COE 561
Digital System Design &
Synthesis
Multiple-Level Logic Synthesis

Dr. Aiman H. El-Maleh
Computer Engineering Department
King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

Outline ...

Representations.

Taxonomy of optimization methods.
® Goals: area/delay.
® Algorithms: Algebraic/Boolean.
® Rule-based methods.

Examples of transformations.

Algebraic model.
® Algebraic division.
® Algebraic substitution.
¢ Single-cube extraction.
® Multiple-cube extraction.
¢ Decomposition.
® Factorization.
® Fast extraction.

... Outline

External and internal don’t care sets.
® Controllability don’t care sets.
® Observability don't care sets.

Boolean simplification and substitution.
Testability properties of multiple-level logic.
Synthesis for testability.

Network delay modeling.

Algorithms for delay minimization.
Transformations for delay reduction.

Motivation

= Combinational logic circuits very often implemented as
multiple-level networks of logic gates.

= Provides several degrees of freedom in logic design
® Exploited in optimizing area and delay.
¢ Different timing requirements on input/output paths.

= Multiple-level networks viewed as interconnection of
single-output gates
¢ Single type of gate (e.g. NANDs or NORs).
® Instances of a cell library.
® Macro cells.

= Multilevel optimization is divided into two tasks

® Optimization neglecting implementation constraints assuming
loose models of area and delay.

® Constraints on the usable gates are taken into account during
optimization.
4

Circuit Modeling

= Logic network
® Interconnection of logic functions.
® Hybrid structural/behavioral model.

= Bound (mapped) networks
® Interconnection of logic gates.
¢ Structural model.

Example of Bound Network

Example of a Logic Network

AU
.’\ﬁ;\ﬁ t=zac+ad+hbc+hbd+e
S

L

ac + ad + be + bd + e
qd'c+qc’ + qc
a'd+ bd + d + ae

Network Optimization

= Two-level logic
® Area and delay proportional to cover size.

® Achieving minimum (or irredundant) covers corresponds to
optimizing area and speed.

® Achieving irredundant cover corresponds to maximizing
testability.

= Multiple-level logic

® Minimal-area implementations do not correspond in general
to minimum-delay implementations and vice versa.

® Minimize area (power) estimate
* subject to delay constraints.
¢ Minimize maximum delay
* subject to area (power) constraints.
® Minimize power consumption.
* subject to delay constraints.
® Maximize testability.

Estimation

m Area

® Number of literals
« Corresponds to number of polysilicon strips (transistors)

® Number of functions/gates.

= Delay
® Number of stages (unit delay per stage).

® Refined gate delay models (relating delay to function
complexity and fanout).

® Sensitizable paths (detection of false paths).
® Wiring delays estimated using statistical models.

Problem Analysis

Multiple-level optimization is hard.

Exact methods
¢ Exponential complexity.
® Impractical.

Approximate methods
® Heuristic algorithms.
® Rule-based methods.

Strategies for optimization
® Improve circuit step by step based on circuit transformations.
® Preserve network behavior.

® Methods differ in
» Types of transformations.
» Selection and order of transformations.

Elimination

m Eliminate one function from the network.
m Perform variable substitution.

m Example
®s=r+b;r=pt+a

'-J t=ac+ad+bc+hd+e
.-I -."‘\
q=a+h Ju=qgc+qc +qc

Decomposition

m Break one function into smaller ones.
m Introduce new vertices in the network.

m Example
® v=ad+bd+c'd+ae’.
® = j=atb+c’; v =jd+ae’

Factoring

= Factoring is the process of deriving a factored form
from a sum-of-products form of a function.

= Factoring is like decomposition except that no
additional nodes are created.

m Example
® F = abc+abd+a’b’cta’b’'d+ab’e+ab’f+a’be+a’bf (24 literals)

® After factorization
« F=(ab+a’b’)(c+d) + (ab’+a’b)(e+f) (12 literals)

Extraction ...

Find a common sub-expression of two (or more)
expressions.

Extract sub-expression as new function.
Introduce new vertex in the network.

Example
® p=cetde; t=ac+ad+bc+bd+e; (13 literals)
® p=(ctd)e; t=(c+td)(atb)te; (Factoring:8 literals)
®* =>k=ctd; p=ke; t = ka+ kb +e; (Extraction:9 literals)

... Extraction

v=a'd + bd +c¢'d +ae’

b Y

= t=ac+ad+bc+hbd+e

u=gc+qc’' +qc

v=a'd+ bd+c'd + ae’
Y
% t=Kka+ kb +e

u=g'c+qc’' +qc

Simplification

Simplify a local function (using Espresso).

Example
° u=gctqe +qc;
® = u=q +c;

e
‘séé{%

Substitution

Simplify a local function by using an additional input that was
not previously in its support set.

Example
® t = katkb+e.
® = t=kq +e; because q = a+b.

Example: Sequence of Transformations

Original Network (33 lit.) Transformed Network (20 lit.)

= ce—+de

= a-+0b

= p+ad

= r+¥

= act+ad+ bc+ bd+ €

= qdc+qd +qc
a'd+ bd + 'd + ae

2 V= a'd + bd +c'd +ae’

7
oy A7 \
'\:{‘; t=actad+bc+bd+e

75

Optimization Approaches

= Algorithmic approach
® Define an algorithm for each transformation type.
® Algorithm is an operator on the network.

® Each operator has well-defined properties
 Heuristic methods still used.
+ Weak optimality properties.
® Sequence of operators
 Defined by scripts.
- Based on experience.

= Rule-based approach (IBM Logic Synthesis System)

® Rule-data base
« Set of pattern pairs.
¢ Pattern replacement driven by rules.

Elimination Algorithm ...

Set a threshold k (usually 0).
Examine all expressions (vertices) and compute their values.

Vertex value = n*l —n —1 (I is number of literals; n is number of
times vertex variable appears in network)

Eliminate an expression (vertex) if its value (i.e. the increase in
literals) does not exceed the threshold.

