
COE 561COE 561
Digital System Design & Digital System Design &

SynthesisSynthesis
MultipleMultiple--Level Logic SynthesisLevel Logic Synthesis

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

2

Outline …Outline Outline ……

Representations.
Taxonomy of optimization methods.
• Goals: area/delay.
• Algorithms: Algebraic/Boolean.
• Rule-based methods.

Examples of transformations.
Algebraic model.
• Algebraic division.
• Algebraic substitution.
• Single-cube extraction.
• Multiple-cube extraction.
• Decomposition.
• Factorization.
• Fast extraction.

Representations.
Taxonomy of optimization methods.
• Goals: area/delay.
• Algorithms: Algebraic/Boolean.
• Rule-based methods.

Examples of transformations.
Algebraic model.
• Algebraic division.
• Algebraic substitution.
• Single-cube extraction.
• Multiple-cube extraction.
• Decomposition.
• Factorization.
• Fast extraction.

3

… Outline…… OutlineOutline

External and internal don’t care sets.
• Controllability don’t care sets.
• Observability don’t care sets.

Boolean simplification and substitution.
Testability properties of multiple-level logic.
Synthesis for testability.
Network delay modeling.
Algorithms for delay minimization.
Transformations for delay reduction.

External and internal don’t care sets.
• Controllability don’t care sets.
• Observability don’t care sets.

Boolean simplification and substitution.
Testability properties of multiple-level logic.
Synthesis for testability.
Network delay modeling.
Algorithms for delay minimization.
Transformations for delay reduction.

4

MotivationMotivationMotivation

Combinational logic circuits very often implemented as
multiple-level networks of logic gates.
Provides several degrees of freedom in logic design
• Exploited in optimizing area and delay.
• Different timing requirements on input/output paths.

Multiple-level networks viewed as interconnection of
single-output gates
• Single type of gate (e.g. NANDs or NORs).
• Instances of a cell library.
• Macro cells.

Multilevel optimization is divided into two tasks
• Optimization neglecting implementation constraints assuming

loose models of area and delay.
• Constraints on the usable gates are taken into account during

optimization.

Combinational logic circuits very often implemented as
multiple-level networks of logic gates.
Provides several degrees of freedom in logic design
• Exploited in optimizing area and delay.
• Different timing requirements on input/output paths.

Multiple-level networks viewed as interconnection of
single-output gates
• Single type of gate (e.g. NANDs or NORs).
• Instances of a cell library.
• Macro cells.

Multilevel optimization is divided into two tasks
• Optimization neglecting implementation constraints assuming

loose models of area and delay.
• Constraints on the usable gates are taken into account during

optimization.

5

Circuit ModelingCircuit ModelingCircuit Modeling

Logic network
• Interconnection of logic functions.
• Hybrid structural/behavioral model.

Bound (mapped) networks
• Interconnection of logic gates.
• Structural model.

Logic network
• Interconnection of logic functions.
• Hybrid structural/behavioral model.

Bound (mapped) networks
• Interconnection of logic gates.
• Structural model.

Example of Bound Network

6

Example of a Logic NetworkExample of a Logic NetworkExample of a Logic Network

7

Network OptimizationNetwork OptimizationNetwork Optimization

Two-level logic
• Area and delay proportional to cover size.
• Achieving minimum (or irredundant) covers corresponds to

optimizing area and speed.
• Achieving irredundant cover corresponds to maximizing

testability.
Multiple-level logic
• Minimal-area implementations do not correspond in general

to minimum-delay implementations and vice versa.
• Minimize area (power) estimate

• subject to delay constraints.
• Minimize maximum delay

• subject to area (power) constraints.
• Minimize power consumption.

• subject to delay constraints.
• Maximize testability.

Two-level logic
• Area and delay proportional to cover size.
• Achieving minimum (or irredundant) covers corresponds to

optimizing area and speed.
• Achieving irredundant cover corresponds to maximizing

testability.
Multiple-level logic
• Minimal-area implementations do not correspond in general

to minimum-delay implementations and vice versa.
• Minimize area (power) estimate

• subject to delay constraints.
• Minimize maximum delay

• subject to area (power) constraints.
• Minimize power consumption.

• subject to delay constraints.
• Maximize testability.

8

EstimationEstimationEstimation

Area
• Number of literals

• Corresponds to number of polysilicon strips (transistors)
• Number of functions/gates.

Delay
• Number of stages (unit delay per stage).
• Refined gate delay models (relating delay to function

complexity and fanout).
• Sensitizable paths (detection of false paths).
• Wiring delays estimated using statistical models.

Area
• Number of literals

• Corresponds to number of polysilicon strips (transistors)
• Number of functions/gates.

Delay
• Number of stages (unit delay per stage).
• Refined gate delay models (relating delay to function

complexity and fanout).
• Sensitizable paths (detection of false paths).
• Wiring delays estimated using statistical models.

9

Problem AnalysisProblem AnalysisProblem Analysis

Multiple-level optimization is hard.
Exact methods
• Exponential complexity.
• Impractical.

Approximate methods
• Heuristic algorithms.
• Rule-based methods.

Strategies for optimization
• Improve circuit step by step based on circuit transformations.
• Preserve network behavior.
• Methods differ in

• Types of transformations.
• Selection and order of transformations.

Multiple-level optimization is hard.
Exact methods
• Exponential complexity.
• Impractical.

Approximate methods
• Heuristic algorithms.
• Rule-based methods.

Strategies for optimization
• Improve circuit step by step based on circuit transformations.
• Preserve network behavior.
• Methods differ in

• Types of transformations.
• Selection and order of transformations.

10

EliminationEliminationElimination

Eliminate one function from the network.
Perform variable substitution.
Example
• s = r +b’; r = p+a’
• ⇒ s = p+a’+b’.

Eliminate one function from the network.
Perform variable substitution.
Example
• s = r +b’; r = p+a’
• ⇒ s = p+a’+b’.

11

DecompositionDecompositionDecomposition

Break one function into smaller ones.
Introduce new vertices in the network.
Example
• v = a’d+bd+c’d+ae’.
• ⇒ j = a’+b+c’; v = jd+ae’

Break one function into smaller ones.
Introduce new vertices in the network.
Example
• v = a’d+bd+c’d+ae’.
• ⇒ j = a’+b+c’; v = jd+ae’

12

FactoringFactoringFactoring

Factoring is the process of deriving a factored form
from a sum-of-products form of a function.
Factoring is like decomposition except that no
additional nodes are created.
Example
• F = abc+abd+a’b’c+a’b’d+ab’e+ab’f+a’be+a’bf (24 literals)
• After factorization

• F=(ab+a’b’)(c+d) + (ab’+a’b)(e+f) (12 literals)

Factoring is the process of deriving a factored form
from a sum-of-products form of a function.
Factoring is like decomposition except that no
additional nodes are created.
Example
• F = abc+abd+a’b’c+a’b’d+ab’e+ab’f+a’be+a’bf (24 literals)
• After factorization

• F=(ab+a’b’)(c+d) + (ab’+a’b)(e+f) (12 literals)

13

Extraction …Extraction Extraction ……

Find a common sub-expression of two (or more)
expressions.
Extract sub-expression as new function.
Introduce new vertex in the network.
Example
• p = ce+de; t = ac+ad+bc+bd+e; (13 literals)
• p = (c+d)e; t = (c+d)(a+b)+e; (Factoring:8 literals)
• ⇒ k = c+d; p = ke; t = ka+ kb +e; (Extraction:9 literals)

Find a common sub-expression of two (or more)
expressions.
Extract sub-expression as new function.
Introduce new vertex in the network.
Example
• p = ce+de; t = ac+ad+bc+bd+e; (13 literals)
• p = (c+d)e; t = (c+d)(a+b)+e; (Factoring:8 literals)
• ⇒ k = c+d; p = ke; t = ka+ kb +e; (Extraction:9 literals)

14

… Extraction…… ExtractionExtraction

15

SimplificationSimplificationSimplification

Simplify a local function (using Espresso).
Example
• u = q’c+qc’ +qc;
• ⇒ u = q +c;

Simplify a local function (using Espresso).
Example
• u = q’c+qc’ +qc;
• ⇒ u = q +c;

16

SubstitutionSubstitutionSubstitution

Simplify a local function by using an additional input that was
not previously in its support set.
Example
• t = ka+kb+e.
• ⇒ t = kq +e; because q = a+b.

Simplify a local function by using an additional input that was
not previously in its support set.
Example
• t = ka+kb+e.
• ⇒ t = kq +e; because q = a+b.

17

Example: Sequence of TransformationsExample: Sequence of TransformationsExample: Sequence of Transformations

Original Network (33 lit.) Transformed Network (20 lit.)

18

Optimization ApproachesOptimization ApproachesOptimization Approaches

Algorithmic approach
• Define an algorithm for each transformation type.
• Algorithm is an operator on the network.
• Each operator has well-defined properties

• Heuristic methods still used.
• Weak optimality properties.

• Sequence of operators
• Defined by scripts.
• Based on experience.

Rule-based approach (IBM Logic Synthesis System)
• Rule-data base

• Set of pattern pairs.
• Pattern replacement driven by rules.

Algorithmic approach
• Define an algorithm for each transformation type.
• Algorithm is an operator on the network.
• Each operator has well-defined properties

• Heuristic methods still used.
• Weak optimality properties.

• Sequence of operators
• Defined by scripts.
• Based on experience.

Rule-based approach (IBM Logic Synthesis System)
• Rule-data base

• Set of pattern pairs.
• Pattern replacement driven by rules.

19

Elimination Algorithm …Elimination Algorithm Elimination Algorithm ……

Set a threshold k (usually 0).
Examine all expressions (vertices) and compute their values.
Vertex value = n*l – n – l (l is number of literals; n is number of
times vertex variable appears in network)
Eliminate an expression (vertex) if its value (i.e. the increase in
literals) does not exceed the threshold.

Set a threshold k (usually 0).
Examine all expressions (vertices) and compute their values.
Vertex value = n*l – n – l (l is number of literals; n is number of
times vertex variable appears in network)
Eliminate an expression (vertex) if its value (i.e. the increase in
literals) does not exceed the threshold.

