0$.
 - ODC_b = $(\partial f_e / \partial b)'$ = $((b+c)|_{b=1} \oplus (b+c)|_{b=0})' = c.$
 - $ODC_c = (\partial f_e / \partial c)' = b.$
 - $ODC_{x1} = ODC_b + (\partial f_b / \partial x_1)' = c + a1.$
- e = b + c $b = x_1 + a_1$ $c = x_4 + a_2$

a2 x4

x1 a1

... Observability Don't Care Computation

- General networks have fanout re-convergence.
- For each vertex with two (or more) fanout stems
 - The contribution of the ODC along the stems cannot be added.
 - Wrong assumption is intersecting them
 - $ODC_{a,b} = x_1 + c = x_1 + a + x_4$
 - ODC_{a,c}= x_4 +b= x_4 +a+ x_1
 - $ODC_{a,b} \cap ODC_{a,c} = x_1 + a + x_4$
 - Variable a is not redundant
 - Interplay of different paths.

More elaborate analysis.

Two-way Fanout Stem ...

- Compute ODC sets associated with edges.
- Combine ODCs at vertex.
- Formula derivation
 - Assume two equal perturbations on the edges.

 $\begin{aligned} \mathbf{ODC}_x &= \mathbf{f}^{x_1,x_2}(1,1) \ \overline{\oplus} \ \mathbf{f}^{x_1,x_2}(0,0) \\ &= \mathbf{f}^{x_1,x_2}(1,1) \ \overline{\oplus} \ \mathbf{f}^{x_1,x_2}(0,0) \\ &\overline{\oplus} \ (\mathbf{f}^{x_1,x_2}(0,1) \ \overline{\oplus} \ \mathbf{f}^{x_1,x_2}(0,1)) \\ &= (\mathbf{f}^{x_1,x_2}(1,1) \ \overline{\oplus} \ \mathbf{f}^{x_1,x_2}(0,1)) \\ &\overline{\oplus} \ (\mathbf{f}^{x_1,x_2}(0,1) \ \overline{\oplus} \ \mathbf{f}^{x_1,x_2}(0,0)) \\ &= \mathbf{ODC}_{x,y}|_{\delta_2=1} \ \overline{\oplus} \ \mathbf{ODC}_{x,z}|_{\delta_1=0} \\ &= \mathbf{ODC}_{x,y}|_{x_2=x'} \ \overline{\oplus} \ \mathbf{ODC}_{x,z}|_{x_1=x} \\ &= \mathbf{ODC}_{x,y}|_{x=x'} \ \overline{\oplus} \ \mathbf{ODC}_{x,z}|_{x_1=x} \end{aligned}$

... Two-way Fanout Stem

ODC_{a,b} =
$$x_1 + c = x_1 + a_2 + x_4$$
ODC_{a,c} = $x_4 + b = x_4 + a_1 + x_1$
ODC_a = (ODC_{a,b | a2=a'} \oplus ODC_{a,c})'
= ((x_1 + a' + x_4) \oplus (x_4 + a + x_1))'
= $x_1 + x_4$

Multi-Way Stems Theorem

Let $v_x \in V$ be any internal or input vertex.

- Let {x_i; i = 1, 2, ..., p} be the edge variables corresponding to {(x, y_i); i = 1, 2, ..., p}.
- Let $ODC_{x,yi}$; i = 1, 2, ..., p be the edge ODCs.

$$\mathsf{ODC}_x = \overline{\bigoplus}_{i=1}^p \mathsf{ODC}_{x,y_i}|_{x_{i+1} = \dots = x_p} = x'$$

For a 3-fanout stem variable x:
ODC_x = ODC_{x,y1 |x2=x3=x'} ⊕ ODC_{x,y2 |x3=x'} ⊕ ODC_{x,y3}

Observability Don't Care Algorithm ...

OBSERVABILITY($G_n(V, E)$, **ODC**_{out}) { foreach vertex $v_x \in V$ in reverse topological order { for (i = 1 to p) $ODC_{x,y_i} = (\partial f_{y_i} / \partial x)' 1 + ODC_{y_i};$ $ODC_x = \bigoplus_{i=1}^p ODC_{x,y_i} |_{x_{i+1} = \dots = x_p} = x';$ }

For each variable, intersection of ODC at all outputs yields condition under which output is not observed

- Global ODC of a variable
- The global ODC conditions of the input variables is the input observability don't care set ODC_{in}.
 - May be used as external ODC sets for optimizing a network feeding the one under consideration