ELIMINATE(Go(V,E) , k){
repeat {
v = selected vertex with value < k;
if (v =0) return;
replace x by f in the network;

... Elimination Algorithm

m Example

*g=a+tb

®s=ce+de+a +b

*t=ac+ad+bc+bd+e

*u=qgc+qc +qc

*v=ad+bd+cd+ae
= Value of vertex g=n*l-n—=3*2-3-2=1

® It will increase number of literals => not eliminated
= Assume u is simplified to u=c+q

® Value of vertex g=n*l-n—-1=1*2-1-2=-1

® It will decrease the number of literals by 1 => eliminated

MIS/SIS Rugged Script

sweep; eliminate -1
simplify -m nocomp
eliminate -1

sweep; eliminate 5
simplify -m nocomp
resub -a

fx

resub -a; sweep
eliminate -1; sweep
full-simplify -m nocomp

Sweep eliminates single-
Input Vertices and those
With a constant function..

fesuln —a performs
algebraic substitutien of all
Vertex pairs

X extracts doeuble-culbe and
single-cube expression.

Boolean and Algebraic Methods ...

= Boolean methods
® Exploit Boolean properties of logic functions.
® Use don't care conditions induced by interconnections.
® Complex at times.

= Algebraic methods
® View functions as polynomials.
® Exploit properties of polynomial algebra.
® Simpler, faster but weaker.

... Boolean and Algebraic Methods

= Boolean substitution
® h =a+bcd+e; g = a+cd
® = h=at+bq +e
® Because atbg+e = a+b(a+cd)+e = a+bcd+e;
» Relies on Boolean property b+1=1

= Algebraic substitution
® t = kat+kb+e; g=a+b
®* = t=kq+e
® Because k(a+b) = ka+kb; holds regardless of any assumption
of Boolean algebra.

The Algebraic Model ...

= Represents local Boolean functions by algebraic
expressions

® Multilinear polynomial (i.e. multi-variable with degree 1) over
set of variables with unit coefficients.

= Algebraic transformations neglect specific features of
Boolean algebra
® Only one distributive law applies
* a.(b+c) = ab+ac
ca+(b.c)=(atb).(a+c)
®* Complements are not defined

« Cannot apply some properties like absorption, idempotence,
involution and Demorgan’s, a+a’'=1 and a.a’=0

® Symmetric distribution laws.
® Don't care sets are not used.

... The Algebraic Model

= Algebraic expressions obtained by
® Modeling functions in sum of products form.
® Make them minimal with respect to single-cube containment.
= Algebraic operations restricted to expressions with
disjoint support

® Preserve correspondence of result with sum-of-product forms
minimal w.r.t single-cube containment.

= Example
® (at+b)(c+d)=ac+ad+bc+bd; minimal w.r.t SCC.
® (at+b)(a+c)= aa+ac+ab+bc; non-minimal.
® (at+b)(a'+c)=aa'+ac+a’b+bc; non-minimal.

Algebraic Division ...

= Given two algebraic expressions f; iqen and fyivisor » WE
say that f ..., is an Algebraic Divisor of f jenq »

1:quotlent = d|V|dend/fd|V|sor when
. f +f

dividend — 'divisor = 'quotient

*f... . f (%0

divisor * "quotien
® and the support of f s, and f qiient IS disjoint.

= Example

® Let figeng = @Cctad+bc+bd+e and f ., = a+b
* Then 1:quotlent = ct+d fremamder =€
- Because (atb) (c+d)+e = f4eng
 and {a,b} n{c,d} =T

® Non-algebraic division
* Letf;=atbc and f, = atb.
* Letfy =atc. Then, f=f, . f, = (atb)(atc) = f
* but{a,b} n{a,c} #

remainder

... Algebraic Division

= An algebraic divisor is called a factor when the
remainder is void.

® a+b is a factor of ac+ad+bc+bd

= An expression is said to be cube free when it cannot
be factored by a cube.

® a+b is cube free

® actad+bc+bd is cube free
® ac+ad is non-cube free

¢ abc is non-cube free

Algebraic Division Algorithm ...

ALGEBRAIC_DIVISION(A, B) {
for 1=11ton) {
D ={C# such that C4'2 CP};
if (D==10) return(j, A);
D; = D with var. in sup(CP) droppec
ifi=1
= Quotient Q and remainder Q=1D;
R are sum of cubes else
(monomials). Q=QND;

= Intersection is largest ;_ 1—QxB:
subset of common t_ 2 ’
monomials. retum(; k)

... Algebraic Division Algorithm ...

= Example
® fyividenq = @ctad+bc+bd+e;
‘ fdivisor = a+b;
® A ={ac, ad, bc, bd, e} and B = {a, b}.
*i=1
-« CB,=a,D={ac,ad}and D, = {c, d}.
* Q={c, d}.
*i1=2=n
« CB,=b, D ={bc, bd}and D, = {c, d}.
- Then Q ={c, d} n{c, d} ={c, d}.
® Result
* Q={c,d}and R = {e}.
o f =c+dand f

quotient €.

remainder ~

... Algebraic Division Algorithm

= Example
® Let fgiqeng = @xctaxd+bc+bxd+e; fy ..., = ax+b
® i=1, CB, = ax, D = {axc, axd} and D, = {c, d}; Q={c, d}
®*i=2=n;CB,=b, D ={bc, bxd} and D, = {c, xd}.
® Then Q = {c, d} n {c, xd} = {c}.

. =candf = axd+bxd+e.

quotient — remainder

= Theorem: Given algebraic expressions f; and f;, then f/f; is
empty when
® f; contains a variable not in f;.

e fJ contains a cube whose support is not contained in that of
any cube of f..

® f; contains more cubes than f;.
* The count of any variable in f; larger than in f;.

Substitution

Substitution replaces a subexpression by a variable
associated with a vertex of the logic network.

Consider expression pairs.
Apply division (in any order).

If quotient is not void
® Evaluate area/delay gain

* Substitute 1:dividend by j'fquotient * 1:remainder Wherej = 1:divis,or

Use filters to reduce divisions.

Theorem

* Given two algebraic expressions f; and f;, f/f=9 if there is a
path from v; to v, in the logic network.

Substitution algorithm

SUBSTITUTE(Go(V,E)){
for (i =1,2,...,|V]) {
for (j=1,2,...,|V];j # i) {
A = set of cubes of f;;
B = set of cubes of fj;
if (A, B pass the filter test) {
(Q,R) = ALGEBRAIC_DIVISION(A, B)
if (Q#0) {
fquotient = sum of cubes of Q,
.ff'mrmindf:'r' = sum of cubes of R,
if (substitution is favorable)

f.-,.j — _j" . f quotient _I_ f:r'ﬁ:rn,aimiﬁ'r;

Extraction

Search for common sub-expressions
¢ Single-cube extraction: monomial.
® Multiple-cube (kernel) extraction: polynomial

Search for appropriate divisors.

