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Outline …Outline Outline ……

Representations.
Taxonomy of optimization methods.
• Goals: area/delay.
• Algorithms: Algebraic/Boolean.
• Rule-based methods.

Examples of transformations.
Algebraic model.
• Algebraic division.
• Algebraic substitution.
• Single-cube extraction.
• Multiple-cube extraction.
• Decomposition.
• Factorization.
• Fast extraction.
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• Fast extraction.
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… Outline…… OutlineOutline

External and internal don’t care sets.
• Controllability don’t care sets.
• Observability don’t care sets.

Boolean simplification and substitution.
Testability properties of multiple-level logic.
Synthesis for testability.
Network delay modeling.
Algorithms for delay minimization.
Transformations for delay reduction.

External and internal don’t care sets.
• Controllability don’t care sets.
• Observability don’t care sets.

Boolean simplification and substitution.
Testability properties of multiple-level logic.
Synthesis for testability.
Network delay modeling.
Algorithms for delay minimization.
Transformations for delay reduction.



4

MotivationMotivationMotivation

Combinational logic circuits very often implemented as 
multiple-level networks of logic gates.
Provides several degrees of freedom in logic design
• Exploited in optimizing area and delay.
• Different timing requirements on input/output paths.

Multiple-level networks viewed as interconnection of 
single-output gates
• Single type of gate (e.g. NANDs or NORs).
• Instances of a cell library.
• Macro cells.

Multilevel optimization is divided into two tasks
• Optimization neglecting implementation constraints assuming 

loose models of area and delay.
• Constraints on the usable gates are taken into account during 

optimization.
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Circuit ModelingCircuit ModelingCircuit Modeling

Logic network
• Interconnection of logic functions.
• Hybrid structural/behavioral model.

Bound (mapped) networks
• Interconnection of logic gates.
• Structural model.

Logic network
• Interconnection of logic functions.
• Hybrid structural/behavioral model.

Bound (mapped) networks
• Interconnection of logic gates.
• Structural model.

Example of  Bound Network
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Example of  a Logic NetworkExample of  a Logic NetworkExample of  a Logic Network
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Network OptimizationNetwork OptimizationNetwork Optimization

Two-level logic
• Area and delay proportional to cover size. 
• Achieving minimum (or irredundant) covers corresponds to 

optimizing area and speed.
• Achieving irredundant cover corresponds to maximizing 

testability.
Multiple-level logic 
• Minimal-area implementations do not correspond in general 

to minimum-delay implementations and vice versa.
• Minimize area (power) estimate

• subject to delay constraints.
• Minimize maximum delay

• subject to area (power) constraints.
• Minimize power consumption.

• subject to delay constraints.
• Maximize testability.

Two-level logic
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• Achieving irredundant cover corresponds to maximizing 

testability.
Multiple-level logic 
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to minimum-delay implementations and vice versa.
• Minimize area (power) estimate

• subject to delay constraints.
• Minimize maximum delay

• subject to area (power) constraints.
• Minimize power consumption.

• subject to delay constraints.
• Maximize testability.
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EstimationEstimationEstimation

Area
• Number of literals

• Corresponds to number of polysilicon strips (transistors)
• Number of functions/gates.

Delay
• Number of stages (unit delay per stage).
• Refined gate delay models (relating delay to function 

complexity and fanout).
• Sensitizable paths (detection of false paths).
• Wiring delays estimated using statistical models.
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Delay
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• Wiring delays estimated using statistical models.
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Problem AnalysisProblem AnalysisProblem Analysis

Multiple-level optimization is hard.
Exact methods
• Exponential complexity.
• Impractical.

Approximate methods
• Heuristic algorithms.
• Rule-based methods.

Strategies for optimization
• Improve circuit step by step based on circuit transformations.
• Preserve network behavior.
• Methods differ in

• Types of transformations.
• Selection and order of transformations.

Multiple-level optimization is hard.
Exact methods
• Exponential complexity.
• Impractical.

Approximate methods
• Heuristic algorithms.
• Rule-based methods.

Strategies for optimization
• Improve circuit step by step based on circuit transformations.
• Preserve network behavior.
• Methods differ in

• Types of transformations.
• Selection and order of transformations.
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EliminationEliminationElimination

Eliminate one function from the network.
Perform variable substitution.
Example
• s = r +b’; r = p+a’
• ⇒ s = p+a’+b’.

Eliminate one function from the network.
Perform variable substitution.
Example
• s = r +b’; r = p+a’
• ⇒ s = p+a’+b’.
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DecompositionDecompositionDecomposition

Break one function into smaller ones.
Introduce new vertices in the network.
Example
• v = a’d+bd+c’d+ae’.
• ⇒ j = a’+b+c’; v = jd+ae’

Break one function into smaller ones.
Introduce new vertices in the network.
Example
• v = a’d+bd+c’d+ae’.
• ⇒ j = a’+b+c’; v = jd+ae’
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FactoringFactoringFactoring

Factoring is the process of deriving a factored form 
from a sum-of-products form of a function.
Factoring is like decomposition except that no 
additional nodes are created.
Example
• F = abc+abd+a’b’c+a’b’d+ab’e+ab’f+a’be+a’bf (24 literals)
• After factorization

• F=(ab+a’b’)(c+d) + (ab’+a’b)(e+f) (12 literals)

Factoring is the process of deriving a factored form 
from a sum-of-products form of a function.
Factoring is like decomposition except that no 
additional nodes are created.
Example
• F = abc+abd+a’b’c+a’b’d+ab’e+ab’f+a’be+a’bf (24 literals)
• After factorization

• F=(ab+a’b’)(c+d) + (ab’+a’b)(e+f) (12 literals)
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Extraction …Extraction Extraction ……

Find a common sub-expression of two (or more)
expressions.
Extract sub-expression as new function.
Introduce new vertex in the network.
Example
• p = ce+de; t = ac+ad+bc+bd+e; (13 literals)
• p = (c+d)e; t = (c+d)(a+b)+e; (Factoring:8 literals)
• ⇒ k = c+d; p = ke; t = ka+ kb +e; (Extraction:9 literals)

Find a common sub-expression of two (or more)
expressions.
Extract sub-expression as new function.
Introduce new vertex in the network.
Example
• p = ce+de; t = ac+ad+bc+bd+e; (13 literals)
• p = (c+d)e; t = (c+d)(a+b)+e; (Factoring:8 literals)
• ⇒ k = c+d; p = ke; t = ka+ kb +e; (Extraction:9 literals)
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… Extraction…… ExtractionExtraction
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SimplificationSimplificationSimplification

Simplify a local function (using Espresso).
Example
• u = q’c+qc’ +qc;
• ⇒ u = q +c;

Simplify a local function (using Espresso).
Example
• u = q’c+qc’ +qc;
• ⇒ u = q +c;
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SubstitutionSubstitutionSubstitution

Simplify a local function by using an additional input that was 
not previously in its support set.
Example
• t = ka+kb+e.
• ⇒ t = kq +e;  because q = a+b.

Simplify a local function by using an additional input that was 
not previously in its support set.
Example
• t = ka+kb+e.
• ⇒ t = kq +e;  because q = a+b.
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Example: Sequence of TransformationsExample: Sequence of TransformationsExample: Sequence of Transformations

Original Network (33 lit.) Transformed Network (20 lit.)
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Optimization ApproachesOptimization ApproachesOptimization Approaches

Algorithmic approach
• Define an algorithm for each transformation type.
• Algorithm is an operator on the network.
• Each operator has well-defined properties

• Heuristic methods still used.
• Weak optimality properties.

• Sequence of operators
• Defined by scripts.
• Based on experience.

Rule-based approach (IBM Logic Synthesis System)
• Rule-data base

• Set of pattern pairs.
• Pattern replacement driven by rules.

Algorithmic approach
• Define an algorithm for each transformation type.
• Algorithm is an operator on the network.
• Each operator has well-defined properties

• Heuristic methods still used.
• Weak optimality properties.

• Sequence of operators
• Defined by scripts.
• Based on experience.

Rule-based approach (IBM Logic Synthesis System)
• Rule-data base

• Set of pattern pairs.
• Pattern replacement driven by rules.
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Elimination Algorithm …Elimination Algorithm Elimination Algorithm ……

Set a threshold k (usually 0).
Examine all expressions (vertices) and compute their values.
Vertex value = n*l – n – l (l is number of literals; n is number of 
times vertex variable appears in network)
Eliminate an expression (vertex) if its value (i.e. the increase in 
literals) does not exceed the threshold.

Set a threshold k (usually 0).
Examine all expressions (vertices) and compute their values.
Vertex value = n*l – n – l (l is number of literals; n is number of 
times vertex variable appears in network)
Eliminate an expression (vertex) if its value (i.e. the increase in 
literals) does not exceed the threshold.
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… Elimination Algorithm…… Elimination AlgorithmElimination Algorithm

Example
• q = a + b
• s = ce + de + a’ + b’
• t = ac + ad + bc + bd + e
• u = q’c + qc’ + qc
• v = a’d + bd + c’d + ae’

Value of vertex q=n*l–n–l=3*2-3-2=1
• It will increase number of literals => not eliminated

Assume u is simplified to u=c+q
• Value of vertex q=n*l–n–l=1*2-1-2=-1
• It will decrease the number of literals by 1 => eliminated

Example
• q = a + b
• s = ce + de + a’ + b’
• t = ac + ad + bc + bd + e
• u = q’c + qc’ + qc
• v = a’d + bd + c’d + ae’

Value of vertex q=n*l–n–l=3*2-3-2=1
• It will increase number of literals => not eliminated

Assume u is simplified to u=c+q
• Value of vertex q=n*l–n–l=1*2-1-2=-1
• It will decrease the number of literals by 1 => eliminated
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MIS/SIS Rugged ScriptMIS/SIS Rugged ScriptMIS/SIS Rugged Script

sweep; eliminate -1
simplify -m nocomp
eliminate -1
sweep; eliminate 5
simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full-simplify -m nocomp

sweep; eliminate -1
simplify -m nocomp
eliminate -1
sweep; eliminate 5
simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full-simplify -m nocomp

SweepSweep eliminates singleeliminates single--
input Vertices and those input Vertices and those 
with a constant function.with a constant function.

fxfx extracts doubleextracts double--cube and cube and 
singlesingle--cube expression.cube expression.

resubresub ––aa performs performs 
algebraic substitution of all algebraic substitution of all 
vertex pairsvertex pairs
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Boolean and Algebraic Methods …Boolean and Algebraic Methods Boolean and Algebraic Methods ……

Boolean methods
• Exploit Boolean properties of logic functions.
• Use don't care conditions induced by interconnections.
• Complex at times.

Algebraic methods
• View functions as polynomials.
• Exploit properties of polynomial algebra.
• Simpler, faster but weaker.