20

… Elimination Algorithm…… Elimination AlgorithmElimination Algorithm

Example
• q = a + b
• s = ce + de + a’ + b’
• t = ac + ad + bc + bd + e
• u = q’c + qc’ + qc
• v = a’d + bd + c’d + ae’

Value of vertex q=n*l–n–l=3*2-3-2=1
• It will increase number of literals => not eliminated

Assume u is simplified to u=c+q
• Value of vertex q=n*l–n–l=1*2-1-2=-1
• It will decrease the number of literals by 1 => eliminated

Example
• q = a + b
• s = ce + de + a’ + b’
• t = ac + ad + bc + bd + e
• u = q’c + qc’ + qc
• v = a’d + bd + c’d + ae’

Value of vertex q=n*l–n–l=3*2-3-2=1
• It will increase number of literals => not eliminated

Assume u is simplified to u=c+q
• Value of vertex q=n*l–n–l=1*2-1-2=-1
• It will decrease the number of literals by 1 => eliminated

21

MIS/SIS Rugged ScriptMIS/SIS Rugged ScriptMIS/SIS Rugged Script

sweep; eliminate -1
simplify -m nocomp
eliminate -1
sweep; eliminate 5
simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full-simplify -m nocomp

sweep; eliminate -1
simplify -m nocomp
eliminate -1
sweep; eliminate 5
simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full-simplify -m nocomp

SweepSweep eliminates singleeliminates single--
input Vertices and those input Vertices and those
with a constant function.with a constant function.

fxfx extracts doubleextracts double--cube and cube and
singlesingle--cube expression.cube expression.

resubresub ––aa performs performs
algebraic substitution of all algebraic substitution of all
vertex pairsvertex pairs

22

Boolean and Algebraic Methods …Boolean and Algebraic Methods Boolean and Algebraic Methods ……

Boolean methods
• Exploit Boolean properties of logic functions.
• Use don't care conditions induced by interconnections.
• Complex at times.

Algebraic methods
• View functions as polynomials.
• Exploit properties of polynomial algebra.
• Simpler, faster but weaker.

Boolean methods
• Exploit Boolean properties of logic functions.
• Use don't care conditions induced by interconnections.
• Complex at times.

Algebraic methods
• View functions as polynomials.
• Exploit properties of polynomial algebra.
• Simpler, faster but weaker.

23

… Boolean and Algebraic Methods…… Boolean and Algebraic MethodsBoolean and Algebraic Methods

Boolean substitution
• h = a+bcd+e; q = a+cd
• ⇒ h = a+bq +e
• Because a+bq+e = a+b(a+cd)+e = a+bcd+e;

• Relies on Boolean property b+1=1

Algebraic substitution
• t = ka+kb+e; q=a+b
• ⇒ t = kq +e
• Because k(a+b) = ka+kb; holds regardless of any assumption

of Boolean algebra.

Boolean substitution
• h = a+bcd+e; q = a+cd
• ⇒ h = a+bq +e
• Because a+bq+e = a+b(a+cd)+e = a+bcd+e;

• Relies on Boolean property b+1=1

Algebraic substitution
• t = ka+kb+e; q=a+b
• ⇒ t = kq +e
• Because k(a+b) = ka+kb; holds regardless of any assumption

of Boolean algebra.

24

The Algebraic Model …The Algebraic Model The Algebraic Model ……

Represents local Boolean functions by algebraic
expressions
• Multilinear polynomial (i.e. multi-variable with degree 1) over

set of variables with unit coefficients.

Algebraic transformations neglect specific features of
Boolean algebra
• Only one distributive law applies

• a . (b+c) = ab+ac
• a + (b . c) ≠ (a+b).(a+c)

• Complements are not defined
• Cannot apply some properties like absorption, idempotence,

involution and Demorgan’s, a+a’=1 and a.a’=0
• Symmetric distribution laws.
• Don't care sets are not used.

Represents local Boolean functions by algebraic
expressions
• Multilinear polynomial (i.e. multi-variable with degree 1) over

set of variables with unit coefficients.

Algebraic transformations neglect specific features of
Boolean algebra
• Only one distributive law applies

• a . (b+c) = ab+ac
• a + (b . c) ≠ (a+b).(a+c)

• Complements are not defined
• Cannot apply some properties like absorption, idempotence,

involution and Demorgan’s, a+a’=1 and a.a’=0
• Symmetric distribution laws.
• Don't care sets are not used.

25

… The Algebraic Model…… The Algebraic ModelThe Algebraic Model

Algebraic expressions obtained by
• Modeling functions in sum of products form.
• Make them minimal with respect to single-cube containment.

Algebraic operations restricted to expressions with
disjoint support
• Preserve correspondence of result with sum-of-product forms

minimal w.r.t single-cube containment.

Example
• (a+b)(c+d)=ac+ad+bc+bd; minimal w.r.t SCC.
• (a+b)(a+c)= aa+ac+ab+bc; non-minimal.
• (a+b)(a’+c)=aa’+ac+a’b+bc; non-minimal.

Algebraic expressions obtained by
• Modeling functions in sum of products form.
• Make them minimal with respect to single-cube containment.

Algebraic operations restricted to expressions with
disjoint support
• Preserve correspondence of result with sum-of-product forms

minimal w.r.t single-cube containment.

Example
• (a+b)(c+d)=ac+ad+bc+bd; minimal w.r.t SCC.
• (a+b)(a+c)= aa+ac+ab+bc; non-minimal.
• (a+b)(a’+c)=aa’+ac+a’b+bc; non-minimal.

26

Algebraic Division …Algebraic Division Algebraic Division ……

Given two algebraic expressions fdividend and fdivisor , we
say that fdivisor is an Algebraic Divisor of fdividend ,
fquotient = fdividend/fdivisor when
• fdividend = fdivisor . fquotient + fremainder• fdivisor . fquotient ≠ 0
• and the support of fdivisor and fquotient is disjoint.

Example
• Let fdividend = ac+ad+bc+bd+e and fdivisor = a+b

• Then fquotient = c+d fremainder = e
• Because (a+b) (c+d)+e = fdividend
• and {a,b} ∩ {c,d} = ∅

• Non-algebraic division
• Let fi = a+bc and fj = a+b.
• Let fk = a+c. Then, fi = fj . fk = (a+b)(a+c) = fi
• but {a,b} ∩ {a,c} ≠ ∅

Given two algebraic expressions fdividend and fdivisor , we
say that fdivisor is an Algebraic Divisor of fdividend ,
fquotient = fdividend/fdivisor when
• fdividend = fdivisor . fquotient + fremainder• fdivisor . fquotient ≠ 0
• and the support of fdivisor and fquotient is disjoint.

Example
• Let fdividend = ac+ad+bc+bd+e and fdivisor = a+b

• Then fquotient = c+d fremainder = e
• Because (a+b) (c+d)+e = fdividend
• and {a,b} ∩ {c,d} = ∅

• Non-algebraic division
• Let fi = a+bc and fj = a+b.
• Let fk = a+c. Then, fi = fj . fk = (a+b)(a+c) = fi
• but {a,b} ∩ {a,c} ≠ ∅

27

… Algebraic Division…… Algebraic DivisionAlgebraic Division

An algebraic divisor is called a factor when the
remainder is void.
• a+b is a factor of ac+ad+bc+bd

An expression is said to be cube free when it cannot
be factored by a cube.
• a+b is cube free
• ac+ad+bc+bd is cube free
• ac+ad is non-cube free
• abc is non-cube free

An algebraic divisor is called a factor when the
remainder is void.
• a+b is a factor of ac+ad+bc+bd

An expression is said to be cube free when it cannot
be factored by a cube.
• a+b is cube free
• ac+ad+bc+bd is cube free
• ac+ad is non-cube free
• abc is non-cube free

28

Algebraic Division Algorithm …Algebraic Division Algorithm Algebraic Division Algorithm ……

Quotient Q and remainder
R are sum of cubes
(monomials).
Intersection is largest
subset of common
monomials.

Quotient Q and remainder
R are sum of cubes
(monomials).
Intersection is largest
subset of common
monomials.

divisortheofmonomials

cubesset ofn}j{CB B
j

)(

 ,...2,1 , ==

dividendtheofmonomials

cubesset ofl}j{CA A
j

)(

 ,...2,1 , ==

29

… Algebraic Division Algorithm ……… Algebraic Division Algorithm Algebraic Division Algorithm ……

Example
• fdividend = ac+ad+bc+bd+e;
• fdivisor = a+b;
• A = {ac, ad, bc, bd, e} and B = {a, b}.
• i = 1

• CB
1 = a, D = {ac, ad} and D1 = {c, d}.

• Q = {c, d}.
• i = 2 = n

• CB
2 = b, D = {bc, bd} and D2 = {c, d}.

• Then Q = {c, d} ∩ {c, d} = {c, d}.
• Result

• Q = {c, d} and R = {e}.
• fquotient = c+d and fremainder = e.

Example
• fdividend = ac+ad+bc+bd+e;
• fdivisor = a+b;
• A = {ac, ad, bc, bd, e} and B = {a, b}.
• i = 1

• CB
1 = a, D = {ac, ad} and D1 = {c, d}.

• Q = {c, d}.
• i = 2 = n

• CB
2 = b, D = {bc, bd} and D2 = {c, d}.

• Then Q = {c, d} ∩ {c, d} = {c, d}.
• Result

• Q = {c, d} and R = {e}.
• fquotient = c+d and fremainder = e.

30

… Algebraic Division Algorithm…… Algebraic Division AlgorithmAlgebraic Division Algorithm

Example
• Let fdividend = axc+axd+bc+bxd+e; fdivisor = ax+b
• i=1, CB

1 = ax, D = {axc, axd} and D1 = {c, d}; Q={c, d}
• i = 2 = n; CB

2 = b, D = {bc, bxd} and D2 = {c, xd}.
• Then Q = {c, d} ∩ {c, xd} = {c}.
• fquotient = c and fremainder = axd+bxd+e.

Theorem: Given algebraic expressions fi and fj, then fi/fj is
empty when
• fj contains a variable not in fi.
• fj contains a cube whose support is not contained in that of

any cube of fi.
• fj contains more cubes than fi.
• The count of any variable in fj larger than in fi.

Example
• Let fdividend = axc+axd+bc+bxd+e; fdivisor = ax+b
• i=1, CB

1 = ax, D = {axc, axd} and D1 = {c, d}; Q={c, d}
• i = 2 = n; CB

2 = b, D = {bc, bxd} and D2 = {c, xd}.
• Then Q = {c, d} ∩ {c, xd} = {c}.
• fquotient = c and fremainder = axd+bxd+e.

Theorem: Given algebraic expressions fi and fj, then fi/fj is
empty when
• fj contains a variable not in fi.
• fj contains a cube whose support is not contained in that of

any cube of fi.
• fj contains more cubes than fi.
• The count of any variable in fj larger than in fi.

31

SubstitutionSubstitutionSubstitution

Substitution replaces a subexpression by a variable
associated with a vertex of the logic network.
Consider expression pairs.
Apply division (in any order).
If quotient is not void
• Evaluate area/delay gain
• Substitute fdividend by j.fquotient + fremainder where j = fdivisor

Use filters to reduce divisions.
Theorem
• Given two algebraic expressions fi and fj, fi/fj=∅ if there is a

path from vi to vj in the logic network.

Substitution replaces a subexpression by a variable
associated with a vertex of the logic network.
Consider expression pairs.
Apply division (in any order).
If quotient is not void
• Evaluate area/delay gain
• Substitute fdividend by j.fquotient + fremainder where j = fdivisor

Use filters to reduce divisions.
Theorem
• Given two algebraic expressions fi and fj, fi/fj=∅ if there is a

path from vi to vj in the logic network.

32

Substitution algorithmSubstitution algorithmSubstitution algorithm

33

ExtractionExtractionExtraction

Search for common sub-expressions
• Single-cube extraction: monomial.
• Multiple-cube (kernel) extraction: polynomial

Search for appropriate divisors.
Cube-free expression
• Cannot be factored by a cube.