Cube-free expression
® Cannot be factored by a cube.

Kernel of an expression

® Cube-free quotient of the expression divided by a cube
(called co-kernel).

Kernel set K(f) of an expression
® Set of kernels.

Kernel Example

f, = acet+bce+de+g

Divide f, by a. Get ce. Not cube free.

Divide f, by b. Get ce. Not cube free.

Divide f, by c. Get ae+be. Not cube free.

Divide f, by ce. Get a+b. Cube free. Kernel!

Divide f, by d. Get e. Not cube free.

Divide f, by e. Get ac+bc+d. Cube free. Kernel!
Divide f, by g. Get 1. Not cube free.

Expression f, is a kernel of itself because cube free.
K(f,) = {(a+b); (ac+bc+d); (ace+bce+de+g)}.

X

Theorem (Brayton and McMullen)

= Two expressions f, and f, have a common multiple-
cube divisor f; if and only if

® there exist kernels k, € K(f,) and k, € K(f,) s.t. f4 is the sum
of 2 (or more) cubes in k, M k,, (intersection is largest subset
of common monomials)

= Consequence

® If kernel intersection is void, then the search for common sub-
expression can be dropped.

= Example

f. = ace+bce+de+g; K(f,) = {(a+b); (act+bc+d); (ace+bce+de+g)}
f,= ad+bd+cde+ge; K(f,) = {(a+b+ce); (cd+g); (ad+bd+cde+ge)}
f,= abc; The kernel set of f, is empty.

Select intersection (a+b)

f, =atb f, = wce+de+g

f, = wd+cde+ge f,=abc

Kernel Set Computation ...

= Naive method

® Divide function by elements in power set of its support set.
® Weed out non cube-free quotients.

= Smart way

® Use recursion
» Kernels of kernels are kernels of original expression.

® Exploit commutativity of multiplication.
« Kernels with co-kernels ab and ba are the same

= A kernel has level 0 if it has no kernel except itself.

m A kernel is of level n if it has
® at least one kernel of level n-1
® no kernels of level n or greater except itself

...Kernel Set Computation

m Y= adf + aef + bdf + bef + cdf + cef + g
= (a+b+c)(d+e)f+ g

Kernels Co-Kernels
(a+b+c) df, ef
(d+e) af, bf, cf
(at+b+c)(d+e) f
(a+b+c)(d+e)f+g 1

Recursive Kernel Computation: Simple
Algorithm

R KERNELS(f){
K = 0;
foreach variable = € sup(f) {
iIf(|CUBES(f,z)| = 2) {
fc — largest cube containing =,
s.t. CUBES(f,C) = CUBES(f,x);
K=KURKERNELS(f/f%);
}
¥

K = K U f;
return(K);

}

CUBES(f,C){
return the cubes of f whose support DO C;

}

e f is assumed to be cube-free
* If not divide it by its largest cube factor

Recursive Kernel Computation Example

m f=acet+bcet+detg
= Literals a or b. No action required.

= Literal c. Select cube ce:
® Recursive call with argument (ace+bce+de+g)/ce =a+b;
® No additional kernels.
® Adds a+b to the kernel set at the last step.

Literal d. No action required.

Literal e. Select cube e:
® Recursive call with argument ac+bc+d
® Kernel at+b is rediscovered and added.
® Adds ac + bc + d to the kernel set at the last step.

Literal g. No action required.
Adds ace+bce+de+g to the kernel set.
K = {(acetbce+de+g); (a+b); (act+bc+d); (a+b)}.

Analysis

= Some computation may be redundant

®* Example
» Divide by a and then by b.
- Divide by b and then by a.

® Obtain duplicate kernels.

= Improvement
® Keep a pointer to literals used so far denoted by j.
® Jinitially set to 1.
® Avoids generation of co-kernels already calculated
® Sup(f)={x;, X,, ...X.} (arranged in lexicographic order)
® fis assumed to be cube-free
* If not divide it by its largest cube factor
® Faster algorithm

Recursive Kernel Computation

KERNELS(f,ji){
K = 0;
for i =7 ton {
if((CUBES(f,z;)| > 2) {
f¢ = largest cube containing z,
s.t. CUBES(f,C) = CUBES(f,x;);
if (x, & C Vk < 1)
K =KUKERNELS(f/f%,i+ 1);
h
}

K=KU f,
return(K);

Recursive Kernel Computation Examples...

m f=ace+bce+de+g; sup(f)={a, b, ¢, d, e, g}
= Literals a or b. No action required.

m Literal c. Select cube ce:

® Recursive call with arguments: (ace+bce+de+g)/ce =a+b; pointer j =
3+1=4.

¢ Call considers variables {d, e, g}. No kernel.
® Adds a+b to the kernel set at the last step.

Literal d. No action required.

Literal e. Select cube e:
® Recursive call with arguments: ac+bc+d and pointer j = 5+1=6.
¢ Call considers variable {g}. No kernel.

® Adds ac+bc+d to the kernel set at the last step.
Literal g. No action required.
Adds ace+bce+de+g to the kernel set.
K = {(acetbce+de+g); (actbc+d); (at+b)}.

...Recursive Kernel Computation Examples

= Y= adf + aef + bdf + bef + cdf + cef + g=(d+e)(a+b+c)f+g
® Lexicographic order {a, b, c, d, e, f, g}

Matrix Representation of Kernels ...

= Boolean matrix

® Rows: cubes. Columns: variables (in both true and
complement form as needed).

Rectangle (R, C)
® Subset of rows and columns with all entries equal to 1.

Prime rectangle
® Rectangle not inside any other rectangle.
Co-rectangle (R, C’) of a rectangle (R, C)
® C’ are the columns not in C.

A co-kernel corresponds to a prime rectangle with at
least two rows.

... Matrix Representation of Kernels ...

= f = ace+bcet+de+g

m Rectangle (prime): ({1, 2}, {3, 5})
® Co-kernel ce.

m Co-rectangle: ({1, 2}, {1, 2, 4, 6}).
¢ Kernel a+b.