... Observability Don't Care Algorithm

$$ODC_{d} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}; ODC_{e} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; ODC_{c} = \begin{pmatrix} b' \\ b \end{pmatrix}; ODC_{b} = \begin{pmatrix} c' \\ c \end{pmatrix}$$
$$ODC_{a,b} = \begin{pmatrix} c' + x_{1} \\ c + x_{1} \end{pmatrix} = \begin{pmatrix} a'x'_{4} + x_{1} \\ a + x_{4} + x_{1} \end{pmatrix}$$
$$ODC_{a,c} = \begin{pmatrix} b' + x_{4} \\ b + x_{4} \end{pmatrix} = \begin{pmatrix} a'x'_{1} + x_{4} \\ a + x_{1} + x_{4} \end{pmatrix}$$
$$ODC_{a} = ODC_{a,b}|_{a=a'} \oplus ODC_{a,c} = \begin{pmatrix} ax'_{4} + x_{1} \\ a' + x_{4} + x_{1} \end{pmatrix} \oplus \begin{pmatrix} a'x'_{1} + x_{4} \\ a + x_{1} + x_{4} \end{pmatrix} =$$
$$= \begin{pmatrix} x_{1}x_{4} \\ x_{1} + x_{4} \end{pmatrix}$$

Global ODC of a is (x1x4)(x1+x4)=x1x4

Transformations with Don't Cares

Boolean simplification

- Use standard minimizer (Espresso).
- Minimize the number of literals.

Boolean substitution

- Simplify a function by adding an extra input.
- Equivalent to simplification with global don't care conditions.

Example

- Substitute q = a+cd into $f_h = a+bcd+e$ to get $f_h = a+bq +e$.
- SDC set: q⊕(a+cd) = q'a+q'cd+qa'(cd)'.
- Simplify f_h = a+bcd+e with q'a+q'cd+qa'(cd)' as don't care.
- Simplication yields f_h = a+bq +e.
- One literal less by changing the support of f_h.

Single-Vertex Optimization

$SIMPLIFY_SV(G_n(V, E)) \{ \\ repeat \{ \\ v_x = selected vertex ; \\ Compute the local don't care set DC_x; \\ Optimize the function f_x ; \\ \}until (no more reduction is possible) \\ \end{cases}$

Optimization and Perturbations ...

- Replace f_x by g_x.
- Perturbation $\delta_x = f_x \oplus g_x$.
- Condition for feasible replacement
 - Perturbation bounded by local don't care set
 - $\delta_x \subseteq DC_{ext} + ODC_x$
 - If f_x and g_x have the same support set S(x) then
 - $\delta_x \subseteq DC_{ext} + ODC_x + CDC_{S(x)}$
 - If S(g_x) includes network variables

•
$$\delta_x \subseteq DC_{ext} + ODC_x + SDC_x$$

$$SDC_x = \sum_{v_y \in V: v_y \neq v_x} y \oplus f_y$$

... Optimization and Perturbations

- No external don't care set.
- Replace AND by wire: g_x = a

Analysis

- $\delta_x = f_x \oplus g_x = ab \oplus a = ab'$.
- $ODC_x = y' = b' + c'$.
- $\delta_x = ab' \subseteq DC_x = b' + c' \Rightarrow feasible!$

Synthesis and Testability

Testability

- Ease of testing a circuit.
- Assumptions
 - Combinational circuit.
 - Single or multiple stuck-at faults.
- Full testability
 - Possible to generate test set for all faults.
- Synergy between synthesis and testing.
- Testable networks correlate to small-area networks.
- Don't care conditions play a major role.

Test for Stuck-at-Faults

Net y stuck-at 0

- Input pattern that sets y to true.
- Observe output.
- Output of faulty circuit differs.
- $\{t \mid y(t) : ODC'_{y}(t) = 1\}.$
- Net y stuck-at 1
 - Same, but set y to false.
 - $\{t \mid y'(t) : ODC'_{y}(t) = 1\}.$

Need controllability and observability.

Using Testing Methods for Synthesis ...

Redundancy removal.

Use ATPG to search for untestable faults.

If stuck-at 0 on net y is untestable

- Set y = 0.
- Propagate constant.
- If stuck-at 1 on y is untestable
 - Set y = 1.
 - Propagate constant.

... Using Testing Methods for Synthesis

97

Redundancy Removal and Perturbation Analysis

Stuck-at 0 on y.

- y set to 0. Namely $g_x = f_x|_{y=0}$.
- Perturbation

•
$$\delta = \mathbf{f}_{\mathbf{x}} \oplus \mathbf{f}_{\mathbf{x}}|_{\mathbf{y}=\mathbf{0}} = \mathbf{y} \cdot \partial \mathbf{f}_{\mathbf{x}} / \partial \mathbf{y}$$
.

- Perturbation is feasible \Leftrightarrow fault is untestable.
- δ = y . $\partial f_x / \partial y \subseteq DC_x \Leftrightarrow$ fault is untestable
- Making f_x prime and irredundant with respect to DC_x guarantees that all single stuck-at faults in f_x are testable.

Synthesis for Testability

Synthesize networks that are fully testable.