Kernel of an expression
• Cube-free quotient of the expression divided by a cube

(called co-kernel).

Kernel set K(f) of an expression
• Set of kernels.

Search for common sub-expressions
• Single-cube extraction: monomial.
• Multiple-cube (kernel) extraction: polynomial

Search for appropriate divisors.
Cube-free expression
• Cannot be factored by a cube.

Kernel of an expression
• Cube-free quotient of the expression divided by a cube

(called co-kernel).

Kernel set K(f) of an expression
• Set of kernels.

34

Kernel ExampleKernel ExampleKernel Example

fx = ace+bce+de+g
Divide fx by a. Get ce. Not cube free.
Divide fx by b. Get ce. Not cube free.
Divide fx by c. Get ae+be. Not cube free.
Divide fx by ce. Get a+b. Cube free. Kernel!
Divide fx by d. Get e. Not cube free.
Divide fx by e. Get ac+bc+d. Cube free. Kernel!
Divide fx by g. Get 1. Not cube free.
Expression fx is a kernel of itself because cube free.
K(fx) = {(a+b); (ac+bc+d); (ace+bce+de+g)}.

fx = ace+bce+de+g
Divide fx by a. Get ce. Not cube free.
Divide fx by b. Get ce. Not cube free.
Divide fx by c. Get ae+be. Not cube free.
Divide fx by ce. Get a+b. Cube free. Kernel!
Divide fx by d. Get e. Not cube free.
Divide fx by e. Get ac+bc+d. Cube free. Kernel!
Divide fx by g. Get 1. Not cube free.
Expression fx is a kernel of itself because cube free.
K(fx) = {(a+b); (ac+bc+d); (ace+bce+de+g)}.

35

Theorem (Brayton and McMullen)Theorem (Theorem (BraytonBrayton and McMullen)and McMullen)

Two expressions fa and fb have a common multiple-
cube divisor fd if and only if
• there exist kernels ka ∈ K(fa) and kb ∈ K(fb) s.t. fd is the sum

of 2 (or more) cubes in ka ∩ kb (intersection is largest subset
of common monomials)

Consequence
• If kernel intersection is void, then the search for common sub-

expression can be dropped.

Example

Two expressions fa and fb have a common multiple-
cube divisor fd if and only if
• there exist kernels ka ∈ K(fa) and kb ∈ K(fb) s.t. fd is the sum

of 2 (or more) cubes in ka ∩ kb (intersection is largest subset
of common monomials)

Consequence
• If kernel intersection is void, then the search for common sub-

expression can be dropped.

Example
fx = ace+bce+de+g; K(fx) = {(a+b); (ac+bc+d); (ace+bce+de+g)}
fy = ad+bd+cde+ge; K(fy) = {(a+b+ce); (cd+g); (ad+bd+cde+ge)}
fz = abc; The kernel set of fz is empty.
Select intersection (a+b)
fw = a+b fx = wce+de+g
fy = wd+cde+ge fz = abc

36

Kernel Set Computation …Kernel Set Computation Kernel Set Computation ……

Naive method
• Divide function by elements in power set of its support set.
• Weed out non cube-free quotients.

Smart way
• Use recursion

• Kernels of kernels are kernels of original expression.
• Exploit commutativity of multiplication.

• Kernels with co-kernels ab and ba are the same

A kernel has level 0 if it has no kernel except itself.
A kernel is of level n if it has
• at least one kernel of level n-1
• no kernels of level n or greater except itself

Naive method
• Divide function by elements in power set of its support set.
• Weed out non cube-free quotients.

Smart way
• Use recursion

• Kernels of kernels are kernels of original expression.
• Exploit commutativity of multiplication.

• Kernels with co-kernels ab and ba are the same

A kernel has level 0 if it has no kernel except itself.
A kernel is of level n if it has
• at least one kernel of level n-1
• no kernels of level n or greater except itself

37

…Kernel Set Computation……Kernel Set ComputationKernel Set Computation

Y= adf + aef + bdf + bef + cdf + cef + g
= (a+b+c)(d+e) f + g

Y= adf + aef + bdf + bef + cdf + cef + g
= (a+b+c)(d+e) f + g

21(a+b+c)(d+e)f+g
1f(a+b+c)(d+e)
0af, bf, cf(d+e)
0df, ef(a+b+c)

LevelCo-KernelsKernels

38

Recursive Kernel Computation: Simple
Algorithm
Recursive Kernel Computation: Simple Recursive Kernel Computation: Simple
AlgorithmAlgorithm

• f is assumed to be cube-free
• If not divide it by its largest cube factor

39

Recursive Kernel Computation ExampleRecursive Kernel Computation ExampleRecursive Kernel Computation Example

f = ace+bce+de+g
Literals a or b. No action required.
Literal c. Select cube ce:
• Recursive call with argument (ace+bce+de+g)/ce =a+b;
• No additional kernels.
• Adds a+b to the kernel set at the last step.

Literal d. No action required.
Literal e. Select cube e:
• Recursive call with argument ac+bc+d
• Kernel a+b is rediscovered and added.
• Adds ac + bc + d to the kernel set at the last step.

Literal g. No action required.
Adds ace+bce+de+g to the kernel set.
K = {(ace+bce+de+g); (a+b); (ac+bc+d); (a+b)}.

f = ace+bce+de+g
Literals a or b. No action required.
Literal c. Select cube ce:
• Recursive call with argument (ace+bce+de+g)/ce =a+b;
• No additional kernels.
• Adds a+b to the kernel set at the last step.

Literal d. No action required.
Literal e. Select cube e:
• Recursive call with argument ac+bc+d
• Kernel a+b is rediscovered and added.
• Adds ac + bc + d to the kernel set at the last step.

Literal g. No action required.
Adds ace+bce+de+g to the kernel set.
K = {(ace+bce+de+g); (a+b); (ac+bc+d); (a+b)}.

40

AnalysisAnalysisAnalysis

Some computation may be redundant
• Example

• Divide by a and then by b.
• Divide by b and then by a.

• Obtain duplicate kernels.

Improvement
• Keep a pointer to literals used so far denoted by j.
• J initially set to 1.
• Avoids generation of co-kernels already calculated
• Sup(f)={x1, x2, …xn} (arranged in lexicographic order)
• f is assumed to be cube-free

• If not divide it by its largest cube factor
• Faster algorithm

Some computation may be redundant
• Example

• Divide by a and then by b.
• Divide by b and then by a.

• Obtain duplicate kernels.

Improvement
• Keep a pointer to literals used so far denoted by j.
• J initially set to 1.
• Avoids generation of co-kernels already calculated
• Sup(f)={x1, x2, …xn} (arranged in lexicographic order)
• f is assumed to be cube-free

• If not divide it by its largest cube factor
• Faster algorithm

41

Recursive Kernel ComputationRecursive Kernel ComputationRecursive Kernel Computation

42

Recursive Kernel Computation Examples…Recursive Kernel Computation ExamplesRecursive Kernel Computation Examples……

f = ace+bce+de+g; sup(f)={a, b, c, d, e, g}
Literals a or b. No action required.
Literal c. Select cube ce:
• Recursive call with arguments: (ace+bce+de+g)/ce =a+b; pointer j =

3+1=4.
• Call considers variables {d, e, g}. No kernel.
• Adds a+b to the kernel set at the last step.

Literal d. No action required.
Literal e. Select cube e:
• Recursive call with arguments: ac+bc+d and pointer j = 5+1=6.
• Call considers variable {g}. No kernel.
• Adds ac+bc+d to the kernel set at the last step.

Literal g. No action required.
Adds ace+bce+de+g to the kernel set.
K = {(ace+bce+de+g); (ac+bc+d); (a+b)}.

f = ace+bce+de+g; sup(f)={a, b, c, d, e, g}
Literals a or b. No action required.
Literal c. Select cube ce:
• Recursive call with arguments: (ace+bce+de+g)/ce =a+b; pointer j =

3+1=4.
• Call considers variables {d, e, g}. No kernel.
• Adds a+b to the kernel set at the last step.

Literal d. No action required.
Literal e. Select cube e:
• Recursive call with arguments: ac+bc+d and pointer j = 5+1=6.
• Call considers variable {g}. No kernel.
• Adds ac+bc+d to the kernel set at the last step.

Literal g. No action required.
Adds ace+bce+de+g to the kernel set.
K = {(ace+bce+de+g); (ac+bc+d); (a+b)}.

43

…Recursive Kernel Computation Examples……Recursive Kernel Computation ExamplesRecursive Kernel Computation Examples

Y= adf + aef + bdf + bef + cdf + cef + g=(d+e)(a+b+c)f+g
• Lexicographic order {a, b, c, d, e, f, g}

Y= adf + aef + bdf + bef + cdf + cef + g=(d+e)(a+b+c)f+g
• Lexicographic order {a, b, c, d, e, f, g}

adf + aef + bdf + bef + cdf + cef + g

d+e

d+e

d+e

a+b+c

a+b+c

ad+ae+bd+be+cd+ce

af
bf

cf

df ef
f

44

Matrix Representation of Kernels …Matrix Representation of Kernels Matrix Representation of Kernels ……

Boolean matrix
• Rows: cubes. Columns: variables (in both true and

complement form as needed).

Rectangle (R, C)
• Subset of rows and columns with all entries equal to 1.

Prime rectangle
• Rectangle not inside any other rectangle.

Co-rectangle (R, C’) of a rectangle (R, C)
• C’ are the columns not in C.

A co-kernel corresponds to a prime rectangle with at
least two rows.

Boolean matrix
• Rows: cubes. Columns: variables (in both true and

complement form as needed).

Rectangle (R, C)
• Subset of rows and columns with all entries equal to 1.

Prime rectangle
• Rectangle not inside any other rectangle.

Co-rectangle (R, C’) of a rectangle (R, C)
• C’ are the columns not in C.

A co-kernel corresponds to a prime rectangle with at
least two rows.

45

… Matrix Representation of Kernels ……… Matrix Representation of Kernels Matrix Representation of Kernels ……

fx = ace+bce+de+g
Rectangle (prime): ({1, 2}, {3, 5})
• Co-kernel ce.

Co-rectangle: ({1, 2}, {1, 2, 4, 6}).
• Kernel a+b.

fx = ace+bce+de+g
Rectangle (prime): ({1, 2}, {3, 5})
• Co-kernel ce.

Co-rectangle: ({1, 2}, {1, 2, 4, 6}).
• Kernel a+b.

46

… Matrix Representation of Kernels ……… Matrix Representation of Kernels Matrix Representation of Kernels ……

Theorem: K is a kernel of f iff it is an expression
corresponding to the co-rectangle of a prime rectangle
of f.
The set of all kernels of a logic expression are in 1-1
correspondence with the set of all co-rectangles of
prime rectangles of the corresponding Boolean matrix.
A level-0 kernel is the co-rectangle of a prime rectangle
of maximal width.
A prime rectangle of maximum height corresponds to a
kernel of maximal level.