Boolean methods
• Exploit Boolean properties of logic functions.
• Use don't care conditions induced by interconnections.
• Complex at times.

Algebraic methods
• View functions as polynomials.
• Exploit properties of polynomial algebra.
• Simpler, faster but weaker.
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… Boolean and Algebraic Methods…… Boolean and Algebraic MethodsBoolean and Algebraic Methods

Boolean substitution
• h = a+bcd+e; q = a+cd
• ⇒ h = a+bq +e
• Because a+bq+e = a+b(a+cd)+e = a+bcd+e; 

• Relies on Boolean property b+1=1

Algebraic substitution
• t = ka+kb+e; q=a+b
• ⇒ t = kq +e
• Because k(a+b) = ka+kb; holds regardless of any assumption 

of Boolean algebra.

Boolean substitution
• h = a+bcd+e; q = a+cd
• ⇒ h = a+bq +e
• Because a+bq+e = a+b(a+cd)+e = a+bcd+e; 

• Relies on Boolean property b+1=1

Algebraic substitution
• t = ka+kb+e; q=a+b
• ⇒ t = kq +e
• Because k(a+b) = ka+kb; holds regardless of any assumption 

of Boolean algebra.
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The Algebraic Model …The Algebraic Model The Algebraic Model ……

Represents local Boolean functions by algebraic 
expressions
• Multilinear polynomial (i.e. multi-variable with degree 1) over 

set of variables with unit coefficients.

Algebraic transformations neglect specific features of 
Boolean algebra
• Only one distributive law applies

• a . (b+c) = ab+ac
• a + (b . c) ≠ (a+b).(a+c)

• Complements are not defined
• Cannot apply some properties like absorption, idempotence, 

involution and Demorgan’s, a+a’=1 and  a.a’=0
• Symmetric distribution laws.
• Don't care sets are not used.

Represents local Boolean functions by algebraic 
expressions
• Multilinear polynomial (i.e. multi-variable with degree 1) over 

set of variables with unit coefficients.

Algebraic transformations neglect specific features of 
Boolean algebra
• Only one distributive law applies

• a . (b+c) = ab+ac
• a + (b . c) ≠ (a+b).(a+c)

• Complements are not defined
• Cannot apply some properties like absorption, idempotence, 

involution and Demorgan’s, a+a’=1 and  a.a’=0
• Symmetric distribution laws.
• Don't care sets are not used.
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… The Algebraic Model…… The Algebraic ModelThe Algebraic Model

Algebraic expressions obtained by
• Modeling functions in sum of products form.
• Make them minimal with respect to single-cube containment.

Algebraic operations restricted to expressions with 
disjoint support
• Preserve correspondence of result with sum-of-product forms 

minimal w.r.t single-cube containment.

Example
• (a+b)(c+d)=ac+ad+bc+bd; minimal w.r.t SCC.
• (a+b)(a+c)= aa+ac+ab+bc; non-minimal.
• (a+b)(a’+c)=aa’+ac+a’b+bc; non-minimal.

Algebraic expressions obtained by
• Modeling functions in sum of products form.
• Make them minimal with respect to single-cube containment.

Algebraic operations restricted to expressions with 
disjoint support
• Preserve correspondence of result with sum-of-product forms 

minimal w.r.t single-cube containment.

Example
• (a+b)(c+d)=ac+ad+bc+bd; minimal w.r.t SCC.
• (a+b)(a+c)= aa+ac+ab+bc; non-minimal.
• (a+b)(a’+c)=aa’+ac+a’b+bc; non-minimal.
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Algebraic Division …Algebraic Division Algebraic Division ……

Given two algebraic expressions fdividend and fdivisor , we 
say that fdivisor is an Algebraic Divisor of fdividend ,
fquotient = fdividend/fdivisor when
• fdividend = fdivisor . fquotient + fremainder• fdivisor . fquotient ≠ 0
• and the support of fdivisor and fquotient is disjoint.

Example
• Let fdividend = ac+ad+bc+bd+e  and fdivisor = a+b

• Then fquotient = c+d fremainder = e
• Because (a+b) (c+d)+e = fdividend
• and {a,b} ∩ {c,d} = ∅

• Non-algebraic division
• Let fi = a+bc and fj = a+b.
• Let fk = a+c. Then, fi = fj . fk = (a+b)(a+c) = fi
• but {a,b} ∩ {a,c} ≠ ∅

Given two algebraic expressions fdividend and fdivisor , we 
say that fdivisor is an Algebraic Divisor of fdividend ,
fquotient = fdividend/fdivisor when
• fdividend = fdivisor . fquotient + fremainder• fdivisor . fquotient ≠ 0
• and the support of fdivisor and fquotient is disjoint.

Example
• Let fdividend = ac+ad+bc+bd+e  and fdivisor = a+b

• Then fquotient = c+d fremainder = e
• Because (a+b) (c+d)+e = fdividend
• and {a,b} ∩ {c,d} = ∅

• Non-algebraic division
• Let fi = a+bc and fj = a+b.
• Let fk = a+c. Then, fi = fj . fk = (a+b)(a+c) = fi
• but {a,b} ∩ {a,c} ≠ ∅
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… Algebraic Division…… Algebraic DivisionAlgebraic Division

An algebraic divisor is called a factor when the 
remainder is void.
• a+b is a factor of ac+ad+bc+bd

An expression is said to be cube free when it cannot 
be factored by a cube.
• a+b is cube free
• ac+ad+bc+bd is cube free
• ac+ad is non-cube free
• abc is non-cube free

An algebraic divisor is called a factor when the 
remainder is void.
• a+b is a factor of ac+ad+bc+bd

An expression is said to be cube free when it cannot 
be factored by a cube.
• a+b is cube free
• ac+ad+bc+bd is cube free
• ac+ad is non-cube free
• abc is non-cube free
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Algebraic Division Algorithm …Algebraic Division Algorithm Algebraic Division Algorithm ……

Quotient Q and remainder 
R are sum of cubes 
(monomials).
Intersection is largest 
subset of common 
monomials.

Quotient Q and remainder 
R are sum of cubes 
(monomials).
Intersection is largest 
subset of common 
monomials.
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… Algebraic Division Algorithm ……… Algebraic Division Algorithm Algebraic Division Algorithm ……

Example
• fdividend = ac+ad+bc+bd+e;
• fdivisor = a+b;
• A = {ac, ad, bc, bd, e} and B = {a, b}.
• i = 1

• CB
1 = a, D = {ac, ad} and D1 = {c, d}.

• Q = {c, d}.
• i = 2 = n

• CB
2 = b, D = {bc, bd} and D2 = {c, d}.

• Then Q = {c, d} ∩ {c, d} = {c, d}.
• Result

• Q = {c, d} and R = {e}.
• fquotient = c+d and fremainder = e.

Example
• fdividend = ac+ad+bc+bd+e;
• fdivisor = a+b;
• A = {ac, ad, bc, bd, e} and B = {a, b}.
• i = 1

• CB
1 = a, D = {ac, ad} and D1 = {c, d}.

• Q = {c, d}.
• i = 2 = n

• CB
2 = b, D = {bc, bd} and D2 = {c, d}.

• Then Q = {c, d} ∩ {c, d} = {c, d}.
• Result

• Q = {c, d} and R = {e}.
• fquotient = c+d and fremainder = e.
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… Algebraic Division Algorithm…… Algebraic Division AlgorithmAlgebraic Division Algorithm

Example
• Let fdividend = axc+axd+bc+bxd+e;  fdivisor = ax+b
• i=1, CB

1 = ax, D = {axc, axd} and D1 = {c, d}; Q={c, d}
• i = 2 = n; CB

2 = b, D = {bc, bxd} and D2 = {c, xd}.
• Then Q = {c, d} ∩ {c, xd} = {c}.
• fquotient = c and fremainder = axd+bxd+e.

Theorem: Given algebraic expressions fi and fj, then fi/fj is 
empty when
• fj contains a variable not in fi.
• fj contains a cube whose support is not contained in that of 

any cube of fi.
• fj contains more cubes than fi.
• The count of any variable in fj larger than in fi.

Example
• Let fdividend = axc+axd+bc+bxd+e;  fdivisor = ax+b
• i=1, CB

1 = ax, D = {axc, axd} and D1 = {c, d}; Q={c, d}
• i = 2 = n; CB

2 = b, D = {bc, bxd} and D2 = {c, xd}.
• Then Q = {c, d} ∩ {c, xd} = {c}.
• fquotient = c and fremainder = axd+bxd+e.

Theorem: Given algebraic expressions fi and fj, then fi/fj is 
empty when
• fj contains a variable not in fi.
• fj contains a cube whose support is not contained in that of 

any cube of fi.
• fj contains more cubes than fi.
• The count of any variable in fj larger than in fi.
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SubstitutionSubstitutionSubstitution

Substitution replaces a subexpression by a variable 
associated with a vertex of the logic network.
Consider expression pairs.
Apply division (in any order).
If quotient is not void
• Evaluate area/delay gain
• Substitute fdividend by j.fquotient + fremainder where j = fdivisor

Use filters to reduce divisions.
Theorem
• Given two algebraic expressions fi and fj, fi/fj=∅ if there is a 

path from vi to vj in the logic network.

Substitution replaces a subexpression by a variable 
associated with a vertex of the logic network.
Consider expression pairs.
Apply division (in any order).
If quotient is not void
• Evaluate area/delay gain
• Substitute fdividend by j.fquotient + fremainder where j = fdivisor

Use filters to reduce divisions.
Theorem
• Given two algebraic expressions fi and fj, fi/fj=∅ if there is a 

path from vi to vj in the logic network.
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Substitution algorithmSubstitution algorithmSubstitution algorithm
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ExtractionExtractionExtraction

Search for common sub-expressions
• Single-cube extraction: monomial.
• Multiple-cube (kernel) extraction: polynomial

Search for appropriate divisors.
Cube-free expression
• Cannot be factored by a cube.

Kernel of an expression
• Cube-free quotient of the expression divided by a cube 

(called co-kernel).

Kernel set K(f) of an expression
• Set of kernels.

Search for common sub-expressions
• Single-cube extraction: monomial.
• Multiple-cube (kernel) extraction: polynomial

Search for appropriate divisors.
Cube-free expression
• Cannot be factored by a cube.

Kernel of an expression
• Cube-free quotient of the expression divided by a cube 

(called co-kernel).