— Tvar Ja b ¢ d e g
Cube[R\C[1 2 3 45 6
1

5
1
1
1
0

... Matrix Representation of Kernels ...

Theorem: K is a kernel of f iff it is an expression

corresponding to the co-rectangle of a prime rectangle
of f.

The set of all kernels of a logic expression are in 1-1
correspondence with the set of all co-rectangles of
prime rectangles of the corresponding Boolean matrix.

A level-0 kernel is the co-rectangle of a prime rectangle
of maximal width.

A prime rectangle of maximum height corresponds to a
kernel of maximal level.

... Matrix Representation of Kernels

= Example
®F=abc+abd + ae

1

Cube a

1 abc
2 abd
3 ae 1

® Prime Rectangles & Co-Rectangles
- PR:{(1,2),(1,2)}: corresponding to co-kernel ab
+ CR:{(1,2),(3,4,5)}: corresponding to kernel (c+d)
+ PR:{(1,2,3),(1)}: corresponding to co-kernel a
+ CR:{(1,2,3),(2,3,4,5)}: corresponding to kernel (bc+bd+e)

Single-Cube Extraction ...

= Form auxiliary function
¢ Sum of all product terms of all functions.

= Form matrix representation

¢ A rectangle with at least two rows represents a common cube.
® Rectangles with at least two columns may result in savings.
¢ Best choice is a prime rectangle.

m Use function ID for cubes
® Cube intersection from different functions.

X =t (a+h)+de +g

; x=ace+bce+de+g
i j

... 9ingle-Cube Extraction

= Expressions
® f, = acetbce+de+g
® f, =cde+b
Auxiliary function
® f,ux = ace+bce+de+g + cde+b

[[var |
| cube | ID | R\C' |

Matrix:

o
L
e

I

oNoloNeNal
HOOORF QO||N<
O OOKFKF(|Wno
O OF O Q&
O OK KKl
OO KOOI

Prime rectangle: ({1, 2, 5}, {3, 5})
Extract cube ce.

Single-Cube Extraction Algorithm

CUBE_EXTRACT(Gn(V,E)){
while (some favorable common cube exist) {
(' = select common cube to extract;
Generate new label [
Add to network v; and f; = f¢;
Replace all functions f, where f; is a divisor,

by [-f quotient + fremainder:

}

Extraction of an I-variable cube with multiplicity n
saves (n | —n —1) literals

Multiple-Cube Extraction

m We need a kernel/cube matrix.

= Relabeling
® Cubes by new variables.
¢ Kernels by cubes.

= Form auxiliary function
® Sum of all kernels.

= Extend cube intersection algorithm.

X = ace+bce+de+g
: y = ad+bd+cde+ge

x = wece+de+g .,

. Multiple-Cube Extraction

f, = acetbce.
* K(fp) = {(a+b)}.
f, = aet+be+d.
* K(fy) = {(a+b), (ae +be+d)}.
f = aet+be+de.
* K(f,) = {(a+b+d)}.
Relabeling
¢ xa—a Xp = b; X 0 = @€; Xpe = b€; X4 = d;
(fp) = xq, Xb)} Cube X, X
(fq) = {(X) (Xae’ Xpes Xd)}' X Xy, 1 1
() = {(Xq, Xps Xa)} X 11

= X Xp F X Xp FXooXpeXg T XXXy XaeXpeXd
X XpX4 1 1

b—Xae Xb (ST

f

aux
Common cube: X X,.
® XX, corresponds to kernel intersection a+b.
¢ Extract a+b from fp, fq and f..

Kernel Extraction Algorithm ...

KERNEL_EXTRACT(Go(VLE) , n,k){
while (some favorable common kernel intersection exist)
Compute kernel set of level < k;
for (i=1ton){
Compute kernel intersections;

f = select kernel intersection to extract;
Generate new label [;

Add v; to the network with expression f; = f;
Replace all functions f where f; is a divisor

by [- f quotient + f remainder s

N indicates the rate at which kernels are recomputed
K indicates the maximum level of the kernel computed

53

... Kernel Extraction Algorithm

= Example
® F1= ac+bc; Kernels: {(a+b)}
® F2= ad+bd+cd,; Kernels: {(a+b+c)}
® F3= ab+ac; Kernels: {(b+c)}

Cube A Xy, X

XaXb
XaXch
Xch

After extracting kernel (a+b), kernel (b+c)
IS no longer a common kernel. This is why
kernel intersections need to be recomputed.

Tradeoffs in Kernel Extraction

-'nn. mT htmlE .ﬁl::. nflﬁemeks_
in factored form | in first iteration

Area Value of a Kernel ...

Let n be the number of times a kernel is used

Let | be the number of literals in a kernel and c be the
number of cubes in a kernel

Let CK. be the co-kernel for kernel i

Initial cost =2, ., , (ICKi|*c+l)=nl + ¢ *X._, , , ICK|]
Resulting cost = I+2.._, .. , (ICK,|+1) = n+l+ >._, . |CK|]
Value of a kernel = initial cost — resulting cost

={nl + ¢ "2icy 1o n ICK[} — {n+l+ 2y, , [CK[}
=nl-n-l+(c-1) * 2isy 0 n |CK|l

... Area Value of a Kernel

= Example:
® X=acd + bcd = (a+b)cd (6 literals)
® Y = adef + bdef = (a+b)def (8 lietrals)
® Initial cost = 14 literals

= After Kernel extraction:
¢ Z=a+b VALCIER))
¢ X=Zcd (3 literals)
® Y=Zdef (4 lietrals)
® Resulting cost = 9 literals
¢ Savings = 14 — 9 = 5 literals

= Value of kernel =nl—n -l + (c-1) * X._ ,, , |CKi|
* =2*2.2.2+(2-1)*(2+3)=5 literals

Issues iIn Common Cube and Multiple-Cube
Extraction

= Greedy approach can be applied in common cube and
multiple-cube extraction

® Rectangle selection
® Matrix update

= Greedy approach may be myopic
® Local gain of one extraction considered at a time
= Non-prime rectangles can contribute to lower cost
covers than prime rectangles
® Quine’s theorem cannot be applied to rectangles

Decomposition ...

m Goals of decomposition
® Reduce the size of expressions to that typical of library cells.

® Small-sized expressions more likely to be divisors of other
expressions.