Theorem: K is a kernel of f iff it is an expression
corresponding to the co-rectangle of a prime rectangle
of f.
The set of all kernels of a logic expression are in 1-1
correspondence with the set of all co-rectangles of
prime rectangles of the corresponding Boolean matrix.
A level-0 kernel is the co-rectangle of a prime rectangle
of maximal width.
A prime rectangle of maximum height corresponds to a
kernel of maximal level.

47

… Matrix Representation of Kernels…… Matrix Representation of KernelsMatrix Representation of Kernels

Example
• F = abc + abd + ae

• Prime Rectangles & Co-Rectangles
• PR:{(1,2),(1,2)}: corresponding to co-kernel ab
• CR:{(1,2),(3,4,5)}: corresponding to kernel (c+d)
• PR:{(1,2,3),(1)}: corresponding to co-kernel a
• CR:{(1,2,3),(2,3,4,5)}: corresponding to kernel (bc+bd+e)

Example
• F = abc + abd + ae

• Prime Rectangles & Co-Rectangles
• PR:{(1,2),(1,2)}: corresponding to co-kernel ab
• CR:{(1,2),(3,4,5)}: corresponding to kernel (c+d)
• PR:{(1,2,3),(1)}: corresponding to co-kernel a
• CR:{(1,2,3),(2,3,4,5)}: corresponding to kernel (bc+bd+e)

1 2 3 4 5
Cube a b c d e

1 abc 1 1 1
2 abd 1 1 1
3 ae 1 1

48

Single-Cube Extraction …SingleSingle--Cube Extraction Cube Extraction ……

Form auxiliary function
• Sum of all product terms of all functions.

Form matrix representation
• A rectangle with at least two rows represents a common cube.
• Rectangles with at least two columns may result in savings.
• Best choice is a prime rectangle.

Use function ID for cubes
• Cube intersection from different functions.

Form auxiliary function
• Sum of all product terms of all functions.

Form matrix representation
• A rectangle with at least two rows represents a common cube.
• Rectangles with at least two columns may result in savings.
• Best choice is a prime rectangle.

Use function ID for cubes
• Cube intersection from different functions.

49

… Single-Cube Extraction…… SingleSingle--Cube ExtractionCube Extraction

Expressions
• fx = ace+bce+de+g
• fs = cde+b

Auxiliary function
• faux = ace+bce+de+g + cde+b

Matrix:

Prime rectangle: ({1, 2, 5}, {3, 5})
Extract cube ce.

Expressions
• fx = ace+bce+de+g
• fs = cde+b

Auxiliary function
• faux = ace+bce+de+g + cde+b

Matrix:

Prime rectangle: ({1, 2, 5}, {3, 5})
Extract cube ce.

50

Single-Cube Extraction AlgorithmSingleSingle--Cube Extraction AlgorithmCube Extraction Algorithm

Extraction of an l-variable cube with multiplicity n
saves (n l – n – l) literals

51

Multiple-Cube Extraction …MultipleMultiple--Cube Extraction Cube Extraction ……

We need a kernel/cube matrix.
Relabeling
• Cubes by new variables.
• Kernels by cubes.

Form auxiliary function
• Sum of all kernels.

Extend cube intersection algorithm.

We need a kernel/cube matrix.
Relabeling
• Cubes by new variables.
• Kernels by cubes.

Form auxiliary function
• Sum of all kernels.

Extend cube intersection algorithm.

52

… Multiple-Cube Extraction…… MultipleMultiple--Cube ExtractionCube Extraction

fp = ace+bce.
• K(fp) = {(a+b)}.

fq = ae+be+d.
• K(fq) = {(a+b), (ae +be+d)}.

fr = ae+be+de.
• K(fr) = {(a+b+d)}.

Relabeling
• xa = a; xb = b; xae = ae; xbe = be; xd = d;
• K(fp) = {(xa, xb)}
• K(fq) = {(xa, xb); (xae, xbe, xd)}.
• K(fr) = {(xa, xb, xd)}.

faux = xaxb + xaxb +xaexbexd + xaxbxd.
Common cube: xaxb.• xaxb corresponds to kernel intersection a+b.
• Extract a+b from fp, fq and fr.

fp = ace+bce.
• K(fp) = {(a+b)}.

fq = ae+be+d.
• K(fq) = {(a+b), (ae +be+d)}.

fr = ae+be+de.
• K(fr) = {(a+b+d)}.

Relabeling
• xa = a; xb = b; xae = ae; xbe = be; xd = d;
• K(fp) = {(xa, xb)}
• K(fq) = {(xa, xb); (xae, xbe, xd)}.
• K(fr) = {(xa, xb, xd)}.

faux = xaxb + xaxb +xaexbexd + xaxbxd.
Common cube: xaxb.• xaxb corresponds to kernel intersection a+b.
• Extract a+b from fp, fq and fr.

Cube xa xb xae xbe xd
xaxb 1 1
xaxb 1 1
xaexbexd 1 1 1
Xaxbxd 1 1 1

53

Kernel Extraction Algorithm …Kernel Extraction Algorithm …

N indicates the rate at which kernels are recomputed
K indicates the maximum level of the kernel computed

54

… Kernel Extraction Algorithm… Kernel Extraction Algorithm

Example
• F1= ac+bc; Kernels: {(a+b)}
• F2= ad+bd+cd; Kernels: {(a+b+c)}
• F3= ab+ac; Kernels: {(b+c)}

Example
• F1= ac+bc; Kernels: {(a+b)}
• F2= ad+bd+cd; Kernels: {(a+b+c)}
• F3= ab+ac; Kernels: {(b+c)}

Cube xa xb xc
xaxb 1 1
xaxbxc 1 1 1
xbxc 1 1

After extracting kernel (a+b), kernel (b+c)
is no longer a common kernel. This is why
kernel intersections need to be recomputed.

55

Tradeoffs in Kernel ExtractionTradeoffs in Kernel ExtractionTradeoffs in Kernel Extraction

56

Area Value of a Kernel …Area Value of a KernelArea Value of a Kernel ……

Let n be the number of times a kernel is used
Let l be the number of literals in a kernel and c be the
number of cubes in a kernel
Let CKi be the co-kernel for kernel i
Initial cost = ∑i=1 to n (|CKi|*c+l)=nl + c *∑i=1 to n |CKi|
Resulting cost = l+∑i=1 to n (|CKi|+1) = n+l+ ∑i=1 to n |CKi|
Value of a kernel = initial cost – resulting cost
= {nl + c *∑i=1 to n |CKi|} – {n+l+ ∑i=1 to n |CKi|}
= nl – n –l + (c-1) * ∑i=1 to n |CKi|

Let n be the number of times a kernel is used
Let l be the number of literals in a kernel and c be the
number of cubes in a kernel
Let CKi be the co-kernel for kernel i
Initial cost = ∑i=1 to n (|CKi|*c+l)=nl + c *∑i=1 to n |CKi|
Resulting cost = l+∑i=1 to n (|CKi|+1) = n+l+ ∑i=1 to n |CKi|
Value of a kernel = initial cost – resulting cost
= {nl + c *∑i=1 to n |CKi|} – {n+l+ ∑i=1 to n |CKi|}
= nl – n –l + (c-1) * ∑i=1 to n |CKi|

57

… Area Value of a Kernel…… Area Value of a KernelArea Value of a Kernel

Example:
• X = acd + bcd = (a+b)cd (6 literals)
• Y = adef + bdef = (a+b)def (8 lietrals)
• Initial cost = 14 literals

After Kernel extraction:
• Z=a+b (2 literals)
• X=Zcd (3 literals)
• Y=Zdef (4 lietrals)
• Resulting cost = 9 literals
• Savings = 14 – 9 = 5 literals

Value of kernel = nl – n –l + (c-1) * ∑i=1 to n |CKi|
• =2*2-2-2+(2-1)*(2+3)=5 literals

Example:
• X = acd + bcd = (a+b)cd (6 literals)
• Y = adef + bdef = (a+b)def (8 lietrals)
• Initial cost = 14 literals

After Kernel extraction:
• Z=a+b (2 literals)
• X=Zcd (3 literals)
• Y=Zdef (4 lietrals)
• Resulting cost = 9 literals
• Savings = 14 – 9 = 5 literals

Value of kernel = nl – n –l + (c-1) * ∑i=1 to n |CKi|
• =2*2-2-2+(2-1)*(2+3)=5 literals

58

Issues in Common Cube and Multiple-Cube
Extraction
Issues in Common Cube and MultipleIssues in Common Cube and Multiple--Cube Cube
ExtractionExtraction

Greedy approach can be applied in common cube and
multiple-cube extraction
• Rectangle selection
• Matrix update

Greedy approach may be myopic
• Local gain of one extraction considered at a time

Non-prime rectangles can contribute to lower cost
covers than prime rectangles
• Quine’s theorem cannot be applied to rectangles

Greedy approach can be applied in common cube and
multiple-cube extraction
• Rectangle selection
• Matrix update

Greedy approach may be myopic
• Local gain of one extraction considered at a time

Non-prime rectangles can contribute to lower cost
covers than prime rectangles
• Quine’s theorem cannot be applied to rectangles

59

Decomposition …Decomposition Decomposition ……

Goals of decomposition
• Reduce the size of expressions to that typical of library cells.
• Small-sized expressions more likely to be divisors of other

expressions.

Different decomposition techniques exist.
Algebraic-division-based decomposition
• Give an expression f with fdivisor as one of its divisors.
• Associate a new variable, say t, with the divisor.
• Reduce original expression to f= t . fquotient + fremainder and t= fdivisor.
• Apply decomposition recursively to the divisor, quotient and

remainder.

Important issue is choice of divisor
• A kernel.
• A level-0 kernel.
• Evaluate all kernels and select most promising one.

Goals of decomposition
• Reduce the size of expressions to that typical of library cells.
• Small-sized expressions more likely to be divisors of other

expressions.

Different decomposition techniques exist.
Algebraic-division-based decomposition
• Give an expression f with fdivisor as one of its divisors.
• Associate a new variable, say t, with the divisor.
• Reduce original expression to f= t . fquotient + fremainder and t= fdivisor.
• Apply decomposition recursively to the divisor, quotient and

remainder.

Important issue is choice of divisor
• A kernel.
• A level-0 kernel.
• Evaluate all kernels and select most promising one.

60

… Decomposition…… DecompositionDecomposition

fx = ace+bce+de+g
Select kernel ac+bc+d.
Decompose: fx = te+g; ft = ac+bc+d;
Recur on the divisor ft
• Select kernel a+b
• Decompose: ft = sc+d; fs = a+b;

fx = ace+bce+de+g
Select kernel ac+bc+d.
Decompose: fx = te+g; ft = ac+bc+d;
Recur on the divisor ft
• Select kernel a+b
• Decompose: ft = sc+d; fs = a+b;

61

Decomposition AlgorithmDecomposition AlgorithmDecomposition Algorithm

K is a threshold that determines the size of nodes
to be decomposed.