Kernel set K(f) of an expression
• Set of kernels.
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Kernel ExampleKernel ExampleKernel Example

fx = ace+bce+de+g
Divide fx by a. Get ce. Not cube free.
Divide fx by b. Get ce. Not cube free.
Divide fx by c. Get ae+be. Not cube free.
Divide fx by ce. Get a+b. Cube free. Kernel!
Divide fx by d. Get e. Not cube free.
Divide fx by e. Get ac+bc+d. Cube free. Kernel!
Divide fx by g. Get 1. Not cube free.
Expression fx is a kernel of itself because cube free.
K(fx) = {(a+b); (ac+bc+d); (ace+bce+de+g)}.

fx = ace+bce+de+g
Divide fx by a. Get ce. Not cube free.
Divide fx by b. Get ce. Not cube free.
Divide fx by c. Get ae+be. Not cube free.
Divide fx by ce. Get a+b. Cube free. Kernel!
Divide fx by d. Get e. Not cube free.
Divide fx by e. Get ac+bc+d. Cube free. Kernel!
Divide fx by g. Get 1. Not cube free.
Expression fx is a kernel of itself because cube free.
K(fx) = {(a+b); (ac+bc+d); (ace+bce+de+g)}.
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Theorem (Brayton and McMullen)Theorem (Theorem (BraytonBrayton and McMullen)and McMullen)

Two expressions fa and fb have a common multiple-
cube divisor fd if and only if
• there exist kernels ka ∈ K(fa) and kb ∈ K(fb) s.t. fd is the sum 

of 2 (or more) cubes in ka ∩ kb (intersection is largest subset 
of common monomials)

Consequence
• If kernel intersection is void, then the search for common sub-

expression can be dropped.

Example

Two expressions fa and fb have a common multiple-
cube divisor fd if and only if
• there exist kernels ka ∈ K(fa) and kb ∈ K(fb) s.t. fd is the sum 

of 2 (or more) cubes in ka ∩ kb (intersection is largest subset 
of common monomials)

Consequence
• If kernel intersection is void, then the search for common sub-

expression can be dropped.

Example
fx = ace+bce+de+g; K(fx) = {(a+b); (ac+bc+d); (ace+bce+de+g)}
fy = ad+bd+cde+ge; K(fy) = {(a+b+ce); (cd+g); (ad+bd+cde+ge)}
fz = abc; The kernel set of fz is empty.
Select intersection (a+b)
fw = a+b fx = wce+de+g
fy = wd+cde+ge fz = abc
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Kernel Set Computation …Kernel Set Computation Kernel Set Computation ……

Naive method
• Divide function by elements in power set of its support set.
• Weed out non cube-free quotients.

Smart way
• Use recursion

• Kernels of kernels are kernels of original expression.
• Exploit commutativity of multiplication.

• Kernels with co-kernels ab and ba are the same

A kernel has level 0 if it has no kernel except itself.
A kernel is of level n if it has 
• at least one kernel of level n-1 
• no kernels of level n or greater except itself

Naive method
• Divide function by elements in power set of its support set.
• Weed out non cube-free quotients.

Smart way
• Use recursion

• Kernels of kernels are kernels of original expression.
• Exploit commutativity of multiplication.

• Kernels with co-kernels ab and ba are the same

A kernel has level 0 if it has no kernel except itself.
A kernel is of level n if it has 
• at least one kernel of level n-1 
• no kernels of level n or greater except itself
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…Kernel Set Computation……Kernel Set ComputationKernel Set Computation

Y= adf + aef + bdf + bef + cdf + cef + g
= (a+b+c)(d+e) f + g

Y= adf + aef + bdf + bef + cdf + cef + g
= (a+b+c)(d+e) f + g

21(a+b+c)(d+e)f+g
1f(a+b+c)(d+e)
0af, bf, cf(d+e)
0df, ef(a+b+c)

LevelCo-KernelsKernels
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Recursive Kernel Computation: Simple 
Algorithm
Recursive Kernel Computation: Simple Recursive Kernel Computation: Simple 
AlgorithmAlgorithm

• f is assumed to be cube-free
• If not divide it by its largest cube factor
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Recursive Kernel Computation ExampleRecursive Kernel Computation ExampleRecursive Kernel Computation Example

f = ace+bce+de+g
Literals a or b. No action required.
Literal c. Select cube ce:
• Recursive call with argument (ace+bce+de+g)/ce =a+b; 
• No additional kernels.
• Adds a+b to the kernel set at the last step.

Literal d. No action required.
Literal e. Select cube e:
• Recursive call with argument ac+bc+d
• Kernel a+b is rediscovered and added.
• Adds ac + bc + d to the kernel set at the last step.

Literal g. No action required.
Adds ace+bce+de+g to the kernel set.
K = {(ace+bce+de+g); (a+b); (ac+bc+d); (a+b)}.

f = ace+bce+de+g
Literals a or b. No action required.
Literal c. Select cube ce:
• Recursive call with argument (ace+bce+de+g)/ce =a+b; 
• No additional kernels.
• Adds a+b to the kernel set at the last step.

Literal d. No action required.
Literal e. Select cube e:
• Recursive call with argument ac+bc+d
• Kernel a+b is rediscovered and added.
• Adds ac + bc + d to the kernel set at the last step.

Literal g. No action required.
Adds ace+bce+de+g to the kernel set.
K = {(ace+bce+de+g); (a+b); (ac+bc+d); (a+b)}.
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AnalysisAnalysisAnalysis

Some computation may be redundant
• Example

• Divide by a and then by b.
• Divide by b and then by a.

• Obtain duplicate kernels.

Improvement
• Keep a pointer to literals used so far denoted by j.
• J initially set to 1.
• Avoids generation of co-kernels already calculated
• Sup(f)={x1, x2, …xn} (arranged in lexicographic order)
• f is assumed to be cube-free

• If not divide it by its largest cube factor
• Faster algorithm

Some computation may be redundant
• Example

• Divide by a and then by b.
• Divide by b and then by a.

• Obtain duplicate kernels.

Improvement
• Keep a pointer to literals used so far denoted by j.
• J initially set to 1.
• Avoids generation of co-kernels already calculated
• Sup(f)={x1, x2, …xn} (arranged in lexicographic order)
• f is assumed to be cube-free

• If not divide it by its largest cube factor
• Faster algorithm
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Recursive Kernel ComputationRecursive Kernel ComputationRecursive Kernel Computation
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Recursive Kernel Computation Examples…Recursive Kernel Computation ExamplesRecursive Kernel Computation Examples……

f = ace+bce+de+g; sup(f)={a, b, c, d, e, g}
Literals a or b. No action required.
Literal c. Select cube ce:
• Recursive call with arguments: (ace+bce+de+g)/ce =a+b; pointer j = 

3+1=4.
• Call considers variables {d, e, g}. No kernel.
• Adds a+b to the kernel set at the last step.

Literal d. No action required.
Literal e. Select cube e:
• Recursive call with arguments: ac+bc+d and pointer j = 5+1=6.
• Call considers variable {g}. No kernel.
• Adds ac+bc+d to the kernel set at the last step.

Literal g. No action required.
Adds ace+bce+de+g to the kernel set.
K = {(ace+bce+de+g); (ac+bc+d); (a+b)}.

f = ace+bce+de+g; sup(f)={a, b, c, d, e, g}
Literals a or b. No action required.
Literal c. Select cube ce:
• Recursive call with arguments: (ace+bce+de+g)/ce =a+b; pointer j = 

3+1=4.
• Call considers variables {d, e, g}. No kernel.
• Adds a+b to the kernel set at the last step.

Literal d. No action required.
Literal e. Select cube e:
• Recursive call with arguments: ac+bc+d and pointer j = 5+1=6.
• Call considers variable {g}. No kernel.
• Adds ac+bc+d to the kernel set at the last step.

Literal g. No action required.
Adds ace+bce+de+g to the kernel set.
K = {(ace+bce+de+g); (ac+bc+d); (a+b)}.
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…Recursive Kernel Computation Examples……Recursive Kernel Computation ExamplesRecursive Kernel Computation Examples

Y= adf + aef + bdf + bef + cdf + cef + g=(d+e)(a+b+c)f+g
• Lexicographic order {a, b, c, d, e, f, g}

Y= adf + aef + bdf + bef + cdf + cef + g=(d+e)(a+b+c)f+g
• Lexicographic order {a, b, c, d, e, f, g}

adf + aef + bdf + bef + cdf + cef + g

d+e

d+e

d+e

a+b+c

a+b+c

ad+ae+bd+be+cd+ce

af
bf

cf

df ef
f
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Matrix Representation of Kernels …Matrix Representation of Kernels Matrix Representation of Kernels ……

Boolean matrix
• Rows: cubes. Columns: variables (in both true and 

complement form as needed).

Rectangle (R, C)
• Subset of rows and columns with all entries equal to 1.

Prime rectangle
• Rectangle not inside any other rectangle.

Co-rectangle (R, C’) of a rectangle (R, C)
• C’ are the columns not in C.

A co-kernel corresponds to a prime rectangle with at 
least two rows.

Boolean matrix
• Rows: cubes. Columns: variables (in both true and 

complement form as needed).

Rectangle (R, C)
• Subset of rows and columns with all entries equal to 1.

Prime rectangle
• Rectangle not inside any other rectangle.

Co-rectangle (R, C’) of a rectangle (R, C)
• C’ are the columns not in C.

A co-kernel corresponds to a prime rectangle with at 
least two rows.
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… Matrix Representation of Kernels ……… Matrix Representation of Kernels Matrix Representation of Kernels ……

fx = ace+bce+de+g
Rectangle (prime): ({1, 2}, {3, 5})
• Co-kernel ce.

Co-rectangle: ({1, 2}, {1, 2, 4, 6}).
• Kernel a+b.

fx = ace+bce+de+g
Rectangle (prime): ({1, 2}, {3, 5})
• Co-kernel ce.

Co-rectangle: ({1, 2}, {1, 2, 4, 6}).
• Kernel a+b.
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… Matrix Representation of Kernels ……… Matrix Representation of Kernels Matrix Representation of Kernels ……

Theorem: K is a kernel of f iff it is an expression 
corresponding to the co-rectangle of a prime rectangle 
of f.
The set of all kernels of a logic expression are in 1-1 
correspondence with the set of all co-rectangles of
prime rectangles of the corresponding Boolean matrix.
A level-0 kernel is the co-rectangle of a prime rectangle 
of maximal width.
A prime rectangle of maximum height corresponds to a 
kernel of maximal level.

Theorem: K is a kernel of f iff it is an expression 
corresponding to the co-rectangle of a prime rectangle 
of f.
The set of all kernels of a logic expression are in 1-1 
correspondence with the set of all co-rectangles of
prime rectangles of the corresponding Boolean matrix.
A level-0 kernel is the co-rectangle of a prime rectangle 
of maximal width.
A prime rectangle of maximum height corresponds to a 
kernel of maximal level.
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… Matrix Representation of Kernels…… Matrix Representation of KernelsMatrix Representation of Kernels

Example
• F = abc + abd + ae

• Prime Rectangles & Co-Rectangles
• PR:{(1,2),(1,2)}: corresponding to co-kernel ab
• CR:{(1,2),(3,4,5)}: corresponding to kernel (c+d)
• PR:{(1,2,3),(1)}: corresponding to co-kernel a
• CR:{(1,2,3),(2,3,4,5)}: corresponding to kernel (bc+bd+e)

Example
• F = abc + abd + ae

• Prime Rectangles & Co-Rectangles
• PR:{(1,2),(1,2)}: corresponding to co-kernel ab
• CR:{(1,2),(3,4,5)}: corresponding to kernel (c+d)
• PR:{(1,2,3),(1)}: corresponding to co-kernel a
• CR:{(1,2,3),(2,3,4,5)}: corresponding to kernel (bc+bd+e)

1 2 3 4 5
Cube a b c d e

1 abc 1 1 1
2 abd 1 1 1
3 ae 1 1
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Single-Cube Extraction …SingleSingle--Cube Extraction Cube Extraction ……

Form auxiliary function
• Sum of all product terms of all functions.