- Single stuck-at faults.
- Multiple stuck-at faults.

Two-level forms

- Full testability for single stuck-at faults
 - Prime and irredundant cover.

Full testability for multiple stuck-at faults

- Prime and irredundant cover when
 - Single-output function.
 - No product term sharing.
 - Each component is PI.

.... Synthesis for Testability

- A complete single-stuck-at fault test set for a singleoutput sum-of-product circuit is a complete test set for all multiple stuck-at faults.
- Single stuck-at fault testability of multiple-level network does not imply multiple stuck-at fault testability.
- Fast extraction transformations are single stuck-at fault test-set preserving transformations.
- Algebraic transformations preserve multiple stuck-at fault testability but not single stuck-at fault testability
 - Factorization
 - Substitution (without complement)
 - Cube and kernel extraction

Synthesis of Testable Multiple-Level Networks ...

- A logic network G_n(V, E), with local functions in sum of product form.
- Prime and irredundant (PI)
 - No literal nor implicant of any local function can be dropped.
- Simultaneously prime and irredundant (SPI)
 - No subset of literals and/or implicants can be dropped.
- A logic network is PI if and only if
 - its AND-OR implementation is fully testable for single stuckat faults.
- A logic network is SPI if and only if
 - its AND-OR implementation is fully testable for multiple stuckat faults.

... Synthesis of Testable Multiple-Level Networks

Compute full local *don't care* sets.

- Make all local functions PI w.r. to don't care sets.
- Pitfall
 - Don't cares change as functions change.
- Solution
 - Iteration (Espresso-MLD).
 - If iteration converges, network is fully testable.
- Flatten to two-level form.
 - When possible -- no size explosion.
- Make SPI by disjoint logic minimization.
- Reconstruct multiple-level network
 - Algebraic transformations preserve multifault testability.

Timing Issues in Multiple-Level Logic Optimization

- Timing optimization is crucial for achieving competitive logic design.
- Timing verification: Check that a circuit runs at speed
 - Satisfies I/O delay constraints.
 - Satisfies cycle-time constraints.
 - Delay modeling.
 - Critical paths.
 - The false path problem.

Algorithms for timing optimization.

- Minimum area subject to delay constraints.
- Minimum delay (subject to area constraints).

Delay Modeling

Gate delay modeling

- Straightforward for bound networks.
- Approximations for unbound networks.

Network delay modeling

- Compute signal propagation
 - Topological methods.
 - Logic/topological methods.

Gate delay modeling for unbound networks

- Virtual gates: Logic expressions.
- Stage delay model: Unit delay per vertex.
- Refined models: Depending on size and fanout.

Network Delay Modeling ...

For each vertex v_i.

- Propagation delay d_i.
- Data-ready time t_i.
 - Denotes the time at which the data is ready at the output.
 - Input data-ready times denote when inputs are available.
 - Computed elsewhere by forward traversal

$$t_i = d_i + \max_{\substack{j \mid (v_j, v_i) \in E}} t_j$$

The maximum data-ready time occurring at an output vertex

- Corresponds to the longest propagation delay path
- Called topological critical path

... Network Delay Modeling ...

 $t_{g} = 3+0=3$ $t_{h} = 8+3=11$ $t_{k} = 10+3=13$ $t_{n} = 5+10=15$ $t_{p} = 2+max\{15,3\}=17$ $t_{f} = 3+max\{13,17\}=20$ $t_{m} = 1+max\{3,11,20\}=21$ $t_{x} = 2+21=23$ $t_{q} = 2+20=22$ $t_{v} = 3+22=25$

- Assume $t_a = 0$ and $t_b = 10$.
- Propagation delays
 - $d_a = 3$; $d_h = 8$; $d_m = 1$; $d_k = 10$; $d_l = 3$;
 - $d_n = 5; d_p = 2; d_q = 2; d_x = 2; d_y = 3;$
 - Maximum data-ready time is t_v=25
 - Topological critical path: $(v_b, v_n, v_p, v_l, v_q, v_y)$.

... Network Delay Modeling ...

For each vertex v_i.

- Required data-ready time $\overline{t_i}$.
 - Specified at the primary outputs.
 - Computed elsewhere by backward traversal

$$\bar{t}_i = \min_{\substack{j \mid (v_i, v_j) \in E}} \bar{t}_j - d_j$$

Slack s_i.

Difference between required and actual data-ready times

$$s_i = \overline{t}_i - t_i.$$

... Network Delay Modeling

• Required data-ready times • $\overline{t_x} = 25$ and $\overline{t_y} = 25$.