62

Factorization AlgorithmFactorization AlgorithmFactorization Algorithm

FACTOR(f)
If (the number of literals in f is one) return f
K =choose_Divisor(f)
(h, r) = Divide(f, k)
Return (FACTOR(k) FACTOR(h) + FACTOR(r))

Quick factoring: divisor restricted to first level-0 kernel
found
• Fast and effective
• Used for area and delay estimation

Good factoring: best kernel divisor is chosen
Example: f = ab + ac + bd + ce + cg
• Quick factoring: f = a (b+c) + c (e+g) + bd (8 literals)
• Good factoring: f = c (a+e+g) + b(a+d) (7 literals)

FACTOR(f)
If (the number of literals in f is one) return f
K =choose_Divisor(f)
(h, r) = Divide(f, k)
Return (FACTOR(k) FACTOR(h) + FACTOR(r))

Quick factoring: divisor restricted to first level-0 kernel
found
• Fast and effective
• Used for area and delay estimation

Good factoring: best kernel divisor is chosen
Example: f = ab + ac + bd + ce + cg
• Quick factoring: f = a (b+c) + c (e+g) + bd (8 literals)
• Good factoring: f = c (a+e+g) + b(a+d) (7 literals)

63

One-Level-0-KernelOneOne--LevelLevel--00--KernelKernel

One-Level-0-Kernel(f)
If (|f| ≤1) return 0
If (L = Literal_Count(f) ≤ 1) return f
For (i=1; i ≤n; i++){

If (L(i) > 1){
C= largest cube containing i s.t. CUBES(f,C)=CUBES(f,i)
return One-Level-0-Kernel(f/fC)

}
}

Literal_Count returns a vector of literal counts for each
literal.
• If all counts are ≤1 then f is a level-0 kernel

The first literal with a count greater than one is chosen.

One-Level-0-Kernel(f)
If (|f| ≤1) return 0
If (L = Literal_Count(f) ≤ 1) return f
For (i=1; i ≤n; i++){

If (L(i) > 1){
C= largest cube containing i s.t. CUBES(f,C)=CUBES(f,i)
return One-Level-0-Kernel(f/fC)

}
}

Literal_Count returns a vector of literal counts for each
literal.
• If all counts are ≤1 then f is a level-0 kernel

The first literal with a count greater than one is chosen.

64

Fast Extraction (FX) …Fast Extraction (FX) Fast Extraction (FX) ……

Very efficient extraction method
• Based on extraction of double-cube divisors along with their

complements and,
• Single-cube divisors with two literals.
• Number of divisors in polynomial domain.
• Preserves single stuck-at fault testability.
• [Rajski and Vasudevamurthy 1992].

Double-cube divisors are cube-free multiple-cube
divisors having exactly two cubes.
The set of double-cube divisors of a function f, denoted
D(f) = {d | d= {ci \ (ci ∩ cj), cj \ (ci ∩ cj) } } for i,j=1,..n, i≠j
• n is number of cubes in f.
• (ci ∩ cj) is called the base of a double-cube divisor.
• Empty base is allowed.

Very efficient extraction method
• Based on extraction of double-cube divisors along with their

complements and,
• Single-cube divisors with two literals.
• Number of divisors in polynomial domain.
• Preserves single stuck-at fault testability.
• [Rajski and Vasudevamurthy 1992].

Double-cube divisors are cube-free multiple-cube
divisors having exactly two cubes.
The set of double-cube divisors of a function f, denoted
D(f) = {d | d= {ci \ (ci ∩ cj), cj \ (ci ∩ cj) } } for i,j=1,..n, i≠j
• n is number of cubes in f.
• (ci ∩ cj) is called the base of a double-cube divisor.
• Empty base is allowed.

65

… Fast Extraction (FX) ……… Fast Extraction (FX) Fast Extraction (FX) ……

Example: f = ade + ag + bcde +bcg.
Double-cube divisors and their bases:

A subset of double-cube divisors is represented by Dx,y,s
• x is number of literals in first cube
• y is number of literals in second cube
• s is number of variables in support of D

A subset of single-cube divisors is denoted by Sk where k
is number of literals in single-cube divisor.

Example: f = ade + ag + bcde +bcg.
Double-cube divisors and their bases:

A subset of double-cube divisors is represented by Dx,y,s
• x is number of literals in first cube
• y is number of literals in second cube
• s is number of variables in support of D

A subset of single-cube divisors is denoted by Sk where k
is number of literals in single-cube divisor.

{}ag+bcde
{}ade+bcg

g, dea+bc
a, bcde+g
BaseDouble-cube divisors

66

Properties of Double-Cube and Single-
Cube Divisors
Properties of DoubleProperties of Double--Cube and SingleCube and Single--
Cube DivisorsCube Divisors

Example:
• xy+y’zp ∈ D2,3,4
• ab ∈ S2

D1,1,1 and D1,2,2 are null set.
For any d ∈ D1,1,2 , d’∈S2.
For any d ∈ D1,2,3 , d’∉D.
For any d ∈ D2,2,2 , d is either XOR or XNOR and d’ ∈
D2,2,2 .
For any d ∈ D2,2,3 , d’ ∈ D2,2,3.
For any d ∈ D2,2,4 , d’∉D.

Example:
• xy+y’zp ∈ D2,3,4
• ab ∈ S2

D1,1,1 and D1,2,2 are null set.
For any d ∈ D1,1,2 , d’∈S2.
For any d ∈ D1,2,3 , d’∉D.
For any d ∈ D2,2,2 , d is either XOR or XNOR and d’ ∈
D2,2,2 .
For any d ∈ D2,2,3 , d’ ∈ D2,2,3.
For any d ∈ D2,2,4 , d’∉D.

67

Extraction of Double-cube Divisor along
with its Complement
Extraction of DoubleExtraction of Double--cube Divisor along cube Divisor along
with its Complementwith its Complement

Theorem: Let f and g be two expressions. Then, f has
neither a complement double-cube divisor nor a
complement single-cube divisor in g if
• di ≠ sj’ for every di ∈ D1,1,2 (f) , sj ∈ S2(g)
• di ≠ sj’ for every di ∈ D1,1,2 (g) , sj ∈ S2(f)
• di ≠ dj’ for every di ∈ Dxor (f) , dj ∈ Dxnor (g)
• di ≠ dj’ for every di ∈ Dxnor (f) , dj ∈ Dxor (g)
• di ≠ dj’ for every di ∈ D2,2,3 (f) , dj ∈ D2,2,3 (g)

Theorem: Let f and g be two expressions. Then, f has
neither a complement double-cube divisor nor a
complement single-cube divisor in g if
• di ≠ sj’ for every di ∈ D1,1,2 (f) , sj ∈ S2(g)
• di ≠ sj’ for every di ∈ D1,1,2 (g) , sj ∈ S2(f)
• di ≠ dj’ for every di ∈ Dxor (f) , dj ∈ Dxnor (g)
• di ≠ dj’ for every di ∈ Dxnor (f) , dj ∈ Dxor (g)
• di ≠ dj’ for every di ∈ D2,2,3 (f) , dj ∈ D2,2,3 (g)

68

Weights of Double-cube Divisors and
Single-Cube Divisors
Weights of DoubleWeights of Double--cube Divisors and cube Divisors and
SingleSingle--Cube DivisorsCube Divisors

Divisor weight represents literal savings.
Weight of a double-cube divisor d ∈ Dx,y,s is
w(d) = (p-1)(x+y) – p + ∑i=1 to p |bi| + C
• p is the number of times double-cube divisor is used

• Includes complements that are also double-cube divisors
• |bi| is the number of literals in base of double-cube divisor
• C is the number of cubes containing both a and b in case

cube ab is a complement of d ∈ D1,1,2
• (p-1)(x+y) accounts for the number of literals saved by

implementing d of size (x+y) once
• -p accounts for number of literals needed to connect d in its p

occurrences

Weight of a single-cube divisor c ∈ S2 is k – 2
• K is the number of cubes containing c.

Divisor weight represents literal savings.
Weight of a double-cube divisor d ∈ Dx,y,s is
w(d) = (p-1)(x+y) – p + ∑i=1 to p |bi| + C
• p is the number of times double-cube divisor is used

• Includes complements that are also double-cube divisors
• |bi| is the number of literals in base of double-cube divisor
• C is the number of cubes containing both a and b in case

cube ab is a complement of d ∈ D1,1,2
• (p-1)(x+y) accounts for the number of literals saved by

implementing d of size (x+y) once
• -p accounts for number of literals needed to connect d in its p

occurrences

Weight of a single-cube divisor c ∈ S2 is k – 2
• K is the number of cubes containing c.

69

Fast Extraction AlgorithmFast Extraction AlgorithmFast Extraction Algorithm

Generate double-cube divisors with weights
Repeat

Select a double-cube divisor d that has a maximum weight
Wdmax

Select a single-cube divisor s having a maximum weight Wsmax
If Wdmax > Wsmax select d else select s
W = max(Wdmax, Wsmax)
If W > 0 then substitute selected divisor
Recompute weights of affected double-cube divisors

Until (W<=0)

Generate double-cube divisors with weights
Repeat

Select a double-cube divisor d that has a maximum weight
Wdmax

Select a single-cube divisor s having a maximum weight Wsmax
If Wdmax > Wsmax select d else select s
W = max(Wdmax, Wsmax)
If W > 0 then substitute selected divisor
Recompute weights of affected double-cube divisors

Until (W<=0)

70

Fast Extraction ExampleFast Extraction ExampleFast Extraction Example

F = abc + a’b’c + ab’d + a’bd + acd + a’b’d’ (18 literals)F = abc + a’b’c + ab’d + a’bd + acd + a’b’d’ (18 literals)

1a’b’c+d’

-1{}abc+a’b’d’

-1{}acd+a’b’d’
0a’bd+b’d’
0da’b+ac
0b’ad+a’d’
1adb’+c
4dab’+a’b

0ca’b’+ad
0a’b’c+bd
0b’a’c+ad

2acb+d
0bac+a’d
0abc+b’d
4cab+a’b’

WeightBased Single-cube divisors with
Wsmax are either ac or a’b’
or ad with weight of 0

Double-cube divisor=ab +
a’b’ is selected

[1]=ab + a’b’
F= [1]c + [1]’d + acd + a’b’d’

(14 literals)

71

Boolean MethodsBoolean MethodsBoolean Methods

Exploit Boolean properties.
• Don't care conditions.

Minimization of the local functions.
Slower algorithms, better quality results.
Don’t care conditions related to embedding of a
function in an environment
• Called external don’t care conditions

External don’t care conditions
• Controllability
• Observability

Exploit Boolean properties.
• Don't care conditions.

Minimization of the local functions.
Slower algorithms, better quality results.
Don’t care conditions related to embedding of a
function in an environment
• Called external don’t care conditions

External don’t care conditions
• Controllability
• Observability

72

External Don't Care Conditions …External External Don't CareDon't Care Conditions Conditions ……

Controllability don't care set CDCin
• Input patterns never produced by the environment at the

network's input.