Form matrix representation
• A rectangle with at least two rows represents a common cube.
• Rectangles with at least two columns may result in savings.
• Best choice is a prime rectangle.

Use function ID for cubes
• Cube intersection from different functions.

Form auxiliary function
• Sum of all product terms of all functions.

Form matrix representation
• A rectangle with at least two rows represents a common cube.
• Rectangles with at least two columns may result in savings.
• Best choice is a prime rectangle.

Use function ID for cubes
• Cube intersection from different functions.
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… Single-Cube Extraction…… SingleSingle--Cube ExtractionCube Extraction

Expressions
• fx = ace+bce+de+g
• fs = cde+b

Auxiliary function
• faux = ace+bce+de+g + cde+b

Matrix:

Prime rectangle: ({1, 2, 5}, {3, 5})
Extract cube ce.

Expressions
• fx = ace+bce+de+g
• fs = cde+b

Auxiliary function
• faux = ace+bce+de+g + cde+b

Matrix:

Prime rectangle: ({1, 2, 5}, {3, 5})
Extract cube ce.
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Single-Cube Extraction AlgorithmSingleSingle--Cube Extraction AlgorithmCube Extraction Algorithm

Extraction of an l-variable cube with multiplicity n 
saves (n l – n – l) literals
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Multiple-Cube Extraction …MultipleMultiple--Cube Extraction Cube Extraction ……

We need a kernel/cube matrix.
Relabeling
• Cubes by new variables.
• Kernels by cubes.

Form auxiliary function
• Sum of all kernels.

Extend cube intersection algorithm.

We need a kernel/cube matrix.
Relabeling
• Cubes by new variables.
• Kernels by cubes.

Form auxiliary function
• Sum of all kernels.

Extend cube intersection algorithm.
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… Multiple-Cube Extraction…… MultipleMultiple--Cube ExtractionCube Extraction

fp = ace+bce.
• K(fp) = {(a+b)}.

fq = ae+be+d.
• K(fq) = {(a+b), (ae +be+d)}.

fr = ae+be+de.
• K(fr) = {(a+b+d)}.

Relabeling
• xa = a; xb = b; xae = ae; xbe = be; xd = d;
• K(fp) = {(xa, xb)}
• K(fq) = {(xa, xb); (xae, xbe, xd)}.
• K(fr) = {(xa, xb, xd)}.

faux = xaxb + xaxb +xaexbexd + xaxbxd.
Common cube: xaxb.• xaxb corresponds to kernel intersection a+b.
• Extract a+b from fp, fq and fr.

fp = ace+bce.
• K(fp) = {(a+b)}.

fq = ae+be+d.
• K(fq) = {(a+b), (ae +be+d)}.

fr = ae+be+de.
• K(fr) = {(a+b+d)}.

Relabeling
• xa = a; xb = b; xae = ae; xbe = be; xd = d;
• K(fp) = {(xa, xb)}
• K(fq) = {(xa, xb); (xae, xbe, xd)}.
• K(fr) = {(xa, xb, xd)}.

faux = xaxb + xaxb +xaexbexd + xaxbxd.
Common cube: xaxb.• xaxb corresponds to kernel intersection a+b.
• Extract a+b from fp, fq and fr.

Cube xa xb xae xbe xd
xaxb 1    1
xaxb 1    1
xaexbexd 1     1     1
Xaxbxd 1 1 1



53

Kernel Extraction Algorithm …Kernel Extraction Algorithm …

N indicates the rate at which kernels are recomputed
K indicates the maximum level of the kernel computed
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… Kernel Extraction Algorithm… Kernel Extraction Algorithm

Example
• F1= ac+bc; Kernels: {(a+b)}
• F2= ad+bd+cd; Kernels: {(a+b+c)}
• F3= ab+ac; Kernels: {(b+c)}

Example
• F1= ac+bc; Kernels: {(a+b)}
• F2= ad+bd+cd; Kernels: {(a+b+c)}
• F3= ab+ac; Kernels: {(b+c)}

Cube xa xb xc
xaxb 1 1
xaxbxc 1 1 1
xbxc 1 1

After extracting kernel (a+b), kernel (b+c) 
is no longer a common kernel. This is why
kernel intersections need to be recomputed.
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Tradeoffs in Kernel ExtractionTradeoffs in Kernel ExtractionTradeoffs in Kernel Extraction
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Area Value of a Kernel …Area Value of a KernelArea Value of a Kernel  ……

Let n be the number of times a kernel is used
Let l be the number of literals in a kernel and c be the 
number of cubes in a kernel
Let CKi be the co-kernel for kernel i
Initial cost = ∑i=1 to n (|CKi|*c+l)=nl + c *∑i=1 to n |CKi|
Resulting cost = l+∑i=1 to n (|CKi|+1) = n+l+ ∑i=1 to n |CKi|
Value of a kernel = initial cost – resulting cost
= {nl + c *∑i=1 to n |CKi|} – {n+l+ ∑i=1 to n |CKi|}
= nl – n –l + (c-1) * ∑i=1 to n |CKi|

Let n be the number of times a kernel is used
Let l be the number of literals in a kernel and c be the 
number of cubes in a kernel
Let CKi be the co-kernel for kernel i
Initial cost = ∑i=1 to n (|CKi|*c+l)=nl + c *∑i=1 to n |CKi|
Resulting cost = l+∑i=1 to n (|CKi|+1) = n+l+ ∑i=1 to n |CKi|
Value of a kernel = initial cost – resulting cost
= {nl + c *∑i=1 to n |CKi|} – {n+l+ ∑i=1 to n |CKi|}
= nl – n –l + (c-1) * ∑i=1 to n |CKi|
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… Area Value of a Kernel…… Area Value of a KernelArea Value of a Kernel

Example:
• X = acd + bcd = (a+b)cd (6 literals)
• Y = adef + bdef = (a+b)def (8 lietrals)
• Initial cost = 14 literals

After Kernel extraction:
• Z=a+b (2 literals)
• X=Zcd (3 literals)
• Y=Zdef (4 lietrals)
• Resulting cost = 9 literals
• Savings = 14 – 9 = 5 literals

Value of kernel = nl – n –l + (c-1) * ∑i=1 to n |CKi|
• =2*2-2-2+(2-1)*(2+3)=5 literals

Example:
• X = acd + bcd = (a+b)cd (6 literals)
• Y = adef + bdef = (a+b)def (8 lietrals)
• Initial cost = 14 literals

After Kernel extraction:
• Z=a+b (2 literals)
• X=Zcd (3 literals)
• Y=Zdef (4 lietrals)
• Resulting cost = 9 literals
• Savings = 14 – 9 = 5 literals

Value of kernel = nl – n –l + (c-1) * ∑i=1 to n |CKi|
• =2*2-2-2+(2-1)*(2+3)=5 literals
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Issues in Common Cube and Multiple-Cube 
Extraction
Issues in Common Cube and MultipleIssues in Common Cube and Multiple--Cube Cube 
ExtractionExtraction

Greedy approach can be applied in common cube and 
multiple-cube extraction
• Rectangle selection
• Matrix update

Greedy approach may be myopic
• Local gain of one extraction considered at a time

Non-prime rectangles can contribute to lower cost 
covers than prime rectangles
• Quine’s theorem cannot be applied to rectangles

Greedy approach can be applied in common cube and 
multiple-cube extraction
• Rectangle selection
• Matrix update

Greedy approach may be myopic
• Local gain of one extraction considered at a time

Non-prime rectangles can contribute to lower cost 
covers than prime rectangles
• Quine’s theorem cannot be applied to rectangles
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Decomposition …Decomposition Decomposition ……

Goals of decomposition
• Reduce the size of expressions to that typical of library cells.
• Small-sized expressions more likely to be divisors of other 

expressions.

Different decomposition techniques exist.
Algebraic-division-based decomposition
• Give an expression f with fdivisor as one of its divisors.
• Associate a new variable, say t, with the divisor.
• Reduce original expression to f= t . fquotient  + fremainder and t= fdivisor.
• Apply decomposition recursively to the divisor, quotient and 

remainder.

Important issue is choice of divisor
• A kernel.
• A level-0 kernel.
• Evaluate all kernels and select most promising one.

Goals of decomposition
• Reduce the size of expressions to that typical of library cells.
• Small-sized expressions more likely to be divisors of other 

expressions.

Different decomposition techniques exist.
Algebraic-division-based decomposition
• Give an expression f with fdivisor as one of its divisors.
• Associate a new variable, say t, with the divisor.
• Reduce original expression to f= t . fquotient  + fremainder and t= fdivisor.
• Apply decomposition recursively to the divisor, quotient and 

remainder.

Important issue is choice of divisor
• A kernel.
• A level-0 kernel.
• Evaluate all kernels and select most promising one.
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… Decomposition…… DecompositionDecomposition

fx = ace+bce+de+g
Select kernel ac+bc+d.
Decompose: fx = te+g; ft = ac+bc+d;
Recur on the divisor ft
• Select kernel a+b
• Decompose: ft = sc+d; fs = a+b;

fx = ace+bce+de+g
Select kernel ac+bc+d.
Decompose: fx = te+g; ft = ac+bc+d;
Recur on the divisor ft
• Select kernel a+b
• Decompose: ft = sc+d; fs = a+b;
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Decomposition AlgorithmDecomposition AlgorithmDecomposition Algorithm

K is a threshold that determines the size of nodes
to be decomposed.