= Different decomposition techniques exist.

= Algebraic-division-based decomposition
® Give an expression f with f ..., as one of its divisors.
® Associate a new variable, say t, with the divisor.
* Reduce original expression to f=t . f ,ient + fremainder
® Apply decomposition recursively to the divisor, quotient and
remainder.

and t=f

divisor.

= Important issue is choice of divisor
® A kernel.
¢ A level-0 kernel.
¢ Evaluate all kernels and select most promising one.

... Decomposition

= f =ace+bcet+de+g
m Select kernel ac+bc+d.
= Decompose: f, = te+g; f, = ac+bc+d;

= Recur on the divisor f,
¢ Select kernel a+b
® Decompose: f, = sc+d; f, = a+b;

x=ace+hce+da+q

Decomposition Algorithm

DECOMPOSE(Gp(V,E) , k){
repeat {
vy = Selected vertex with expression
whose size Is above k;
iIf (vz =0) return;
decompose expression fg;

K is athreshold that determines the size of nodes
to be decomposed.

Factorization Algorithm

FACTOR(f)

If (the number of literals in f is one) return f

K =choose_Divisor(f)

(h, r) = Divide(f, k)

Return (FACTOR(k) FACTOR(h) + FACTOR(r))

Quick factoring: divisor restricted to first level-0 kernel
found

® Fast and effective
® Used for area and delay estimation

Good factoring: best kernel divisor is chosen

Example: f=ab + ac + bd + ce + cg
® Quick factoring: f = a (b+c) + c (etg) + bd (8 literals)
® Good factoring: f = c (a+e+g) + b(a+d) (7 literals)

One-Level-0-Kernel

One-Level-0-Kernel(f)
If (|f| <1) return O
If (L = Literal Count(f) < 1) return f
For (i=1; i <n; i++){
It (L) > 1){
C= largest cube containing i s.t. CUBES(f,C)=CUBES({,i)
return One-Level-0-Kernel(f/f°)

}
}

= Literal Count returns a vector of literal counts for each
literal.

® If all counts are <1 then fis a level-0 kernel
= The first literal with a count greater than one is chosen.

63

Fast Extraction (FX) ...

= Very efficient extraction method

® Based on extraction of double-cube divisors along with their
complements and,

® Single-cube divisors with two literals.

® Number of divisors in polynomial domain.
® Preserves single stuck-at fault testability.
® [Rajski and Vasudevamurthy 1992].

= Double-cube divisors are cube-free multiple-cube
divisors having exactly two cubes.

= The set of double-cube divisors of a function f, denoted
D(f) ={d | d={c;\ (c; n c)), ¢;\ (c; n c;) } } for i,j=1,..n, i#
® nis number of cubes in f.
* (¢, ¢) is called the base of a double-cube divisor.
®* Empty base is allowed.

... Fast Extraction (FX) ...

= Example: f = ade + ag + bcde +bcg.
= Double-cube divisors and their bases:

Double-cube divisors Base
de+g a, bc
a+bc g, de

ade+bcg {3
ag+bcde {3

= A subset of double-cube divisors is represented by D, |
® x is number of literals in first cube
® y is number of literals in second cube
® s is number of variables in support of D

= A subset of single-cube divisors is denoted by S, where k

is number of literals in single-cube divisor.
65

Properties of Double-Cube and Single-
Cube Divisors

Example:

® xy+y'zp € Dy 34
®abesS,

D,,,and D, ,, are null set.

Foranyd e D, ,,, deS,.

Foranyd e D,,;,d ¢D.

Foranyd e D,,,, dis either XOR or XNOR and d’
D2,2,2 :
Foranyd e D,,,,d € D,,.

Foranyd e D,,,, d ¢D.

Extraction of Double-cube Divisor along
with its Complement

= Theorem: Let f and g be two expressions. Then, f has
neither a complement double-cube divisor nor a

complement single-cube divisor in g if
*d#s; foreveryd, e Dy ,(f), s € Sy9)
*d#s; foreveryd e D, ,(9), sJ e S,(f)
* d; #d,/ forevery d;, e D, (f) , d; € D, (9)
¢ dI # d;’ for every dI e Dyor (), d e D, (9)

°d# dj’ for every d; € D, , 5 (f), d e Dy,5(9)

Weights of Double-cube Divisors and
Single-Cube Divisors

= Divisor weight represents literal savings.

= Weight of a double-cube divisord € D, , is

w(d) = (p-1)(x+y) = p + Zicg o p Ibi| + C
® p is the number of times double-cube divisor is used
* Includes complements that are also double-cube divisors
® |b,] is the number of literals in base of double-cube divisor

® C is the number of cubes containing both a and b in case
cube ab is a complementofd € D, ,,

® (p-1)(x+y) accounts for the number of literals saved by
implementing d of size (x+y) once

® -p accounts for number of literals needed to connect d in its p
occurrences

= Weight of a single-cube divisorc € S, is k-2
® K'is the number of cubes containing c.

Fast Extraction Algorithm

Generate double-cube divisors with weights

Repeat

Select a double-cube divisor d that has a maximum weight
deax

Select a single-cube divisor s having a maximum weight W
If Wya = Wenay S€lect d else select s

W= maX(Vvdmax’ Wsmax)

If W > 0 then substitute selected divisor

Recompute weights of affected double-cube divisors

Until (W<=0)

Smax

Fast Extraction Example

F =abc +a’b’c + ab’d + a’bd + acd + a’b’d’ (18 literals)

d

Base

Weight

Llo|lo|lo|=|b|l=|o|lo|o

Single-cube divisors with
W, are either ac or a’b’
or ad with weight of O

Double-cube divisor=ab +
a'b’ is selected

[1]=ab + a’b’
F=[1]c +[1]’'d + acd + a'b’d’

(14 literals)

Boolean Methods

Exploit Boolean properties.
® Don't care conditions.

Minimization of the local functions.
Slower algorithms, better quality results.

Don’t care conditions related to embedding of a
function in an environment

® Called external don’t care conditions

External don’t care conditions
® Controllability
® Observability

External Don't Care Conditions ...

= Controllability don't care set CDC,,

® Input patterns never produced by the environment at the
network's input.

= Observability don't care set ODC_

® Input patterns representing conditions when an output is not
observed by the environment.