Observability don't care set ODCout
• Input patterns representing conditions when an output is not

observed by the environment.
• Relative to each output.
• Vector notation used: ODCout.

Controllability don't care set CDCin
• Input patterns never produced by the environment at the

network's input.

Observability don't care set ODCout
• Input patterns representing conditions when an output is not

observed by the environment.
• Relative to each output.
• Vector notation used: ODCout.

73

… External Don't Care Conditions…… External External Don't CareDon't Care ConditionsConditions

Inputs driven by a decoder.
CDCin = x1’x2’x3’x4’+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4.
Outputs observed when x1+x4=1.

Inputs driven by a decoder.
CDCin = x1’x2’x3’x4’+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4.
Outputs observed when x1+x4=1.

74

Internal Don't Care Conditions …Internal Internal Don't CareDon't Care Conditions Conditions ……

Induced by the network structure.
Controllability don't care conditions
• Patterns never produced at the inputs of a subnetwork.

Observability don't care conditions
• Patterns such that the outputs of a subnetwork are not

observed.

Induced by the network structure.
Controllability don't care conditions
• Patterns never produced at the inputs of a subnetwork.

Observability don't care conditions
• Patterns such that the outputs of a subnetwork are not

observed.

75

… Internal Don't Care Conditions…… Internal Internal Don't CareDon't Care ConditionsConditions

Example: x = a’+b; y= abx + a’cx

CDC of vy includes ab’x+a’x’.
• ab’⇒x=0; ab’x is a don’t care condition
• a’ ⇒ x=1; a’x’ is a don’t care condition

Minimize fy to obtain: fy = ax+a’c.

Example: x = a’+b; y= abx + a’cx

CDC of vy includes ab’x+a’x’.
• ab’⇒x=0; ab’x is a don’t care condition
• a’ ⇒ x=1; a’x’ is a don’t care condition

Minimize fy to obtain: fy = ax+a’c.

76

Satisfiability Don't Care ConditionsSatisfiabilitySatisfiability Don't CareDon't Care ConditionsConditions

Invariant of the network
• x = fx → x ≠ fx ⊆ SDC.

Useful to compute controllability don't cares.
Example
• Assume x = a’ + b
• Since x ≠ (a’ + b) is not possible, x ⊕ (a’ + b)=x’a’ + x’b + xab’

is a don’t care condition.

Invariant of the network
• x = fx → x ≠ fx ⊆ SDC.

Useful to compute controllability don't cares.
Example
• Assume x = a’ + b
• Since x ≠ (a’ + b) is not possible, x ⊕ (a’ + b)=x’a’ + x’b + xab’

is a don’t care condition.

77

CDC Computation …CDC Computation CDC Computation ……

Network traversal algorithm
• Consider different cuts moving from input to output.

Initial CDC is CDCin.
Move cut forward.
• Consider SDC contributions of predecessors.
• Remove unneeded variables by consensus.

Consensus of a function f with respect to variable x is
fx . fx’

Network traversal algorithm
• Consider different cuts moving from input to output.

Initial CDC is CDCin.
Move cut forward.
• Consider SDC contributions of predecessors.
• Remove unneeded variables by consensus.

Consensus of a function f with respect to variable x is
fx . fx’

78

… CDC Computation ……… CDC Computation CDC Computation ……

79

… CDC Computation ……… CDC Computation CDC Computation ……

Assume CDCin = x1’x4’.
Select vertex va
• Contribution to CDCcut: a ⊕ (x2 ⊕ x3).

• CDCcut = x1’x4’ + a ⊕ (x2 ⊕ x3).
• Drop variables D = {x2, x3}
• CDCcut = x1’x4’.

Select vertex vb
• Contribution to CDCcut : b ⊕ (x1 +a).

• CDCcut = x1’x4’ + b ⊕ (x1 +a).
• Drop variable D = {x1}
• CDCcut = b’x4’ +b’a.

Assume CDCin = x1’x4’.
Select vertex va
• Contribution to CDCcut: a ⊕ (x2 ⊕ x3).

• CDCcut = x1’x4’ + a ⊕ (x2 ⊕ x3).
• Drop variables D = {x2, x3}
• CDCcut = x1’x4’.

Select vertex vb
• Contribution to CDCcut : b ⊕ (x1 +a).

• CDCcut = x1’x4’ + b ⊕ (x1 +a).
• Drop variable D = {x1}
• CDCcut = b’x4’ +b’a.

80

… CDC Computation…… CDC ComputationCDC Computation

Select vertex vc• Contribution to CDCcut: c ⊕ (x4 + a).
• CDCcut = b’x4’ +b’a + c ⊕ (x4 + a).

• Drop variables D = {a, x4} • CDCcut = b’c’.
Select vertex vd• Contribution to CDCcut: d ⊕ (bc).
• CDCcut = b’c’ + d ⊕ (bc).

Select vertex ve• Contribution to CDCcut: e ⊕ (b + c).
• CDCcut = b’c’ + d ⊕ (bc) + e ⊕ (b + c).

• Drop variables D = {b, c}
• CDCcut = e’.

CDCcut = e’ = z2’.

Select vertex vc• Contribution to CDCcut: c ⊕ (x4 + a).
• CDCcut = b’x4’ +b’a + c ⊕ (x4 + a).

• Drop variables D = {a, x4} • CDCcut = b’c’.
Select vertex vd• Contribution to CDCcut: d ⊕ (bc).
• CDCcut = b’c’ + d ⊕ (bc).

Select vertex ve• Contribution to CDCcut: e ⊕ (b + c).
• CDCcut = b’c’ + d ⊕ (bc) + e ⊕ (b + c).

• Drop variables D = {b, c}
• CDCcut = e’.

CDCcut = e’ = z2’.

81

Network PerturbationNetwork PerturbationNetwork Perturbation

Modify network by adding an extra input
δ.
Extra input can flip polarity of a signal x.
Replace local function fx by fx ⊕ δ.
Perturbed terminal behavior: fx(δ).
A variable is observable if a change in
its polarity is perceived at an output.
Observability don’t-care set ODC for
variable x is (fx(0) ⊕ fx(1))’
• fx(0)=abc
• fx(1)=a’bc
• ODCx= (abc ⊕ a’bc)’ = b’+c’
• Minimizing fx=ab with ODCx= b’+c’ leads to

fx=a.

Modify network by adding an extra input
δ.
Extra input can flip polarity of a signal x.
Replace local function fx by fx ⊕ δ.
Perturbed terminal behavior: fx(δ).
A variable is observable if a change in
its polarity is perceived at an output.
Observability don’t-care set ODC for
variable x is (fx(0) ⊕ fx(1))’
• fx(0)=abc
• fx(1)=a’bc
• ODCx= (abc ⊕ a’bc)’ = b’+c’
• Minimizing fx=ab with ODCx= b’+c’ leads to

fx=a.

82

Observability Don't Care ConditionsObservabilityObservability Don't CareDon't Care ConditionsConditions

Conditions under which a change in polarity of a signal x is
not perceived at the outputs.
Complement of the Boolean Difference
• ∂f/∂x = f|x=1 ⊕ f|x=0

Equivalence of perturbed function: (fx(0) ⊕ fx(1))’.
Observability don't care computation
• Problem

• Outputs are not expressed as function of all variables.
• If network is flattened to obtain f, it may explode in size.

• Requirement
• Local rules for ODC computation.
• Network traversal.

Conditions under which a change in polarity of a signal x is
not perceived at the outputs.
Complement of the Boolean Difference
• ∂f/∂x = f|x=1 ⊕ f|x=0

Equivalence of perturbed function: (fx(0) ⊕ fx(1))’.
Observability don't care computation
• Problem

• Outputs are not expressed as function of all variables.
• If network is flattened to obtain f, it may explode in size.

• Requirement
• Local rules for ODC computation.
• Network traversal.

83

Observability Don't Care Computation …ObservabilityObservability Don't CareDon't Care Computation Computation ……

Assume single-output network with tree structure.
Traverse network tree.
At root
• ODCout is given.

At internal vertices assuming y is the output of x
• ODCx = (∂fy/∂x)’ + ODCy = (fy|x=1 ⊕ fy|x=0)’+ ODCy

Example
• Assume ODCout = ODCe = 0.
• ODCb = (∂fe/∂b)’

= ((b+c)|b=1 ⊕ (b+c)|b=0)’= c.
• ODCc = (∂fe/∂c)’ = b.
• ODCx1 = ODCb + (∂fb/∂x1)’ = c+a1.
• …

Assume single-output network with tree structure.
Traverse network tree.
At root
• ODCout is given.

At internal vertices assuming y is the output of x
• ODCx = (∂fy/∂x)’ + ODCy = (fy|x=1 ⊕ fy|x=0)’+ ODCy

Example
• Assume ODCout = ODCe = 0.
• ODCb = (∂fe/∂b)’

= ((b+c)|b=1 ⊕ (b+c)|b=0)’= c.
• ODCc = (∂fe/∂c)’ = b.
• ODCx1 = ODCb + (∂fb/∂x1)’ = c+a1.
• …

84

… Observability Don't Care Computation…… ObservabilityObservability Don't Care ComputationDon't Care Computation

General networks have fanout re-convergence.
For each vertex with two (or more) fanout stems
• The contribution of the ODC along the stems cannot be

added.
• Wrong assumption is intersecting them

• ODCa,b=x1+c=x1+a+x4
• ODCa,c=x4+b=x4+a+x1
• ODCa,b∩ ODCa,c=x1+a+x4
• Variable a is not redundant

• Interplay of different paths.

More elaborate analysis.

General networks have fanout re-convergence.
For each vertex with two (or more) fanout stems
• The contribution of the ODC along the stems cannot be

added.
• Wrong assumption is intersecting them

• ODCa,b=x1+c=x1+a+x4
• ODCa,c=x4+b=x4+a+x1
• ODCa,b∩ ODCa,c=x1+a+x4
• Variable a is not redundant

• Interplay of different paths.

More elaborate analysis.

85

Two-way Fanout Stem …TwoTwo--way way FanoutFanout Stem Stem ……

Compute ODC sets associated with
edges.
Combine ODCs at vertex.
Formula derivation
• Assume two equal perturbations on the

edges.

Compute ODC sets associated with
edges.
Combine ODCs at vertex.
Formula derivation
• Assume two equal perturbations on the

edges.

86

… Two-way Fanout Stem…… TwoTwo--way way FanoutFanout StemStem

ODCa,b = x1+c = x1+a2+x4

ODCa,c = x4+b = x4+a1+x1

ODCa = (ODCa,b |a2=a’ ⊕ ODCa,c)’
= ((x1+a’+x4) ⊕ (x4+a+x1))’
= x1+x4

ODCa,b = x1+c = x1+a2+x4

ODCa,c = x4+b = x4+a1+x1

ODCa = (ODCa,b |a2=a’ ⊕ ODCa,c)’
= ((x1+a’+x4) ⊕ (x4+a+x1))’
= x1+x4 a1 a2

87

Multi-Way Stems TheoremMultiMulti--Way Stems TheoremWay Stems Theorem

Let vx ∈ V be any internal or input vertex.
Let {xi; i = 1, 2, … , p} be the edge variables
corresponding to {(x, yi) ; i = 1, 2, … , p}.
Let ODCx,yi ; i = 1, 2, … , p be the edge ODCs.