62

Factorization AlgorithmFactorization AlgorithmFactorization Algorithm

FACTOR(f)
If (the number of literals in f is one) return f
K =choose_Divisor(f)
(h, r) = Divide(f, k)
Return (FACTOR(k) FACTOR(h) + FACTOR(r))

Quick factoring: divisor restricted to first level-0 kernel 
found
• Fast and effective
• Used for area and delay estimation

Good factoring: best kernel divisor is chosen
Example: f = ab + ac + bd + ce + cg
• Quick factoring: f = a (b+c) + c (e+g) + bd (8 literals)
• Good factoring: f = c (a+e+g) + b(a+d)          (7 literals)

FACTOR(f)
If (the number of literals in f is one) return f
K =choose_Divisor(f)
(h, r) = Divide(f, k)
Return (FACTOR(k) FACTOR(h) + FACTOR(r))

Quick factoring: divisor restricted to first level-0 kernel 
found
• Fast and effective
• Used for area and delay estimation

Good factoring: best kernel divisor is chosen
Example: f = ab + ac + bd + ce + cg
• Quick factoring: f = a (b+c) + c (e+g) + bd (8 literals)
• Good factoring: f = c (a+e+g) + b(a+d)          (7 literals)
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One-Level-0-KernelOneOne--LevelLevel--00--KernelKernel

One-Level-0-Kernel(f)
If (|f| ≤1) return 0
If (L = Literal_Count(f) ≤ 1) return f
For (i=1; i ≤n; i++){

If (L(i) > 1){
C= largest cube containing i s.t. CUBES(f,C)=CUBES(f,i)
return One-Level-0-Kernel(f/fC)

}
}

Literal_Count returns a vector of literal counts for each 
literal. 
• If all counts are ≤1 then f is a level-0 kernel

The first literal with a count greater than one is chosen. 

One-Level-0-Kernel(f)
If (|f| ≤1) return 0
If (L = Literal_Count(f) ≤ 1) return f
For (i=1; i ≤n; i++){

If (L(i) > 1){
C= largest cube containing i s.t. CUBES(f,C)=CUBES(f,i)
return One-Level-0-Kernel(f/fC)

}
}

Literal_Count returns a vector of literal counts for each 
literal. 
• If all counts are ≤1 then f is a level-0 kernel

The first literal with a count greater than one is chosen. 
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Fast Extraction (FX) …Fast Extraction (FX) Fast Extraction (FX) ……

Very efficient extraction method
• Based on extraction of double-cube divisors along with their 

complements and, 
• Single-cube divisors with two literals. 
• Number of divisors in polynomial domain.
• Preserves single stuck-at fault testability.
• [Rajski and Vasudevamurthy 1992].

Double-cube divisors are cube-free multiple-cube 
divisors having exactly two cubes.
The set of double-cube divisors of a function f, denoted 
D(f) = {d | d= {ci \ (ci ∩ cj), cj \ (ci ∩ cj) } } for i,j=1,..n, i≠j
• n is number of cubes in f.
• (ci ∩ cj) is called the base of a double-cube divisor.
• Empty base is allowed.

Very efficient extraction method
• Based on extraction of double-cube divisors along with their 

complements and, 
• Single-cube divisors with two literals. 
• Number of divisors in polynomial domain.
• Preserves single stuck-at fault testability.
• [Rajski and Vasudevamurthy 1992].

Double-cube divisors are cube-free multiple-cube 
divisors having exactly two cubes.
The set of double-cube divisors of a function f, denoted 
D(f) = {d | d= {ci \ (ci ∩ cj), cj \ (ci ∩ cj) } } for i,j=1,..n, i≠j
• n is number of cubes in f.
• (ci ∩ cj) is called the base of a double-cube divisor.
• Empty base is allowed.
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… Fast Extraction (FX) ……… Fast Extraction (FX) Fast Extraction (FX) ……

Example: f = ade + ag + bcde +bcg.
Double-cube divisors and their bases:

A subset of double-cube divisors is represented by Dx,y,s
• x is number of literals in first cube
• y is number of literals in second cube
• s is number of variables in support of D

A subset of single-cube divisors is denoted by Sk where k 
is number of literals in single-cube divisor.

Example: f = ade + ag + bcde +bcg.
Double-cube divisors and their bases:

A subset of double-cube divisors is represented by Dx,y,s
• x is number of literals in first cube
• y is number of literals in second cube
• s is number of variables in support of D

A subset of single-cube divisors is denoted by Sk where k 
is number of literals in single-cube divisor.

{}ag+bcde
{}ade+bcg

g, dea+bc
a, bcde+g
BaseDouble-cube divisors
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Properties of Double-Cube and Single-
Cube Divisors
Properties of DoubleProperties of Double--Cube and SingleCube and Single--
Cube DivisorsCube Divisors

Example:
• xy+y’zp ∈ D2,3,4
• ab ∈ S2

D1,1,1 and D1,2,2 are null set.
For any d ∈ D1,1,2 , d’∈S2.
For any d ∈ D1,2,3 , d’∉D.
For any d ∈ D2,2,2 , d is either XOR or XNOR and d’ ∈
D2,2,2 .
For any d ∈ D2,2,3 , d’ ∈ D2,2,3.
For any d ∈ D2,2,4 , d’∉D.

Example:
• xy+y’zp ∈ D2,3,4
• ab ∈ S2

D1,1,1 and D1,2,2 are null set.
For any d ∈ D1,1,2 , d’∈S2.
For any d ∈ D1,2,3 , d’∉D.
For any d ∈ D2,2,2 , d is either XOR or XNOR and d’ ∈
D2,2,2 .
For any d ∈ D2,2,3 , d’ ∈ D2,2,3.
For any d ∈ D2,2,4 , d’∉D.
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Extraction of Double-cube Divisor along 
with its Complement
Extraction of DoubleExtraction of Double--cube Divisor along cube Divisor along 
with its Complementwith its Complement

Theorem: Let f and g be two expressions. Then, f has 
neither a complement double-cube divisor nor a 
complement single-cube divisor in g if
• di ≠ sj’ for every di ∈ D1,1,2 (f) , sj ∈ S2(g)
• di ≠ sj’ for every di ∈ D1,1,2 (g) , sj ∈ S2(f)
• di ≠ dj’ for every di ∈ Dxor (f) , dj ∈ Dxnor (g) 
• di ≠ dj’ for every di ∈ Dxnor (f) , dj ∈ Dxor (g)
• di ≠ dj’ for every di ∈ D2,2,3 (f) , dj ∈ D2,2,3 (g)

Theorem: Let f and g be two expressions. Then, f has 
neither a complement double-cube divisor nor a 
complement single-cube divisor in g if
• di ≠ sj’ for every di ∈ D1,1,2 (f) , sj ∈ S2(g)
• di ≠ sj’ for every di ∈ D1,1,2 (g) , sj ∈ S2(f)
• di ≠ dj’ for every di ∈ Dxor (f) , dj ∈ Dxnor (g) 
• di ≠ dj’ for every di ∈ Dxnor (f) , dj ∈ Dxor (g)
• di ≠ dj’ for every di ∈ D2,2,3 (f) , dj ∈ D2,2,3 (g)
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Weights of Double-cube Divisors and 
Single-Cube Divisors
Weights of DoubleWeights of Double--cube Divisors and cube Divisors and 
SingleSingle--Cube DivisorsCube Divisors

Divisor weight represents literal savings.
Weight of a double-cube divisor d ∈ Dx,y,s is 
w(d) = (p-1)(x+y) – p + ∑i=1 to p |bi| + C
• p is the number of times double-cube divisor is used

• Includes complements that are also double-cube divisors
• |bi| is the number of literals in base of double-cube divisor
• C is the number of cubes containing both a and b in case 

cube ab is a complement of d ∈ D1,1,2
• (p-1)(x+y) accounts for the number of literals saved by 

implementing d of size (x+y) once
• -p accounts for number of literals needed to connect d in its p 

occurrences 

Weight of a single-cube divisor c ∈ S2 is k – 2
• K is the number of cubes containing c.

Divisor weight represents literal savings.
Weight of a double-cube divisor d ∈ Dx,y,s is 
w(d) = (p-1)(x+y) – p + ∑i=1 to p |bi| + C
• p is the number of times double-cube divisor is used

• Includes complements that are also double-cube divisors
• |bi| is the number of literals in base of double-cube divisor
• C is the number of cubes containing both a and b in case 

cube ab is a complement of d ∈ D1,1,2
• (p-1)(x+y) accounts for the number of literals saved by 

implementing d of size (x+y) once
• -p accounts for number of literals needed to connect d in its p 

occurrences 

Weight of a single-cube divisor c ∈ S2 is k – 2
• K is the number of cubes containing c.
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Fast Extraction AlgorithmFast Extraction AlgorithmFast Extraction Algorithm

Generate double-cube divisors with weights
Repeat

Select a double-cube divisor d that has a maximum weight 
Wdmax

Select a single-cube divisor s having a maximum weight Wsmax
If Wdmax > Wsmax select d else select s
W = max(Wdmax, Wsmax)
If W > 0 then substitute selected divisor
Recompute weights of affected double-cube divisors

Until (W<=0)

Generate double-cube divisors with weights
Repeat

Select a double-cube divisor d that has a maximum weight 
Wdmax

Select a single-cube divisor s having a maximum weight Wsmax
If Wdmax > Wsmax select d else select s
W = max(Wdmax, Wsmax)
If W > 0 then substitute selected divisor
Recompute weights of affected double-cube divisors

Until (W<=0)
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Fast Extraction ExampleFast Extraction ExampleFast Extraction Example

F = abc + a’b’c + ab’d + a’bd + acd + a’b’d’ (18 literals)F = abc + a’b’c + ab’d + a’bd + acd + a’b’d’ (18 literals)

1a’b’c+d’

-1{}abc+a’b’d’

-1{}acd+a’b’d’
0a’bd+b’d’
0da’b+ac
0b’ad+a’d’
1adb’+c
4dab’+a’b

0ca’b’+ad
0a’b’c+bd
0b’a’c+ad

2acb+d
0bac+a’d
0abc+b’d
4cab+a’b’

WeightBased Single-cube divisors with 
Wsmax are either ac or a’b’
or ad with weight of 0

Double-cube divisor=ab + 
a’b’ is selected

[1]=ab + a’b’
F= [1]c + [1]’d + acd + a’b’d’

(14 literals)
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Boolean MethodsBoolean MethodsBoolean Methods

Exploit Boolean properties.
• Don't care conditions.

Minimization of the local functions.
Slower algorithms, better quality results.
Don’t care conditions related to embedding of a 
function in an environment
• Called external don’t care conditions

External don’t care conditions
• Controllability
• Observability

Exploit Boolean properties.
• Don't care conditions.

Minimization of the local functions.
Slower algorithms, better quality results.
Don’t care conditions related to embedding of a 
function in an environment
• Called external don’t care conditions

External don’t care conditions
• Controllability
• Observability
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External Don't Care Conditions …External External Don't CareDon't Care Conditions Conditions ……

Controllability don't care set CDCin
• Input patterns never produced by the environment at the 

network's input.

Observability don't care set ODCout
• Input patterns representing conditions when an output is not 

observed by the environment.
• Relative to each output.
• Vector notation used: ODCout.

Controllability don't care set CDCin
• Input patterns never produced by the environment at the 

network's input.

