

Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

Outline

- Boolean Algebra
- Boolean Functions
- Basic Definitions
- Representations of Boolean Functions
- Binary Decision Diagrams (BDDs)
 - Ordered BDDs (OBDDs)
 - Reduced Ordered BDDs (ROBDDs)
- If-then-else (ITE) DAGS
- Satisfiability and Minimum Cover Problems
- Branch and Bound Algorithm

Boolean Algebra

Boolean algebra

- Quintuple (B,+, . , 0, 1)
- Satisfies commutative and distributive laws
- Identity elements are 0 and 1.
- Each element has a complement: a + a'=1; a . a' = 0
- Binary Boolean algebra B = {0, 1}
- Some properties of Boolean algebraic systems

Associativity	a+(b+c)=(a+b)+c	a(bc)=(ab)c
Idempotence	a+a=a	a.a=a
Absorption	a+(ab)=a	a(a+b)=a
De Morgan	(a+b)'=a'.b'	(a.b)'=a'+b'
Involution	(a')'=a	

Boolean Functions

Boolean function

Single output:

Multiple output:

$$f: B^n \to B^m$$

 $\rightarrow B$

Incompletely specified
 don't care symbol *.

$$f: B^n \to \{0,1,*\}^m$$

3-dimensional Boolean Space

Don't care conditions

- We don't care about the value of the function.
- Related to the environment:
 - Input patterns that never occur.
 - Input patterns such that some output is never observed.
- Very important for synthesis and optimization.

Definitions ...

Scalar function

- ON-Set: subset of the domain such that *f* is true.
- Off-Set: subset of the domain such that *f* is false.
- Don't care Set: subset of the domain such that *f* is a don't care.
- Multiple-output function
 - Defined for each component.
- Boolean literal: variable or its complement.
- Product or cube: product of literals.
- Implicant: product implying a value of a function (usually TRUE).
 - Hypercube in the Boolean space.
- Minterm: product of all input variables implying a value of a function (usually TRUE).
 - Vertex in the Boolean space.

... Definitions ...

- Let $f(x_1, x_2, ..., x_n)$ be a Boolean function of n variables.
- The set $(x_1, x_2, ..., x_n)$ is called the *support* of the function.
- The cofactor of $f(x_1, x_2, ..., x_i, ..., x_n)$ with respect to variable x_i is $f_{xi} = f(x_1, x_2, ..., x_i = 1, ..., x_n)$
- The cofactor of $f(x_1, x_2, ..., x_i, ..., x_n)$ with respect to variable x_i is $f_{xi'} = f(x_1, x_2, ..., x_i=0, ..., x_n)$
- Theorem: Shannon's Expansion

Let
$$f: B^n \to B$$
. Then $f(x_1, x_2, ..., x_i, ..., x_n) = x_i f_{x_i} + x'_i f_{x'_i}$
= $(x_i + f_{x'_i}) (x'_i + f_{x_i}) \forall i = 1, 2, ..., n$

Any function can be expressed as sum of products (product of sums) of n literals, minterms (maxterms), by recursive expansion.

... Definitions ...

Example: f = ab + ac + bc

- f_a = b + c
- $f_{a'} = bc$
- $F = a f_a + a' f_{a'} = a (b + c) + a' (bc)$
- A Boolean function can be interpreted as the set of its minterms.
- Operations and relations on Boolean functions can be viewed as operations on their minterm sets
 - Sum of two functions is the Union (\cup) of their minterm sets
 - Product of two functions is the Intersection (
) of their minterm sets
 - Implication between two functions corresponds to containment (_) of their minterm sets

• $f_1 \rightarrow f_2 \equiv f_1 \subseteq f_2 \equiv f_1' + f_2 = 1$

... Definitions ...

- A function $f(x_1, x_2, ..., x_i, ..., x_n)$ is positive (negative) Unate with respect to variable x_i if $f_{xi} \supseteq f_{xi'}$ ($f_{xi} \subseteq f_{xi'}$).
- A function is (positive/negative) Unate if it is (positive/negative) unate in all support variables, otherwise it is Binate (or mixed).
- Example: f= a + b + c'
 - f is positive unate with respect to variable a
 - $f_a=1 \supseteq f_{a'}=b + c'$
 - Minterms of f_a ={bc, b'c,bc',b'c'}
 minterms of f_a ={bc, bc',b'c'}
 - f is positive unate with respect to variable b
 - f is negative unate with respect to variable c
 - Thus, f is binate.