For a 3-fanout stem variable x:
ODCx = ODCx,y1 |x2=x3=x’ ⊕ ODCx,y2 |x3=x’ ⊕ ODCx,y3

Let vx ∈ V be any internal or input vertex.
Let {xi; i = 1, 2, … , p} be the edge variables
corresponding to {(x, yi) ; i = 1, 2, … , p}.
Let ODCx,yi ; i = 1, 2, … , p be the edge ODCs.

For a 3-fanout stem variable x:
ODCx = ODCx,y1 |x2=x3=x’ ⊕ ODCx,y2 |x3=x’ ⊕ ODCx,y3

88

Observability Don't Care Algorithm …ObservabilityObservability Don't CareDon't Care Algorithm Algorithm ……

For each variable, intersection of ODC at all outputs
yields condition under which output is not observed
• Global ODC of a variable

The global ODC conditions of the input variables is the
input observability don’t care set ODCin.
• May be used as external ODC sets for optimizing a network

feeding the one under consideration

For each variable, intersection of ODC at all outputs
yields condition under which output is not observed
• Global ODC of a variable

The global ODC conditions of the input variables is the
input observability don’t care set ODCin.
• May be used as external ODC sets for optimizing a network

feeding the one under consideration

89

… Observability Don't Care Algorithm…… ObservabilityObservability Don't CareDon't Care AlgorithmAlgorithm

Global ODC of a is (x1x4)(x1+x4)=x1x4

90

Transformations with Don't CaresTransformations with Transformations with Don't CaresDon't Cares

Boolean simplification
• Use standard minimizer (Espresso).
• Minimize the number of literals.

Boolean substitution
• Simplify a function by adding an extra input.
• Equivalent to simplification with global don't care conditions.

Example
• Substitute q = a+cd into fh = a+bcd+e to get fh = a+bq +e.
• SDC set: q⊕(a+cd) = q’a+q’cd+qa’(cd)’.
• Simplify fh = a+bcd+e with q’a+q’cd+qa’(cd)’ as don't care.
• Simplication yields fh = a+bq +e.
• One literal less by changing the support of fh.

Boolean simplification
• Use standard minimizer (Espresso).
• Minimize the number of literals.

Boolean substitution
• Simplify a function by adding an extra input.
• Equivalent to simplification with global don't care conditions.

Example
• Substitute q = a+cd into fh = a+bcd+e to get fh = a+bq +e.
• SDC set: q⊕(a+cd) = q’a+q’cd+qa’(cd)’.
• Simplify fh = a+bcd+e with q’a+q’cd+qa’(cd)’ as don't care.
• Simplication yields fh = a+bq +e.
• One literal less by changing the support of fh.

91

Single-Vertex OptimizationSingleSingle--Vertex OptimizationVertex Optimization

92

Optimization and Perturbations …Optimization and Perturbations Optimization and Perturbations ……

Replace fx by gx.
Perturbation δx = fx ⊕ gx.
Condition for feasible replacement
• Perturbation bounded by local don't care set
• δx ⊆ DCext + ODCx
• If fx and gx have the same support set S(x) then

• δx ⊆ DCext +ODCx + CDCS(x)

• If S(gx) includes network variables
• δx ⊆ DCext +ODCx + SDCx

Replace fx by gx.
Perturbation δx = fx ⊕ gx.
Condition for feasible replacement
• Perturbation bounded by local don't care set
• δx ⊆ DCext + ODCx
• If fx and gx have the same support set S(x) then

• δx ⊆ DCext +ODCx + CDCS(x)

• If S(gx) includes network variables
• δx ⊆ DCext +ODCx + SDCx

∑
≠∈

⊕=
xyy vvVv

yx fySDC
:

93

… Optimization and Perturbations…… Optimization and PerturbationsOptimization and Perturbations

No external don't care set.
Replace AND by wire: gx = a
Analysis
• δx = fx ⊕ gx = ab ⊕ a = ab’.
• ODCx = y’ = b’ +c’.
• δx = ab’ ⊆ DCx = b’ +c’ ⇒ feasible!

No external don't care set.
Replace AND by wire: gx = a
Analysis
• δx = fx ⊕ gx = ab ⊕ a = ab’.
• ODCx = y’ = b’ +c’.
• δx = ab’ ⊆ DCx = b’ +c’ ⇒ feasible!

94

Synthesis and TestabilitySynthesis and TestabilitySynthesis and Testability

Testability
• Ease of testing a circuit.

Assumptions
• Combinational circuit.
• Single or multiple stuck-at faults.

Full testability
• Possible to generate test set for all faults.

Synergy between synthesis and testing.
Testable networks correlate to small-area networks.
Don't care conditions play a major role.

Testability
• Ease of testing a circuit.

Assumptions
• Combinational circuit.
• Single or multiple stuck-at faults.

Full testability
• Possible to generate test set for all faults.

Synergy between synthesis and testing.
Testable networks correlate to small-area networks.
Don't care conditions play a major role.

95

Test for Stuck-at-FaultsTest for StuckTest for Stuck--atat--FaultsFaults

Net y stuck-at 0
• Input pattern that sets y to true.
• Observe output.
• Output of faulty circuit differs.
• {t | y(t) . ODC’y(t) = 1}.

Net y stuck-at 1
• Same, but set y to false.
• {t | y’(t) . ODC’y(t) = 1}.

Need controllability and observability.

Net y stuck-at 0
• Input pattern that sets y to true.
• Observe output.
• Output of faulty circuit differs.
• {t | y(t) . ODC’y(t) = 1}.

Net y stuck-at 1
• Same, but set y to false.
• {t | y’(t) . ODC’y(t) = 1}.

Need controllability and observability.

96

Using Testing Methods for Synthesis …Using Testing Methods for Synthesis Using Testing Methods for Synthesis ……

Redundancy removal.
• Use ATPG to search for untestable faults.

If stuck-at 0 on net y is untestable
• Set y = 0.
• Propagate constant.

If stuck-at 1 on y is untestable
• Set y = 1.
• Propagate constant.

Redundancy removal.
• Use ATPG to search for untestable faults.

If stuck-at 0 on net y is untestable
• Set y = 0.
• Propagate constant.

If stuck-at 1 on y is untestable
• Set y = 1.
• Propagate constant.

97

… Using Testing Methods for Synthesis…… Using Testing Methods for SynthesisUsing Testing Methods for Synthesis

98

Redundancy Removal and Perturbation
Analysis
Redundancy Removal and Perturbation Redundancy Removal and Perturbation
AnalysisAnalysis

Stuck-at 0 on y.
• y set to 0. Namely gx = fx|y=0.
• Perturbation

• δ = fx ⊕ fx|y=0 = y . ∂fx / ∂y.

Perturbation is feasible ⇔ fault is untestable.
δ = y . ∂fx / ∂y ⊆ DCx ⇔ fault is untestable
Making fx prime and irredundant with respect to DCx
guarantees that all single stuck-at faults in fx are testable.

Stuck-at 0 on y.
• y set to 0. Namely gx = fx|y=0.
• Perturbation

• δ = fx ⊕ fx|y=0 = y . ∂fx / ∂y.

Perturbation is feasible ⇔ fault is untestable.
δ = y . ∂fx / ∂y ⊆ DCx ⇔ fault is untestable
Making fx prime and irredundant with respect to DCx
guarantees that all single stuck-at faults in fx are testable.

99

Synthesis for TestabilitySynthesis for TestabilitySynthesis for Testability

Synthesize networks that are fully testable.
• Single stuck-at faults.
• Multiple stuck-at faults.

Two-level forms
• Full testability for single stuck-at faults

• Prime and irredundant cover.
• Full testability for multiple stuck-at faults

• Prime and irredundant cover when
• Single-output function.
• No product term sharing.
• Each component is PI.

Synthesize networks that are fully testable.
• Single stuck-at faults.
• Multiple stuck-at faults.

Two-level forms
• Full testability for single stuck-at faults

• Prime and irredundant cover.
• Full testability for multiple stuck-at faults

• Prime and irredundant cover when
• Single-output function.
• No product term sharing.
• Each component is PI.

100

… Synthesis for Testability…… Synthesis for TestabilitySynthesis for Testability

A complete single-stuck-at fault test set for a single-
output sum-of-product circuit is a complete test set for
all multiple stuck-at faults.
Single stuck-at fault testability of multiple-level
network does not imply multiple stuck-at fault
testability.
Fast extraction transformations are single stuck-at
fault test-set preserving transformations.
Algebraic transformations preserve multiple stuck-at
fault testability but not single stuck-at fault testability
• Factorization
• Substitution (without complement)
• Cube and kernel extraction

A complete single-stuck-at fault test set for a single-
output sum-of-product circuit is a complete test set for
all multiple stuck-at faults.
Single stuck-at fault testability of multiple-level
network does not imply multiple stuck-at fault
testability.
Fast extraction transformations are single stuck-at
fault test-set preserving transformations.
Algebraic transformations preserve multiple stuck-at
fault testability but not single stuck-at fault testability
• Factorization
• Substitution (without complement)
• Cube and kernel extraction

101

Synthesis of Testable Multiple-Level
Networks …
Synthesis of Testable MultipleSynthesis of Testable Multiple--Level Level
Networks Networks ……

A logic network Gn(V, E), with local functions in sum of
product form.
Prime and irredundant (PI)
• No literal nor implicant of any local function can be dropped.

Simultaneously prime and irredundant (SPI)
• No subset of literals and/or implicants can be dropped.

A logic network is PI if and only if
• its AND-OR implementation is fully testable for single stuck-

at faults.

A logic network is SPI if and only if
• its AND-OR implementation is fully testable for multiple stuck-

at faults.

A logic network Gn(V, E), with local functions in sum of
product form.
Prime and irredundant (PI)
• No literal nor implicant of any local function can be dropped.

Simultaneously prime and irredundant (SPI)
• No subset of literals and/or implicants can be dropped.

A logic network is PI if and only if
• its AND-OR implementation is fully testable for single stuck-

at faults.

A logic network is SPI if and only if
• its AND-OR implementation is fully testable for multiple stuck-

at faults.

102

… Synthesis of Testable Multiple-Level
Networks
…… Synthesis of Testable MultipleSynthesis of Testable Multiple--Level Level
NetworksNetworks

Compute full local don't care sets.
• Make all local functions PI w.r. to don't care sets.

Pitfall
• Don't cares change as functions change.

Solution
• Iteration (Espresso-MLD).
• If iteration converges, network is fully testable.

Flatten to two-level form.
• When possible -- no size explosion.

Make SPI by disjoint logic minimization.
Reconstruct multiple-level network
• Algebraic transformations preserve multifault testability.

Compute full local don't care sets.
• Make all local functions PI w.r. to don't care sets.

Pitfall
• Don't cares change as functions change.