Observability don't care set ODCout
• Input patterns representing conditions when an output is not 

observed by the environment.
• Relative to each output.
• Vector notation used: ODCout.
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… External Don't Care Conditions…… External External Don't CareDon't Care ConditionsConditions

Inputs driven by a decoder.
CDCin = x1’x2’x3’x4’+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4.
Outputs observed when x1+x4=1.

Inputs driven by a decoder.
CDCin = x1’x2’x3’x4’+x1x2+x1x3+x1x4+x2x3+x2x4+x3x4.
Outputs observed when x1+x4=1.
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Internal Don't Care Conditions …Internal Internal Don't CareDon't Care Conditions Conditions ……

Induced by the network structure.
Controllability don't care conditions
• Patterns never produced at the inputs of a subnetwork.

Observability don't care conditions
• Patterns such that the outputs of a subnetwork are not 

observed.

Induced by the network structure.
Controllability don't care conditions
• Patterns never produced at the inputs of a subnetwork.

Observability don't care conditions
• Patterns such that the outputs of a subnetwork are not 

observed.
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… Internal Don't Care Conditions…… Internal Internal Don't CareDon't Care ConditionsConditions

Example: x = a’+b; y= abx + a’cx

CDC of vy includes ab’x+a’x’.
• ab’⇒x=0; ab’x is a don’t care condition
• a’ ⇒ x=1; a’x’ is a don’t care condition

Minimize fy to obtain: fy = ax+a’c.

Example: x = a’+b; y= abx + a’cx

CDC of vy includes ab’x+a’x’.
• ab’⇒x=0; ab’x is a don’t care condition
• a’ ⇒ x=1; a’x’ is a don’t care condition

Minimize fy to obtain: fy = ax+a’c.
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Satisfiability Don't Care ConditionsSatisfiabilitySatisfiability Don't CareDon't Care ConditionsConditions

Invariant of the network
• x = fx → x ≠ fx ⊆ SDC.

Useful to compute controllability don't cares.
Example
• Assume x = a’ + b
• Since x ≠ (a’ + b) is not possible, x ⊕ (a’ + b)=x’a’ + x’b + xab’

is a don’t care condition.

Invariant of the network
• x = fx → x ≠ fx ⊆ SDC.

Useful to compute controllability don't cares.
Example
• Assume x = a’ + b
• Since x ≠ (a’ + b) is not possible, x ⊕ (a’ + b)=x’a’ + x’b + xab’

is a don’t care condition.
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CDC Computation …CDC Computation CDC Computation ……

Network traversal algorithm
• Consider different cuts moving from input to output.

Initial CDC is CDCin.
Move cut forward.
• Consider SDC contributions of predecessors.
• Remove unneeded variables by consensus.

Consensus of a function f with respect to variable x is 
fx . fx’

Network traversal algorithm
• Consider different cuts moving from input to output.

Initial CDC is CDCin.
Move cut forward.
• Consider SDC contributions of predecessors.
• Remove unneeded variables by consensus.

Consensus of a function f with respect to variable x is 
fx . fx’



78

… CDC Computation ……… CDC Computation CDC Computation ……
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… CDC Computation ……… CDC Computation CDC Computation ……

Assume CDCin = x1’x4’.
Select vertex va
• Contribution to CDCcut: a ⊕ (x2 ⊕ x3).

• CDCcut = x1’x4’ + a ⊕ (x2 ⊕ x3).
• Drop variables D = {x2, x3} 
• CDCcut = x1’x4’.

Select vertex vb
• Contribution to CDCcut : b ⊕ (x1 +a).

• CDCcut = x1’x4’ + b ⊕ (x1 +a).
• Drop variable D = {x1}
• CDCcut = b’x4’ +b’a.

Assume CDCin = x1’x4’.
Select vertex va
• Contribution to CDCcut: a ⊕ (x2 ⊕ x3).

• CDCcut = x1’x4’ + a ⊕ (x2 ⊕ x3).
• Drop variables D = {x2, x3} 
• CDCcut = x1’x4’.

Select vertex vb
• Contribution to CDCcut : b ⊕ (x1 +a).

• CDCcut = x1’x4’ + b ⊕ (x1 +a).
• Drop variable D = {x1}
• CDCcut = b’x4’ +b’a.



80

… CDC Computation…… CDC ComputationCDC Computation

Select vertex vc• Contribution to CDCcut: c ⊕ (x4 + a).
• CDCcut = b’x4’ +b’a + c ⊕ (x4 + a).

• Drop variables D = {a, x4} • CDCcut = b’c’.
Select vertex vd• Contribution to CDCcut: d ⊕ (bc).
• CDCcut = b’c’ + d ⊕ (bc).

Select vertex ve• Contribution to CDCcut: e ⊕ (b + c).
• CDCcut = b’c’ + d ⊕ (bc) + e ⊕ (b + c).

• Drop variables D = {b, c} 
• CDCcut = e’.

CDCcut = e’ = z2’.

Select vertex vc• Contribution to CDCcut: c ⊕ (x4 + a).
• CDCcut = b’x4’ +b’a + c ⊕ (x4 + a).

• Drop variables D = {a, x4} • CDCcut = b’c’.
Select vertex vd• Contribution to CDCcut: d ⊕ (bc).
• CDCcut = b’c’ + d ⊕ (bc).

Select vertex ve• Contribution to CDCcut: e ⊕ (b + c).
• CDCcut = b’c’ + d ⊕ (bc) + e ⊕ (b + c).

• Drop variables D = {b, c} 
• CDCcut = e’.

CDCcut = e’ = z2’.
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Network PerturbationNetwork PerturbationNetwork Perturbation

Modify network by adding an extra input 
δ.
Extra input can flip polarity of a signal x.
Replace local function fx by fx ⊕ δ.
Perturbed terminal behavior: fx(δ).
A variable is observable if a change in 
its polarity is perceived at an output.
Observability don’t-care set ODC for 
variable x is (fx(0) ⊕ fx(1))’
• fx(0)=abc
• fx(1)=a’bc
• ODCx= (abc ⊕ a’bc)’ = b’+c’
• Minimizing fx=ab with ODCx= b’+c’ leads to 

fx=a.

Modify network by adding an extra input 
δ.
Extra input can flip polarity of a signal x.
Replace local function fx by fx ⊕ δ.
Perturbed terminal behavior: fx(δ).
A variable is observable if a change in 
its polarity is perceived at an output.
Observability don’t-care set ODC for 
variable x is (fx(0) ⊕ fx(1))’
• fx(0)=abc
• fx(1)=a’bc
• ODCx= (abc ⊕ a’bc)’ = b’+c’
• Minimizing fx=ab with ODCx= b’+c’ leads to 

fx=a.
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Observability Don't Care ConditionsObservabilityObservability Don't CareDon't Care ConditionsConditions

Conditions under which a change in polarity of a signal x is 
not perceived at the outputs.
Complement of the Boolean Difference
• ∂f/∂x = f|x=1 ⊕ f|x=0

Equivalence of perturbed function: (fx(0) ⊕ fx(1))’.
Observability don't care computation
• Problem

• Outputs are not expressed as function of all variables.
• If network is flattened to obtain f, it may explode in size.

• Requirement
• Local rules for ODC computation.
• Network traversal.

Conditions under which a change in polarity of a signal x is 
not perceived at the outputs.
Complement of the Boolean Difference
• ∂f/∂x = f|x=1 ⊕ f|x=0

Equivalence of perturbed function: (fx(0) ⊕ fx(1))’.
Observability don't care computation
• Problem

• Outputs are not expressed as function of all variables.
• If network is flattened to obtain f, it may explode in size.

• Requirement
• Local rules for ODC computation.
• Network traversal.
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Observability Don't Care Computation …ObservabilityObservability Don't CareDon't Care Computation Computation ……

Assume single-output network with tree structure.
Traverse network tree.
At root
• ODCout is given.

At internal vertices assuming y is the output of x
• ODCx = (∂fy/∂x)’ + ODCy = (fy|x=1 ⊕ fy|x=0 )’+ ODCy

Example
• Assume ODCout = ODCe = 0. 
• ODCb = (∂fe/∂b)’

= ((b+c)|b=1 ⊕ (b+c)|b=0)’= c.
• ODCc = (∂fe/∂c)’ = b.
• ODCx1 = ODCb + (∂fb/∂x1)’ = c+a1.
• …

Assume single-output network with tree structure.
Traverse network tree.
At root
• ODCout is given.

At internal vertices assuming y is the output of x
• ODCx = (∂fy/∂x)’ + ODCy = (fy|x=1 ⊕ fy|x=0 )’+ ODCy

Example
• Assume ODCout = ODCe = 0. 
• ODCb = (∂fe/∂b)’

= ((b+c)|b=1 ⊕ (b+c)|b=0)’= c.
• ODCc = (∂fe/∂c)’ = b.
• ODCx1 = ODCb + (∂fb/∂x1)’ = c+a1.
• …
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… Observability Don't Care Computation…… ObservabilityObservability Don't Care ComputationDon't Care Computation

General networks have fanout re-convergence.
For each vertex with two (or more) fanout stems
• The contribution of the ODC along the stems cannot be 

added.
• Wrong assumption is intersecting them

• ODCa,b=x1+c=x1+a+x4
• ODCa,c=x4+b=x4+a+x1
• ODCa,b∩ ODCa,c=x1+a+x4
• Variable a is not redundant

• Interplay of different paths.

More elaborate analysis.

General networks have fanout re-convergence.
For each vertex with two (or more) fanout stems
• The contribution of the ODC along the stems cannot be 

added.
• Wrong assumption is intersecting them

• ODCa,b=x1+c=x1+a+x4
• ODCa,c=x4+b=x4+a+x1
• ODCa,b∩ ODCa,c=x1+a+x4
• Variable a is not redundant

• Interplay of different paths.

More elaborate analysis.
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Two-way Fanout Stem …TwoTwo--way way FanoutFanout Stem Stem ……

Compute ODC sets associated with 
edges.
Combine ODCs at vertex.
Formula derivation
• Assume two equal perturbations on the 

edges.

Compute ODC sets associated with 
edges.
Combine ODCs at vertex.
Formula derivation
• Assume two equal perturbations on the 

edges.
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… Two-way Fanout Stem…… TwoTwo--way way FanoutFanout StemStem

ODCa,b = x1+c = x1+a2+x4

ODCa,c = x4+b = x4+a1+x1

ODCa = (ODCa,b |a2=a’ ⊕ ODCa,c)’
= ((x1+a’+x4) ⊕ (x4+a+x1))’
= x1+x4

ODCa,b = x1+c = x1+a2+x4

ODCa,c = x4+b = x4+a1+x1

ODCa = (ODCa,b |a2=a’ ⊕ ODCa,c)’
= ((x1+a’+x4) ⊕ (x4+a+x1))’
= x1+x4 a1 a2
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Multi-Way Stems TheoremMultiMulti--Way Stems TheoremWay Stems Theorem

Let vx ∈ V be any internal or input vertex.
Let {xi; i = 1, 2, … , p} be the edge variables 
corresponding to {(x, yi) ; i = 1, 2, … , p}.
Let ODCx,yi ; i = 1, 2, … , p  be the edge ODCs.