® Relative to each output.
® Vector notation used: ODC,_ .

... External Don't Care Conditions

= Inputs driven by a decoder.
B CDC. = X{ Xy X3' Xy X XoF X X3 X Xy HXoXg XX, FX 35X .

= Outputs observed when x,+x,=1.

;rf"l + x4+ 23+ 24
;rf"l +xo + 23+ x4
;Iff4—|—:]f:2 + 3+ x1
T + xo + x3 + 21

DC.: = CDC,;,+ODC,;; =

Internal Don't Care Conditions ...

= Induced by the network structure.

= Controllability don't care conditions
® Patterns never produced at the inputs of a subnetwork.

= Observability don't care conditions

® Patterns such that the outputs of a subnetwork are not
observed.

SUBNETWORK

NETWORK

... Internal Don't Care Conditions

= Example: x = a’+b; y= abx + a’cx

y=abx +a'cx

m CDC of vy includes ab’x+a’x’.
® ab’=x=0: ab’x is a don’t care condition
® a = x=1: ax is a don’t care condition

= Minimize fy to obtain: fy = ax+a’c.

Satisfiability Don't Care Conditions

m Invariant of the network
*x=f, > x#f < SDC.

= Useful to compute controllability don't cares.

= Example
® Assumex=a +b

® Since x # (a’ + b) is not possible, x ® (a’ + b)=x'a’ + x’b + xab’
IS a don’t care condition.

CDC Computation ...

Network traversal algorithm
® Consider different cuts moving from input to output.

Initial CDC is CDC,,.

Move cut forward.
® Consider SDC contributions of predecessors.
® Remove unneeded variables by consensus.

Consensus of a function f with respect to variable x is
f .f,

. CDC Computation ...

CONTROLLABILITY(Gn(V,E) , CDC;,) {

C = VI.

CDCeyt = CDCyy,;

foreach vertex v, € V in topological order {
C = C Uy,
CDCeyt = CDCeyt + fo ® x;
D = {v e C s.t. all dir. succ. of v are in C
foreach vertex vy € D

CDCeyut = CU(CDCcut).

C=C — D,

b

CDCuoyt = CDCryy;

... CDC Computation ...

= Assume CDC, = x,’x,’.

= Select vertex v,
® Contribution to CDC_: a ®@ (X, @ X,).
* CDC_ ;i = XyX, +a® (X, ® Xs).
® Drop variables D = {x,, X5}
® CDC_, = XX,

= Select vertex v,
® Contribution to CDC_, :
* CDC_,; =XxyX, + b ® (x4 *+a).
® Drop variable D = {x,}
®* CDC_, =Db'%x, +b'a.

b @ (x, +a).

... CDC Computation

= Select vertex v,

® Contribution to CDC_: ¢ @ (x4 + a).
- CDC_,=Db'x, tb'a + c @ (x4 + Q).
® Drop variables D = {a, x,}
®* CDC_,=DbC.
= Select vertex v,
® Contribution to CDC_ .: d & (bc).

cut-
®* CDC_,,=b'c’+d ® (bc).
= Select vertex v,
¢ Contribution to CDC_: e ©@ (b + c).
- CDC,,;,=b'c’+d® (bc)+e ® (b +c).
® Drop variables D = {b, c}
* CDC_,=¢e.

= CDC_,=¢’ =2,

cut

Network Perturbation

Modify network by adding an extra input
0.

Extra input can flip polarity of a signal x.
Replace local function f, by f, ® 6.
Perturbed terminal behavior: %(5).

A variable is observable if a change in
its polarity is perceived at an output.

Observability don’t-care set ODC for
variable x is (fX(0) © X(1))’

® *(0)=abc

® *(1)=a’bc

®* ODC,= (abc @ a’bc)’ = b'+c’

® Minimizing f,=ab with ODC,= b'+c’ leads to

f.=a.

Observability Don't Care Conditions

= Conditions under which a change in polarity of a signal x is
not perceived at the outputs.

= Complement of the Boolean Difference
® oflox = fl,o, @ fl, -,

= Equivalence of perturbed function: (f<(0) @ (1))’.

= Observability don't care computation
® Problem
» Outputs are not expressed as function of all variables.
* If network is flattened to obtain f, it may explode in size.
® Requirement

* Local rules for ODC computation.
» Network traversal.

Observability Don't Care Computation ...

Assume single-output network with tree structure.
Traverse network tree.

At root
®* ODC,, is given.

At internal vertices assuming y is the output of x
* ODC, = (of,/ox) + ODC, = (f,|,cs @ f |0)'+ ODC,

Example
¢ Assume ODC,_, = ODC,_ = 0.
®* ODC, = (of Job)
= ((b*c)|p=1 ® (b*cC)|,=0) = C.
®* ODC, = (of /oc) = b.
®* ODC,, = ODC, + (of /ox,) = c+al.

®
x1 al a2 x4

... Observability Don't Care Computation

= General networks have fanout re-convergence.

= For each vertex with two (or more) fanout stems

® The contribution of the ODC along the stems cannot be
added.

® Wrong assumption is intersecting them
« ODC, ,=x;+c=x +a+x,
« ODC, =x,+b=x,+a+X,
« ODC,, n ODC, ;=x,+ta+x,
» Variable a is not redundant
® Interplay of different paths.

= More elaborate analysis.

Two-way Fanout Stem ...

= Compute ODC sets associated with

edges.

m Combine ODCs at vertex.

= Formula derivation
® Assume two equal perturbations on the

edges.

r*2(1.1) o f1*2(0,0)
fr1*2(1,1) 4 f1:*2(0,0)

¢ (FF1r*2(0,1) ¢ f1*2(0,1))
(Fr2*2(1,1) & f1*2(0,1))

o (fFF1*2(0,1) @ f1-*2(0,0))
ODCy; ylsgo=1 @& ODCy :|5,=0
ODCy ylp,— & ODCypz|zy=x
ODC. yl,—p & ODC, -

. Two-way Fanout Stem

0 ODCa,b = X +C = x +a,+X,

= ODC, = x,+b = x +a,+Xx,

= ODC, =(0ODC, 12-2 ® ODC,)
= ((xq+a’+x,) ® (x,+a+x,))’

= X1+X4

Multi-Way Stems Theorem

= Letv, € V be any internal or input vertex.