Solution
• Iteration (Espresso-MLD).
• If iteration converges, network is fully testable.

Flatten to two-level form.
• When possible -- no size explosion.

Make SPI by disjoint logic minimization.
Reconstruct multiple-level network
• Algebraic transformations preserve multifault testability.

103

Timing Issues in Multiple-Level Logic
Optimization
Timing Issues in MultipleTiming Issues in Multiple--Level LogicLevel Logic
OptimizationOptimization

Timing optimization is crucial for achieving competitive
logic design.
Timing verification: Check that a circuit runs at speed
• Satisfies I/O delay constraints.
• Satisfies cycle-time constraints.
• Delay modeling.
• Critical paths.
• The false path problem.

Algorithms for timing optimization.
• Minimum area subject to delay constraints.
• Minimum delay (subject to area constraints).

Timing optimization is crucial for achieving competitive
logic design.
Timing verification: Check that a circuit runs at speed
• Satisfies I/O delay constraints.
• Satisfies cycle-time constraints.
• Delay modeling.
• Critical paths.
• The false path problem.

Algorithms for timing optimization.
• Minimum area subject to delay constraints.
• Minimum delay (subject to area constraints).

104

Delay ModelingDelay ModelingDelay Modeling

Gate delay modeling
• Straightforward for bound networks.
• Approximations for unbound networks.

Network delay modeling
• Compute signal propagation

• Topological methods.
• Logic/topological methods.

Gate delay modeling for unbound networks
• Virtual gates: Logic expressions.
• Stage delay model: Unit delay per vertex.
• Refined models: Depending on size and fanout.

Gate delay modeling
• Straightforward for bound networks.
• Approximations for unbound networks.

Network delay modeling
• Compute signal propagation

• Topological methods.
• Logic/topological methods.

Gate delay modeling for unbound networks
• Virtual gates: Logic expressions.
• Stage delay model: Unit delay per vertex.
• Refined models: Depending on size and fanout.

105

Network Delay Modeling …Network Delay Modeling Network Delay Modeling ……

For each vertex vi.
• Propagation delay di.

Data-ready time ti.
• Denotes the time at which the data is ready at the output.
• Input data-ready times denote when inputs are available.
• Computed elsewhere by forward traversal

The maximum data-ready time occurring at an output
vertex
• Corresponds to the longest propagation delay path
• Called topological critical path

For each vertex vi.
• Propagation delay di.

Data-ready time ti.
• Denotes the time at which the data is ready at the output.
• Input data-ready times denote when inputs are available.
• Computed elsewhere by forward traversal

The maximum data-ready time occurring at an output
vertex
• Corresponds to the longest propagation delay path
• Called topological critical path

106

… Network Delay Modeling ……… Network Delay Modeling Network Delay Modeling ……

Assume ta=0 and tb=10.
Propagation delays
• dg = 3; dh = 8; dm = 1; dk = 10; dl = 3;
• dn = 5; dp = 2; dq = 2; dx = 2; dy = 3;
• Maximum data-ready time is ty=25
• Topological critical path: (vb, vn, vp, vl, vq, vy).

Assume ta=0 and tb=10.
Propagation delays
• dg = 3; dh = 8; dm = 1; dk = 10; dl = 3;
• dn = 5; dp = 2; dq = 2; dx = 2; dy = 3;
• Maximum data-ready time is ty=25
• Topological critical path: (vb, vn, vp, vl, vq, vy).

tg= 3+0=3
th= 8+3=11
tk= 10+3=13
tn= 5+10=15
tp= 2+max{15,3}=17
tl= 3+max{13,17}=20
tm= 1+max{3,11,20}=21
tx= 2+21=23
tq= 2+20=22
ty= 3+22=25

107

… Network Delay Modeling ……… Network Delay Modeling Network Delay Modeling ……

For each vertex vi.
• Required data-ready time ti.

• Specified at the primary outputs.
• Computed elsewhere by backward traversal

• Slack si.
• Difference between required and actual data-ready times

For each vertex vi.
• Required data-ready time ti.

• Specified at the primary outputs.
• Computed elsewhere by backward traversal

• Slack si.
• Difference between required and actual data-ready times

108

… Network Delay Modeling…… Network Delay ModelingNetwork Delay Modeling

Required data-ready times
• tx = 25 and ty = 25.

Required data-ready times
• tx = 25 and ty = 25.

Required Times & Slack:
sx= 2; sy=0
tm= 25-2=23; sm=23-21=2
tq= 25-3=22; sq=22-22=0
tl= min{23-1,22-2}=20; sl=0
th= 23-1=22; sh=22-11=11
tk= 20-3=17; sk=17-13=4
tp= 20-3=17; sp=17-17=0
tn= 17-2=15; sn=15-15=0
tb= 15-5=10; sb=10-10=0
tg= min{22-8;17-10;17-2}=7; sg=4
ta=7-3=4; sa=4-0=4

Data-Ready Times:
tg= 3+0=3
th= 8+3=11
tk= 10+3=13
tn= 5+10=15
tp= 2+max{15,3}=17
tl= 3+max{13,17}=20
tm= 1+max{3,11,20}=21
tx= 2+21=23
tq= 2+20=22
ty= 3+22=25

Propagation Delays :
dg = 3; dh = 8; dm = 1; dk = 10;
dl = 3; dn = 5; dp = 2; dq = 2;
dx = 2; dy = 3

109

Topological Critical Path …Topological Critical Path Topological Critical Path ……

Assume topologic computation of
• Data-ready by forward traversal.
• Required data-ready by backward traversal.

Topological critical path
• Input/output path with zero slacks.
• Any increase in the vertex propagation delay affects the

output data-ready time.

A topological critical path may be false.
• No event can propagate along that path.
• False path does not affect performance

Assume topologic computation of
• Data-ready by forward traversal.
• Required data-ready by backward traversal.

Topological critical path
• Input/output path with zero slacks.
• Any increase in the vertex propagation delay affects the

output data-ready time.

A topological critical path may be false.
• No event can propagate along that path.
• False path does not affect performance

110

… Topological Critical Path…… Topological Critical PathTopological Critical Path

Topological critical path: (vb, vn, vp, vl, vq, vy).

111

False Path ExampleFalse Path ExampleFalse Path Example

All gates have unit delay.
All inputs ready at time 0.
Longest topological path: (va, vc, vd, vy, vz).
• Path delay: 4 units.
• False path: event cannot propagate through it

Critical true path: (va, vc, vd, vy).
• Path delay: 3 units.

All gates have unit delay.
All inputs ready at time 0.
Longest topological path: (va, vc, vd, vy, vz).
• Path delay: 4 units.
• False path: event cannot propagate through it

Critical true path: (va, vc, vd, vy).
• Path delay: 3 units.

112

Algorithms for Delay Minimization …Algorithms for Delay Minimization Algorithms for Delay Minimization ……

Alternate
• Critical path computation.
• Logic transformation on critical vertices.

Consider quasi critical paths
• Paths with near-critical delay.
• Small slacks.

Small difference between critical paths and largest delay of
a non-critical path leads to smaller gain in speeding up
critical paths only.

Alternate
• Critical path computation.
• Logic transformation on critical vertices.

Consider quasi critical paths
• Paths with near-critical delay.
• Small slacks.

Small difference between critical paths and largest delay of
a non-critical path leads to smaller gain in speeding up
critical paths only.

113

… Algorithms for Delay Minimization…… Algorithms for Delay MinimizationAlgorithms for Delay Minimization

Most critical delay optimization algorithms have the
following framework:
Most critical delay optimization algorithms have the
following framework:

114

Transformations for Delay Reduction …Transformations for Delay Reduction Transformations for Delay Reduction ……

Reduce propagation delay.
Reduce dependencies from critical inputs.
Favorable transformation
• Reduces local data-ready time.
• Any data-ready time increase at other vertices is bounded by

the local slack.

Example
• Unit gate delay.
• Transformation: Elimination.

• Always favorable.
• Obtain several area/delay trade-off points.

Reduce propagation delay.
Reduce dependencies from critical inputs.
Favorable transformation
• Reduces local data-ready time.
• Any data-ready time increase at other vertices is bounded by

the local slack.

Example
• Unit gate delay.
• Transformation: Elimination.

• Always favorable.
• Obtain several area/delay trade-off points.

115

… Transformations for Delay Reduction…… Transformations for Delay ReductionTransformations for Delay Reduction

W is a minimum-weight
separation set from U.
Iteration 1
• Values of vp, vq, vu = -1
• Value of vs=0.
• Eliminate vp, vq. (No literal

increase.)

Iteration 2
• Value of vs=2, value of vu=-1.
• Eliminate vu. (No literal

increase.)

Iteration 3
• Eliminate vr , vs, vt. (Literals

increase.)

W is a minimum-weight
separation set from U.
Iteration 1
• Values of vp, vq, vu = -1
• Value of vs=0.
• Eliminate vp, vq. (No literal

increase.)

Iteration 2
• Value of vs=2, value of vu=-1.
• Eliminate vu. (No literal

increase.)

Iteration 3
• Eliminate vr , vs, vt. (Literals

increase.)

116

More Refined Delay ModelsMore Refined Delay ModelsMore Refined Delay Models

Propagation delay grows with the size
of the expression and with fanout load.
Elimination
• Reduces one stage.
• Yields more complex and slower gates.
• May slow other paths.

Substitution
• Adds one dependency.
• Loads and slows a gate.
• May slow other paths.
• Useful if arrival time of critical

input is larger than other inputs

Propagation delay grows with the size
of the expression and with fanout load.
Elimination
• Reduces one stage.
• Yields more complex and slower gates.
• May slow other paths.

Substitution
• Adds one dependency.
• Loads and slows a gate.
• May slow other paths.
• Useful if arrival time of critical

input is larger than other inputs

117

Speed-Up Algorithm …SpeedSpeed--Up Algorithm Up Algorithm ……

Decompose network into two-input NAND gates and
inverters.
Determine a subnetwork W of depth d.
Collapse subnetwork by elimination.
Duplicate input vertices with successors outside W
• Record area penalty.
• Resynthesize W by timing-driven decomposition.

Heuristics
• Choice of W.
• Monitor area penalty and potential speed-up.

Decompose network into two-input NAND gates and
inverters.
Determine a subnetwork W of depth d.
Collapse subnetwork by elimination.
Duplicate input vertices with successors outside W
• Record area penalty.
• Resynthesize W by timing-driven decomposition.

Heuristics
• Choice of W.
• Monitor area penalty and potential speed-up.

118

… Speed-Up Algorithm…… SpeedSpeed--Up AlgorithmUp Algorithm

Example
• NAND delay =2.
• INVERTER delay =1.
• All input data-ready=0 except

td=3.
• Critical Path: from Vd to Vx (11

delay units)
• Assume Vx is selected and

d=5.
• New critical path: 8 delay units.

Example
• NAND delay =2.
• INVERTER delay =1.
• All input data-ready=0 except

td=3.
• Critical Path: from Vd to Vx (11

delay units)
• Assume Vx is selected and

d=5.
• New critical path: 8 delay units.