Required Times & Slack: $s_x = 2; s_y = 0$ $\overline{t}_m = 25 \cdot 2 = 23; s_m = 23 \cdot 21 = 2$ $\overline{t}_q = 25 \cdot 3 = 22; s_q = 22 \cdot 22 = 0$ $\overline{t}_l = min\{23 \cdot 1, 22 \cdot 2\} = 20; s_l = 0$ $\overline{t}_h = 23 \cdot 1 = 22; s_h = 22 \cdot 11 = 11$ $\overline{t}_k = 20 \cdot 3 = 17; s_k = 17 \cdot 13 = 4$ $\overline{t}_p = 20 \cdot 3 = 17; s_p = 17 \cdot 17 = 0$ $\overline{t}_n = 17 \cdot 2 = 15; s_n = 15 \cdot 15 = 0$ $\overline{t}_b = 15 \cdot 5 = 10; s_b = 10 \cdot 10 = 0$ $\overline{t}_g = min\{22 \cdot 8; 17 \cdot 10; 17 \cdot 2\} = 7; s_g = 4$ $\overline{t}_a = 7 \cdot 3 = 4; s_a = 4 \cdot 0 = 4$ Propagation Delays : $d_g = 3; d_h = 8; d_m = 1; d_k = 10;$ $d_1 = 3; d_n = 5; d_p = 2; d_q = 2;$ $d_x = 2; d_y = 3$

Data-Ready Times: $t_g = 3+0=3$ $t_h = 8+3=11$ $t_k = 10+3=13$ $t_n = 5+10=15$ $t_p = 2+max\{15,3\}=17$ $t_f = 3+max\{13,17\}=20$ $t_m = 1+max\{3,11,20\}=21$ $t_x = 2+21=23$ $t_q = 2+20=22$ $t_y = 3+22=25$
Topological Critical Path ...

Assume topologic computation of

- Data-ready by forward traversal.
- Required data-ready by backward traversal.

Topological critical path

- Input/output path with zero slacks.
- Any increase in the vertex propagation delay affects the output data-ready time.

A topological critical path may be false.

- No event can propagate along that path.
- False path does not affect performance

... Topological Critical Path

Topological critical path: $(v_b, v_n, v_p, v_l, v_q, v_y)$.

110

False Path Example

- All gates have unit delay.
- All inputs ready at time 0.
- Longest topological path: (v_a, v_c, v_d, v_y, v_z).
 - Path delay: 4 units.
 - False path: event cannot propagate through it
- Critical true path: (v_a, v_c, v_d, v_y).
 - Path delay: 3 units.

Algorithms for Delay Minimization ...

Alternate

- Critical path computation.
- Logic transformation on critical vertices.

Consider quasi critical paths

- Paths with near-critical delay.
- Small slacks.

Small difference between critical paths and largest delay of a non-critical path leads to smaller gain in speeding up critical paths only.

... Algorithms for Delay Minimization

Most critical delay optimization algorithms have the following framework:

```
REDUCE_DELAY( G_n(V, E) , \epsilon){
```

repeat {

}

Compute critical paths and critical delay τ ; Set output required data-ready times to τ ; Compute slacks;

U = vertex subset with slack lower than ϵ ;

W = select vertices in U;

Apply transformations to vertices W;

}**until** (no transformation can reduce τ);

Transformations for Delay Reduction ...

- Reduce propagation delay.
- Reduce dependencies from critical inputs.
- Favorable transformation
 - Reduces local data-ready time.
 - Any data-ready time increase at other vertices is bounded by the local slack.

Example

- Unit gate delay.
- Transformation: Elimination.
 - Always favorable.
 - Obtain several area/delay trade-off points.

... Transformations for Delay Reduction

- W is a minimum-weight separation set from U.
- Iteration 1
 - Values of v_p , v_q , $v_u = -1$
 - Value of v_s=0.
 - Eliminate v_p, v_q. (No literal increase.)

Iteration 2

- Value of v_s =2, value of v_u =-1.
- Eliminate v_u. (No literal increase.)
- Iteration 3
 - Eliminate v_r, v_s, v_t. (Literals increase.)

More Refined Delay Models

Propagation delay grows with the size of the expression and with fanout load.

Elimination

- Reduces one stage.
- Yields more complex and slower gates.
- May slow other paths.

Substitution

- Adds one dependency.
- Loads and slows a gate.
- May slow other paths.
- Useful if arrival time of critical input is larger than other inputs

Speed-Up Algorithm ...

- Decompose network into two-input NAND gates and inverters.
- Determine a subnetwork W of depth d.
- Collapse subnetwork by elimination.
- Duplicate input vertices with successors outside W
 - Record area penalty.
 - Resynthesize W by timing-driven decomposition.
- Heuristics
 - Choice of W.
 - Monitor area penalty and potential speed-up.

... Speed-Up Algorithm

Example

- NAND delay =2.
- INVERTER delay =1.
- All input data-ready=0 except t_d=3.
- Critical Path: from V_d to V_x (11 delay units)
- Assume V_x is selected and d=5.
- New critical path: 8 delay units.