= Let{x;i=1,2,...,p}be the edge variables
corresponding to {(x, y;);i=1, 2, ..., p}.

m Let ODCX,yi ;1=1,2,...,p be the edge ODCs.
ODC, =@;_,0DC,,4,

[——
1£+1_ —.L_-p —xT

m For a 3-fanout stem variable x:

ODCX — ODCx,y1 |x2=x3=x’ @ OI:)Cx,yZ |x3=x’ ® ODCX,Y3

Observability Don't Care Algorithm ...

OBSERVABILITY(Gn(V,E) , ODCuu) {
foreach vertex v, € V in reverse topological order {
for (: =1 to p)
OoDC,, = (9f,/0x)'1 + ODC,;
ODCL{? — @EjzloDc:r..y,-|:‘.::f.;+1=*-*=;'rp. =:c’;
}
}

= For each variable, intersection of ODC at all outputs
yields condition under which output is not observed

® Global ODC of a variable
= The global ODC conditions of the input variables is the

input observability don’t care set ODC,;,.

® May be used as external ODC sets for optimizing a network
feeding the one under consideration

38

... Observability Don‘t Care Algorithm

/
ODC; = (?) ,ODC, = (é) . ODC, = (E;) :

! !
oDC., = | ¢ + 11 _ aw4+w1
“ (C-I-wl o+ a4+ 21

b’-I-:m) (dzh 414)
ODC,,. = = 1
) (b-l-:m o+ 21+ 24

o Lo _ i~ .
ODcﬂ:oncm:a@oocmz(azy + 1)@('t + 24

a + 24+ 21
_(T1T4)
r1 + 4

Global ODC of ais (Xx1x4)(x1+x4)=x1x4

a+ 1+ 14

Transformations with Don't Cares

= Boolean simplification
® Use standard minimizer (Espresso).
® Minimize the number of literals.

= Boolean substitution
¢ Simplify a function by adding an extra input.
® Equivalent to simplification with global don't care conditions.

= Example
® Substitute q = a+cd into f, = a+bcd+e to get f, = a+bq +e.
® SDC set: g®(a+cd) = g'a+qg’cd+qa’(cd)’.
¢ Simplify f, = at+bcd+e with q’a+q’'cd+ga’(cd)” as don't care.
¢ Simplication yields f, = a+bq +e.
® One literal less by changing the support of f,..

Single-Vertex Optimization

SIMPLIFY SV(Gn(V,E)){
repeat {
vy = Selected vertex ;
Compute the local don'’t care set DCy:
Optimize the function f; ;
tuntil (no more reduction is possible)

Optimization and Perturbations ...

= Replace f, by g,.
= Perturbation 6, = f, @ g,.

= Condition for feasible replacement
¢ Perturbation bounded by local don't care set
* o, <cDC,,+ODC,
® If f, and g, have the same support set S(x) then
- 8, = DC,,, +ODC, + CDCq,
® If S(g,) includes network variables
- 8, < DC_,+ODC, + SDC,

... Optimization and Perturbations

= No external don't care set.

= Replace AND by wire: g, = a

= Analysis
*o,=f®g,=—ab®a=ab.
°ODC, =y =Db+C.
®o,=ab’ < DC, =b" +c’ = feasible!

Synthesis and Testability

Testability
® Ease of testing a circuit.

Assumptions
® Combinational circuit.
¢ Single or multiple stuck-at faults.

Full testability
® Possible to generate test set for all faults.

Synergy between synthesis and testing.
Testable networks correlate to small-area networks.
Don't care conditions play a major role.

Test for Stuck-at-Faults

= Nety stuck-at 0
® Input pattern that sets y to true.
® Observe output.
® Qutput of faulty circuit differs.
* {t|y().ODC(t) = 1}.

= Nety stuck-at 1
® Same, but set y to false.
*{tly(t).ODC(t) = 1}.

= Need controllability and observability.

Using Testing Methods for Synthesis ...

= Redundancy removal.
® Use ATPG to search for untestable faults.

= If stuck-at 0 on net y is untestable
¢ Sety=0.
® Propagate constant.
= If stuck-at 1 ony is untestable
* Sety=1.
® Propagate constant.

... Using Testing Methods for Synthesis

Redundancy Removal and Perturbation

Analxsis

= Stuck-atOony.
° y set to 0. Namely g, =f,],-,.
® Perturbation
*3=f, ®f|.,=y.0of/0y.

m Perturbation is feasible < fault is untestable.

m o0=y.of /oy cDC, < fault is untestable

= Making f, prime and irredundant with respect to DC,
guarantees that all single stuck-at faults in f, are testable.

Synthesis for Testability

= Synthesize networks that are fully testable.
¢ Single stuck-at faults.
® Multiple stuck-at faults.

= Two-level forms
® Full testability for single stuck-at faults
* Prime and irredundant cover.
® Full testability for multiple stuck-at faults

* Prime and irredundant cover when
 Single-output function.
* No product term sharing.
 Each component is PI.

... oynthesis for Testability

A complete single-stuck-at fault test set for a single-
output sum-of-product circuit is a complete test set for
all multiple stuck-at faults.

Single stuck-at fault testability of multiple-level
network does not imply multiple stuck-at fault
testability.

Fast extraction transformations are single stuck-at
fault test-set preserving transformations.

Algebraic transformations preserve multiple stuck-at
fault testability but not single stuck-at fault testability

® Factorization
¢ Substitution (without complement)
® Cube and kernel extraction

Synthesis of Testable Multiple-Level
Networks ...

A logic network G_(V, E), with local functions in sum of
product form.

Prime and irredundant (Pl)
® No literal nor implicant of any local function can be dropped.

Simultaneously prime and irredundant (SPI)
® No subset of literals and/or implicants can be dropped.

A logic network is Pl if and only if

® its AND-OR implementation is fully testable for single stuck-
at faults.

A logic network is SPI if and only if

® its AND-OR implementation is fully testable for multiple stuck-
at faults.

. Synthesis of Testable Multiple-Level
Networks

Compute full local don't care sets.
® Make all local functions Pl w.r. to don't care sets.

Pitfall
® Don't cares change as functions change.

Solution
® lteration (Espresso-MLD).
® If iteration converges, network is fully testable.

Flatten to two-level form.
® When possible -- no size explosion.