For a 3-fanout stem variable x: 
ODCx = ODCx,y1 |x2=x3=x’ ⊕ ODCx,y2 |x3=x’ ⊕ ODCx,y3

Let vx ∈ V be any internal or input vertex.
Let {xi; i = 1, 2, … , p} be the edge variables 
corresponding to {(x, yi) ; i = 1, 2, … , p}.
Let ODCx,yi ; i = 1, 2, … , p  be the edge ODCs.

For a 3-fanout stem variable x: 
ODCx = ODCx,y1 |x2=x3=x’ ⊕ ODCx,y2 |x3=x’ ⊕ ODCx,y3
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Observability Don't Care Algorithm …ObservabilityObservability Don't CareDon't Care Algorithm Algorithm ……

For each variable, intersection of ODC at all outputs 
yields condition under which output is not observed
• Global ODC of a variable

The global ODC conditions of the input variables is the 
input observability don’t care set ODCin.
• May be used as external ODC sets for optimizing a network 

feeding the one under consideration

For each variable, intersection of ODC at all outputs 
yields condition under which output is not observed
• Global ODC of a variable

The global ODC conditions of the input variables is the 
input observability don’t care set ODCin.
• May be used as external ODC sets for optimizing a network 

feeding the one under consideration
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… Observability Don't Care Algorithm…… ObservabilityObservability Don't CareDon't Care AlgorithmAlgorithm

Global ODC of a is (x1x4)(x1+x4)=x1x4
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Transformations with Don't CaresTransformations with Transformations with Don't CaresDon't Cares

Boolean simplification
• Use standard minimizer (Espresso).
• Minimize the number of literals.

Boolean substitution
• Simplify a function by adding an extra input.
• Equivalent to simplification with global don't care conditions.

Example
• Substitute q = a+cd into fh = a+bcd+e to get fh = a+bq +e.
• SDC set: q⊕(a+cd) = q’a+q’cd+qa’(cd)’.
• Simplify fh = a+bcd+e with q’a+q’cd+qa’(cd)’ as don't care. 
• Simplication yields fh = a+bq +e.
• One literal less by changing the support of fh.

Boolean simplification
• Use standard minimizer (Espresso).
• Minimize the number of literals.

Boolean substitution
• Simplify a function by adding an extra input.
• Equivalent to simplification with global don't care conditions.

Example
• Substitute q = a+cd into fh = a+bcd+e to get fh = a+bq +e.
• SDC set: q⊕(a+cd) = q’a+q’cd+qa’(cd)’.
• Simplify fh = a+bcd+e with q’a+q’cd+qa’(cd)’ as don't care. 
• Simplication yields fh = a+bq +e.
• One literal less by changing the support of fh.
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Single-Vertex OptimizationSingleSingle--Vertex OptimizationVertex Optimization
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Optimization and Perturbations …Optimization and Perturbations Optimization and Perturbations ……

Replace fx by gx.
Perturbation δx = fx ⊕ gx.
Condition for feasible replacement
• Perturbation bounded by local don't care set
• δx ⊆ DCext + ODCx
• If fx and gx have the same support set S(x) then 

• δx ⊆ DCext +ODCx + CDCS(x) 

• If S(gx) includes network variables
• δx ⊆ DCext +ODCx + SDCx

Replace fx by gx.
Perturbation δx = fx ⊕ gx.
Condition for feasible replacement
• Perturbation bounded by local don't care set
• δx ⊆ DCext + ODCx
• If fx and gx have the same support set S(x) then 

• δx ⊆ DCext +ODCx + CDCS(x) 

• If S(gx) includes network variables
• δx ⊆ DCext +ODCx + SDCx

∑
≠∈

⊕=
xyy vvVv

yx fySDC
:
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… Optimization and Perturbations…… Optimization and PerturbationsOptimization and Perturbations

No external don't care set.
Replace AND by wire: gx = a
Analysis
• δx = fx ⊕ gx = ab ⊕ a = ab’.
• ODCx = y’ = b’ +c’.
• δx = ab’ ⊆ DCx = b’ +c’ ⇒ feasible!

No external don't care set.
Replace AND by wire: gx = a
Analysis
• δx = fx ⊕ gx = ab ⊕ a = ab’.
• ODCx = y’ = b’ +c’.
• δx = ab’ ⊆ DCx = b’ +c’ ⇒ feasible!
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Synthesis and TestabilitySynthesis and TestabilitySynthesis and Testability

Testability
• Ease of testing a circuit.

Assumptions
• Combinational circuit.
• Single or multiple stuck-at faults.

Full testability
• Possible to generate test set for all faults.

Synergy between synthesis and testing.
Testable networks correlate to small-area networks.
Don't care conditions play a major role.

Testability
• Ease of testing a circuit.

Assumptions
• Combinational circuit.
• Single or multiple stuck-at faults.

Full testability
• Possible to generate test set for all faults.

Synergy between synthesis and testing.
Testable networks correlate to small-area networks.
Don't care conditions play a major role.
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Test for Stuck-at-FaultsTest for StuckTest for Stuck--atat--FaultsFaults

Net y stuck-at 0
• Input pattern that sets y to true.
• Observe output.
• Output of faulty circuit differs.
• {t | y(t) . ODC’y(t) = 1}.

Net y stuck-at 1
• Same, but set y to false.
• {t | y’(t) . ODC’y(t) = 1}.

Need controllability and observability.

Net y stuck-at 0
• Input pattern that sets y to true.
• Observe output.
• Output of faulty circuit differs.
• {t | y(t) . ODC’y(t) = 1}.

Net y stuck-at 1
• Same, but set y to false.
• {t | y’(t) . ODC’y(t) = 1}.

Need controllability and observability.
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Using Testing Methods for Synthesis …Using Testing Methods for Synthesis Using Testing Methods for Synthesis ……

Redundancy removal.
• Use ATPG to search for untestable faults.

If stuck-at 0 on net y is untestable
• Set y = 0.
• Propagate constant.

If stuck-at 1 on y is untestable
• Set y = 1.
• Propagate constant.

Redundancy removal.
• Use ATPG to search for untestable faults.

If stuck-at 0 on net y is untestable
• Set y = 0.
• Propagate constant.

If stuck-at 1 on y is untestable
• Set y = 1.
• Propagate constant.
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… Using Testing Methods for Synthesis…… Using Testing Methods for SynthesisUsing Testing Methods for Synthesis
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Redundancy Removal and Perturbation 
Analysis
Redundancy Removal and Perturbation Redundancy Removal and Perturbation 
AnalysisAnalysis

Stuck-at 0 on y.
• y set to 0. Namely gx = fx|y=0.
• Perturbation

• δ = fx ⊕ fx|y=0 = y . ∂fx / ∂y.

Perturbation is feasible ⇔ fault is untestable.
δ = y . ∂fx / ∂y ⊆ DCx ⇔ fault is untestable
Making fx prime and irredundant with respect to DCx
guarantees that all single stuck-at faults in fx are testable.

Stuck-at 0 on y.
• y set to 0. Namely gx = fx|y=0.
• Perturbation

• δ = fx ⊕ fx|y=0 = y . ∂fx / ∂y.

Perturbation is feasible ⇔ fault is untestable.
δ = y . ∂fx / ∂y ⊆ DCx ⇔ fault is untestable
Making fx prime and irredundant with respect to DCx
guarantees that all single stuck-at faults in fx are testable.
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Synthesis for TestabilitySynthesis for TestabilitySynthesis for Testability

Synthesize networks that are fully testable.
• Single stuck-at faults.
• Multiple stuck-at faults.

Two-level forms
• Full testability for single stuck-at faults

• Prime and irredundant cover.
• Full testability for multiple stuck-at faults

• Prime and irredundant cover when
• Single-output function.
• No product term sharing.
• Each component is PI.

Synthesize networks that are fully testable.
• Single stuck-at faults.
• Multiple stuck-at faults.

Two-level forms
• Full testability for single stuck-at faults

• Prime and irredundant cover.
• Full testability for multiple stuck-at faults

• Prime and irredundant cover when
• Single-output function.
• No product term sharing.
• Each component is PI.
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… Synthesis for Testability…… Synthesis for TestabilitySynthesis for Testability

A complete single-stuck-at fault test set for a single-
output sum-of-product circuit is a complete test set for 
all multiple stuck-at faults.
Single stuck-at fault testability of multiple-level 
network does not imply multiple stuck-at fault 
testability.
Fast extraction transformations are single stuck-at 
fault test-set preserving transformations. 
Algebraic transformations preserve multiple stuck-at
fault testability but not single stuck-at fault testability
• Factorization
• Substitution (without complement)
• Cube and kernel extraction

A complete single-stuck-at fault test set for a single-
output sum-of-product circuit is a complete test set for 
all multiple stuck-at faults.
Single stuck-at fault testability of multiple-level 
network does not imply multiple stuck-at fault 
testability.
Fast extraction transformations are single stuck-at 
fault test-set preserving transformations. 
Algebraic transformations preserve multiple stuck-at
fault testability but not single stuck-at fault testability
• Factorization
• Substitution (without complement)
• Cube and kernel extraction
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Synthesis of Testable Multiple-Level 
Networks …
Synthesis of Testable MultipleSynthesis of Testable Multiple--Level Level 
Networks Networks ……

A logic network Gn(V, E), with local functions in sum of 
product form.
Prime and irredundant (PI)
• No literal nor implicant of any local function can be dropped.

Simultaneously prime and irredundant (SPI)
• No subset of literals and/or implicants can be dropped.

A logic network is PI if and only if
• its AND-OR implementation is fully testable for single stuck-

at faults.

A logic network is SPI if and only if
• its AND-OR implementation is fully testable for multiple stuck-

at faults.

A logic network Gn(V, E), with local functions in sum of 
product form.
Prime and irredundant (PI)
• No literal nor implicant of any local function can be dropped.

Simultaneously prime and irredundant (SPI)
• No subset of literals and/or implicants can be dropped.

A logic network is PI if and only if
• its AND-OR implementation is fully testable for single stuck-

at faults.

A logic network is SPI if and only if
• its AND-OR implementation is fully testable for multiple stuck-

at faults.
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… Synthesis of Testable Multiple-Level 
Networks
…… Synthesis of Testable MultipleSynthesis of Testable Multiple--Level Level 
NetworksNetworks

Compute full local don't care sets.
• Make all local functions PI w.r. to don't care sets.

Pitfall
• Don't cares change as functions change.

Solution
• Iteration (Espresso-MLD).
• If iteration converges, network is fully testable.

Flatten to two-level form.
• When possible -- no size explosion.