Make SPI by disjoint logic minimization.

Reconstruct multiple-level network
® Algebraic transformations preserve multifault testability.

Timing Issues in Multiple-Level Logic
Optimization

= Timing optimization is crucial for achieving competitive
logic design.

= Timing verification: Check that a circuit runs at speed
¢ Satisfies I/O delay constraints.
¢ Satisfies cycle-time constraints.
® Delay modeling.
® Critical paths.
® The false path problem.

= Algorithms for timing optimization.
® Minimum area subject to delay constraints.
® Minimum delay (subject to area constraints).

Delay Modeling

= Gate delay modeling
¢ Straightforward for bound networks.
® Approximations for unbound networks.

= Network delay modeling
® Compute signal propagation
» Topological methods.
* Logic/topological methods.

= Gate delay modeling for unbound networks
® Virtual gates: Logic expressions.
¢ Stage delay model: Unit delay per vertex.
® Refined models: Depending on size and fanout.

Network Delay Modeling ...

= For each vertex v..
® Propagation delay d;.

= Data-ready time t.
® Denotes the time at which the data is ready at the output.
® Input data-ready times denote when inputs are available.
® Computed elsewhere by forward traversal

= The maximum data-ready time occurring at an output
vertex

® Corresponds to the longest propagation delay path
® Called topological critical path

... Network Delay Modeling ...

ty= 3+0=3

t,= 8+3=11

t,.= 10+3=13

t,= 5+10=15

t,= 2+max{15,3}=17

t= 3+max{13,17}=20
t,= 1+max{3,11,20}=21
t,=2+21=23

ty= 2+20=22

t,= 3+22=25

= Assume t,=0 and t_,=10.

m Propagation delays
®d;=3;d,=8;d,=1,d,=10;d, = 3;
. dn=5;dp=2;dq=2;dx=2;dy=3;
® Maximum data-ready time is t, =25
® Topological critical path: (v,, v, Vo, Vi, Vs vy).

... Network Delay Modeling ...

= For each vertex v,.
* Required data-ready time t..
-« Specified at the primary outputs.
« Computed elsewhere by backward traversal

¢ Slack s;.
+ Difference between required and actual data-ready times

. Network Delay Modeling

Required data-ready times

t,=25andt, = 25.

Required Times & Slack:
5= 2y 5,70
t = 25-2=23; s5,,=23-21=2
t,= 25-3=22; s,=22-22=0

= min{23-1,22-2}=20; s,=0
t,= 23-1=22; s,=22-11=11
= 20-3=17; 5,=17-13=4

= 20-3=17; s,=17-17=0
17-2=15; s =15-15=0
15-5=10; s,=10-10=0
min{22-8;17-10;17-2}=7; s =4
=7-3=4; s_=4-0=4

o 1S

Propagation Delays :
d,=3;d,=38; d,.=1;d _=10;
d=3;d,=5d,=2;d,=2;
d,=2;d,=3

Data-Ready Times:
ty= 3+0=3

= 8+3=11
t,.=10+3=13
t,= 5+10=15
t,= 2+max{15,3}=17

= 3+max{13,17}=20
t,= 1+max{3,11,20}=21
t,.=2+21=23
ty= 2+20=22

t,= 3+22=25

Topological Critical Path ...

= Assume topologic computation of
¢ Data-ready by forward traversal.
® Required data-ready by backward traversal.

= Topological critical path
® Input/output path with zero slacks.
® Any increase in the vertex propagation delay affects the
output data-ready time.
= A topological critical path may be false.
® No event can propagate along that path.
® False path does not affect performance

... Topological Critical Path

False Path Example

All gates have unit delay.
All inputs ready at time 0.

Longest topological path: (v, v, vy, Vy Vv,).
¢ Path delay: 4 units.
¢ False path: event cannot propagate through it
Critical true path: (v,, v, vy, V).
¢ Path delay: 3 units.

Algorithms for Delay Minimization ...

= Alternate
® Critical path computation.
® Logic transformation on critical vertices.

m Consider quasi critical paths
¢ Paths with near-critical delay.
¢ Small slacks.

= Small difference between critical paths and largest delay of
a non-critical path leads to smaller gain in speeding up
critical paths only.

... Algorithms for Delay Minimization

= Most critical delay optimization algorithms have the
following framework:

REDUCE_DELAY (Gn(V, E) ,e){

repeat {
Compute critical paths and critical delay T;
Set output required data-ready times to r;
Compute slacks;
U = vertex subset with slack lower than e;
W = select vertices in U,;
Apply transformations to vertices W,

tuntil (no transformation can reduce 7);

Transformations for Delay Reduction ...

Reduce propagation delay.
Reduce dependencies from critical inputs.

Favorable transformation
® Reduces local data-ready time.

® Any data-ready time increase at other vertices is bounded by
the local slack.

Example
¢ Unit gate delay.

® Transformation: Elimination.
 Always favorable.
- Obtain several area/delay trade-off points.

... 1ransformations for Delay Reduction

W is a minimum-weight
separation set from U.

Iteration 1

® Values of Vs Vg Vi = -1

® Value of v=0.
® Eliminate Vps Vg (No literal
increase.)

Iteration 2
® Value of v,=2, value of v =-1.

® Eliminate v,. (No literal
increase.)

Iteration 3

® Eliminate v, , v, v,. (Literals

increase.)

More Refined Delay Models

= Propagation delay grows with the size
of the expression and with fanout load.

= Elimination
® Reduces one stage.
® Yields more complex and slower gates.
¢ May slow other paths.

= Substitution
® Adds one dependency.
® Loads and slows a gate.
¢ May slow other paths.

® Useful if arrival time of critical
input is larger than other inputs

Speed-Up Algorithm ...

Decompose network into two-input NAND gates and
inverters.

Determine a subnetwork W of depth d.
Collapse subnetwork by elimination.

Duplicate input vertices with successors outside W
® Record area penalty.
® Resynthesize W by timing-driven decomposition.

Heuristics
® Choice of W.
® Monitor area penalty and potential speed-up.

... opeed-Up Algorithm

= Example

° NAND delay =2.

® INVERTER delay =1.

¢ All input data-ready=0 except
t,=3.

¢ Critical Path: from V to V, (11
delay units)

® Assume V. is selected and
d=5.

® New critical path: 8 delay units.