Make SPI by disjoint logic minimization.
Reconstruct multiple-level network
• Algebraic transformations preserve multifault testability.

Compute full local don't care sets.
• Make all local functions PI w.r. to don't care sets.

Pitfall
• Don't cares change as functions change.

Solution
• Iteration (Espresso-MLD).
• If iteration converges, network is fully testable.

Flatten to two-level form.
• When possible -- no size explosion.

Make SPI by disjoint logic minimization.
Reconstruct multiple-level network
• Algebraic transformations preserve multifault testability.
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Timing Issues in Multiple-Level Logic
Optimization
Timing Issues in MultipleTiming Issues in Multiple--Level LogicLevel Logic
OptimizationOptimization

Timing optimization is crucial for achieving competitive 
logic design.
Timing verification: Check that a circuit runs at speed
• Satisfies I/O delay constraints.
• Satisfies cycle-time constraints.
• Delay modeling.
• Critical paths.
• The false path problem.

Algorithms for timing optimization.
• Minimum area subject to delay constraints.
• Minimum delay (subject to area constraints).

Timing optimization is crucial for achieving competitive 
logic design.
Timing verification: Check that a circuit runs at speed
• Satisfies I/O delay constraints.
• Satisfies cycle-time constraints.
• Delay modeling.
• Critical paths.
• The false path problem.

Algorithms for timing optimization.
• Minimum area subject to delay constraints.
• Minimum delay (subject to area constraints).
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Delay ModelingDelay ModelingDelay Modeling

Gate delay modeling
• Straightforward for bound networks.
• Approximations for unbound networks.

Network delay modeling
• Compute signal propagation

• Topological methods.
• Logic/topological methods.

Gate delay modeling for unbound networks
• Virtual gates: Logic expressions.
• Stage delay model: Unit delay per vertex.
• Refined models: Depending on size and fanout.

Gate delay modeling
• Straightforward for bound networks.
• Approximations for unbound networks.

Network delay modeling
• Compute signal propagation

• Topological methods.
• Logic/topological methods.

Gate delay modeling for unbound networks
• Virtual gates: Logic expressions.
• Stage delay model: Unit delay per vertex.
• Refined models: Depending on size and fanout.
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Network Delay Modeling …Network Delay Modeling Network Delay Modeling ……

For each vertex vi.
• Propagation delay di.

Data-ready time ti.
• Denotes the time at which the data is ready at the output.
• Input data-ready times denote when inputs are available.
• Computed elsewhere by forward traversal

The maximum data-ready time occurring at an output 
vertex
• Corresponds to the longest propagation delay path
• Called topological critical path

For each vertex vi.
• Propagation delay di.

Data-ready time ti.
• Denotes the time at which the data is ready at the output.
• Input data-ready times denote when inputs are available.
• Computed elsewhere by forward traversal

The maximum data-ready time occurring at an output 
vertex
• Corresponds to the longest propagation delay path
• Called topological critical path
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Assume ta=0 and tb=10.
Propagation delays
• dg = 3; dh = 8; dm = 1; dk = 10; dl = 3;
• dn = 5; dp = 2; dq = 2; dx = 2; dy = 3;
• Maximum data-ready time is ty=25
• Topological critical path: (vb, vn, vp, vl, vq, vy).

Assume ta=0 and tb=10.
Propagation delays
• dg = 3; dh = 8; dm = 1; dk = 10; dl = 3;
• dn = 5; dp = 2; dq = 2; dx = 2; dy = 3;
• Maximum data-ready time is ty=25
• Topological critical path: (vb, vn, vp, vl, vq, vy).

tg= 3+0=3
th= 8+3=11
tk= 10+3=13
tn= 5+10=15
tp= 2+max{15,3}=17
tl= 3+max{13,17}=20
tm= 1+max{3,11,20}=21
tx= 2+21=23
tq= 2+20=22
ty= 3+22=25
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For each vertex vi.
• Required data-ready time ti.

• Specified at the primary outputs.
• Computed elsewhere by backward traversal

• Slack si.
• Difference between required and actual data-ready times

For each vertex vi.
• Required data-ready time ti.

• Specified at the primary outputs.
• Computed elsewhere by backward traversal

• Slack si.
• Difference between required and actual data-ready times
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Required data-ready times
• tx = 25 and ty = 25.

Required data-ready times
• tx = 25 and ty = 25.

Required Times & Slack:
sx= 2; sy=0
tm= 25-2=23; sm=23-21=2
tq= 25-3=22; sq=22-22=0
tl= min{23-1,22-2}=20; sl=0
th= 23-1=22; sh=22-11=11
tk= 20-3=17; sk=17-13=4
tp= 20-3=17; sp=17-17=0
tn= 17-2=15; sn=15-15=0
tb= 15-5=10; sb=10-10=0
tg= min{22-8;17-10;17-2}=7; sg=4
ta=7-3=4; sa=4-0=4

Data-Ready Times:
tg= 3+0=3
th= 8+3=11
tk= 10+3=13
tn= 5+10=15
tp= 2+max{15,3}=17
tl= 3+max{13,17}=20
tm= 1+max{3,11,20}=21
tx= 2+21=23
tq= 2+20=22
ty= 3+22=25

Propagation Delays :
dg = 3; dh = 8; dm = 1; dk = 10; 
dl = 3; dn = 5; dp = 2; dq = 2;
dx = 2; dy = 3
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Topological Critical Path …Topological Critical Path Topological Critical Path ……

Assume topologic computation of
• Data-ready by forward traversal.
• Required data-ready by backward traversal.

Topological critical path
• Input/output path with zero slacks.
• Any increase in the vertex propagation delay affects the 

output data-ready time.

A topological critical path may be false.
• No event can propagate along that path.
• False path does not affect performance

Assume topologic computation of
• Data-ready by forward traversal.
• Required data-ready by backward traversal.

Topological critical path
• Input/output path with zero slacks.
• Any increase in the vertex propagation delay affects the 

output data-ready time.

A topological critical path may be false.
• No event can propagate along that path.
• False path does not affect performance
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Topological critical path: (vb, vn, vp, vl, vq, vy).
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False Path ExampleFalse Path ExampleFalse Path Example

All gates have unit delay.
All inputs ready at time 0.
Longest topological path: (va, vc, vd, vy, vz).
• Path delay: 4 units. 
• False path: event cannot propagate through it

Critical true path: (va, vc, vd, vy).
• Path delay: 3 units.

All gates have unit delay.
All inputs ready at time 0.
Longest topological path: (va, vc, vd, vy, vz).
• Path delay: 4 units. 
• False path: event cannot propagate through it

Critical true path: (va, vc, vd, vy).
• Path delay: 3 units.
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Algorithms for Delay Minimization …Algorithms for Delay Minimization Algorithms for Delay Minimization ……

Alternate
• Critical path computation.
• Logic transformation on critical vertices.

Consider quasi critical paths
• Paths with near-critical delay.
• Small slacks.

Small difference between critical paths and largest delay of 
a non-critical path leads to smaller gain in speeding up 
critical paths only.

Alternate
• Critical path computation.
• Logic transformation on critical vertices.

Consider quasi critical paths
• Paths with near-critical delay.
• Small slacks.

Small difference between critical paths and largest delay of 
a non-critical path leads to smaller gain in speeding up 
critical paths only.
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Most critical delay optimization algorithms have the 
following framework:
Most critical delay optimization algorithms have the 
following framework:
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Transformations for Delay Reduction …Transformations for Delay Reduction Transformations for Delay Reduction ……

Reduce propagation delay.
Reduce dependencies from critical inputs.
Favorable transformation
• Reduces local data-ready time.
• Any data-ready time increase at other vertices is bounded by 

the local slack.

Example
• Unit gate delay.
• Transformation: Elimination.

• Always favorable.
• Obtain several area/delay trade-off points.

Reduce propagation delay.
Reduce dependencies from critical inputs.
Favorable transformation
• Reduces local data-ready time.
• Any data-ready time increase at other vertices is bounded by 

the local slack.

Example
• Unit gate delay.
• Transformation: Elimination.

• Always favorable.
• Obtain several area/delay trade-off points.
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W is a minimum-weight 
separation set from U.
Iteration 1
• Values of vp, vq, vu = -1
• Value of vs=0.
• Eliminate vp, vq. (No literal 

increase.)

Iteration 2
• Value of vs=2, value of vu=-1.
• Eliminate vu. (No literal 

increase.)

Iteration 3
• Eliminate vr , vs, vt. (Literals 

increase.)

W is a minimum-weight 
separation set from U.
Iteration 1
• Values of vp, vq, vu = -1
• Value of vs=0.
• Eliminate vp, vq. (No literal 

increase.)

Iteration 2
• Value of vs=2, value of vu=-1.
• Eliminate vu. (No literal 

increase.)

Iteration 3
• Eliminate vr , vs, vt. (Literals 

increase.)
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More Refined Delay ModelsMore Refined Delay ModelsMore Refined Delay Models

Propagation delay grows with the size 
of the expression and with fanout load.
Elimination
• Reduces one stage.
• Yields more complex and slower gates.
• May slow other paths.

Substitution
• Adds one dependency.
• Loads and slows a gate.
• May slow other paths.
• Useful if arrival time of critical                 

input is larger than other inputs

Propagation delay grows with the size 
of the expression and with fanout load.
Elimination
• Reduces one stage.
• Yields more complex and slower gates.
• May slow other paths.

Substitution
• Adds one dependency.
• Loads and slows a gate.
• May slow other paths.
• Useful if arrival time of critical                 

input is larger than other inputs
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Speed-Up Algorithm …SpeedSpeed--Up Algorithm Up Algorithm ……

Decompose network into two-input NAND gates and 
inverters. 
Determine a subnetwork W of depth d.
Collapse subnetwork by elimination.
Duplicate input vertices with successors outside W
• Record area penalty.
• Resynthesize W by timing-driven decomposition.

Heuristics
• Choice of W.
• Monitor area penalty and potential speed-up.

Decompose network into two-input NAND gates and 
inverters. 
Determine a subnetwork W of depth d.
Collapse subnetwork by elimination.
Duplicate input vertices with successors outside W
• Record area penalty.
• Resynthesize W by timing-driven decomposition.

Heuristics
• Choice of W.
• Monitor area penalty and potential speed-up.
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… Speed-Up Algorithm…… SpeedSpeed--Up AlgorithmUp Algorithm

Example
• NAND delay =2. 
• INVERTER delay =1.
• All input data-ready=0 except 

td=3.
• Critical Path: from Vd to Vx (11 

delay units)
• Assume Vx is selected and 

d=5.
• New critical path: 8 delay units.

Example
• NAND delay =2. 
• INVERTER delay =1.
• All input data-ready=0 except 

td=3.
• Critical Path: from Vd to Vx (11 

delay units)
• Assume Vx is selected and 

d=5.
• New critical path: 8 delay units.