... Definitions

• The Boolean Difference of a function $f(x_1, x_2, ..., x_i, ..., x_n)$ with respect to variable x_i is $\partial f / \partial x_i = f_{xi} \oplus f_{xi'}$

Indicates whether f is sensitive to changes in x_i

- The Consensus of a function f(x₁, x₂,...,x_i,...,x_n) with respect to variable x_i is f_{xi}. f_{xi}
 - Represents the component that is independent of x_i
- The Smoothing of a function $f(x_1, x_2, ..., x_i, ..., x_n)$ with respect to variable x_i is $f_{xi} + f_{xi'}$
 - Corresponds to dropping the variable from the function
- Example: f= ab + ac + bc
 - $f_a = b + c$ $f_{a'} = bc$
 - Boolean difference = $f_a \oplus f_{a'} = (b+c) \oplus bc = b'c+bc'$
 - Consensus = $f_a \cdot f_{a'} = (b+c) \cdot bc = bc$
 - Smoothing = $f_a + f_{a'} = (b+c) + bc = b+c$

Boolean Expansion Based on Orthonormal Basis ...

Let ϕ_i , i=1,2, ...,k be a set of Boolean functions such that $\Sigma_{i=1 \text{ to } k} \quad \phi_i = 1 \text{ and } \phi_i \cdot \phi_i = 0 \text{ for } \forall i \neq j \in \{1, 2, \dots, k\}.$ An Orthonormal Expansion of a function f is $f = \sum_{i=1 \text{ to } k} f_{\phi i} \phi_i$ • f_{ϕ_i} is called the generalized cofactor of f w.r.t. $\phi_i \forall i$. The generalized cofactor may not be unique • $f \cdot \phi_i \subseteq f_{\phi_i} \subseteq f + \phi_i$ **Example:** f = ab+ac+bc; $\phi_1 = ab$; $\phi_2 = a'+b'$; • ab \subseteq f₆₁ \subseteq 1; let f₆₁ = 1 • a'bc+ab'c \subseteq $f_{d_2} \subseteq$ ab+bc+ac ; let $f_{d_2} =$ a'bc+ab'c • $f = \phi_1 f_{\phi_1} + \phi_2 f_{\phi_2} = ab (1) + (a'+b')(a'bc+ab'c)=ab+bc+ac$

... Boolean Expansion Based on Orthonormal Basis ...

Theorem

- Let f, g, be two Boolean functions expanded with the same orthonormal basis \u03c6₁, i=1,2, ...,k
- Let \otimes be a binary operator on two Boolean functions

$$f\otimes g=\sum_{i=1}^k \Phi_i.(f_{_{\Phi_i}}\otimes g_{_{\Phi_i}})$$

Corollary

- Let f, g, be two Boolean functions with support variables {x_i, i=1,2, ...,n}.
- Let \otimes be a binary operator on two Boolean functions

$$f \otimes g = x_i \cdot (f_{x_i} \otimes g_{x_i}) + x'_i \cdot (f_{x'_i} \otimes g_{x'_i})$$

... Boolean Expansion Based on Orthonormal Basis

Example:

- Let f = ab + c; g=a'c + b; Compute $f \oplus g$
- Let ϕ_1 =a'b'; ϕ_2 =a'b; ϕ_3 =ab'; ϕ_4 =ab;

•
$$f_{\phi 1} = c; f_{\phi 2} = c; f_{\phi 3} = c; f_{\phi 4} = 1;$$

•
$$g_{\phi 1} = c; g_{\phi 2} = 1; g_{\phi 3} = 0; g_{\phi 4} = 1;$$

- f = a'b' (c ⊕c) + a'b (c ⊕1) + ab' (c ⊕0) + ab (1 ⊕1)
 = a'bc' + ab'c
- F= (ab+c) ⊕ (a'c+b)= (ab+c)(a+c')b' + (a'+b')c'(a'c+b)
 = (ab+ac)b' + (a'c+a'b)c' = ab'c +a'bc'

Representations of Boolean Functions

- There are three different ways of representing Boolean functions:
 - Tabular forms
 - Personality matrix
 - Truth table
 - Implicant table
 - Logic expressions
 - Expressions of literals linked by the + and . Operators
 - Expressions can be nested by parenthesis
 - Two-level: sum of products or products of sum
 - Multilevel: factored form
 - Binary decisions diagrams
 - Represents a set of binary-valued decisions, culminating in an overall decision that can be either TRUE or FALSE

Tabular Representations

Truth table

- List of all minterms of a function.
- Implicant table or cover
 - List of implicants of a function sufficient to define a function.
- Implicant tables are smaller in size.
- Example: x = ab+a'c; y = ab+bc+ac

Truth
Table

abc	ХХ
000	00
001	10
010	00
011	11
100	00
101	01
110	11
111	11

Implicant Table

Cubical Representation of Minterms and Implicants

f1 = a'b'c'+a'b'c+ab'c+abc+abc'= a'b'+b'c+ac+ab
f2 = a'b'c+ab'c = b'c

Binary Decision Diagrams ...

- Binary decision diagrams (BDDs) can be represented by trees or rooted DAGs, where decisions are associated with vertices.
- Ordered binary decision diagrams (OBDDs) assume an ordering on the decision variables.
 - Can be transformed into canonical forms, reduced ordered binary decision diagrams (ROBDDs)
 - Operations on ROBDDs can be made in polynomial time of their size i.e. vertex set cardinality
 - Size of ROBDDs depends on ordering of variables
 - Adder functions are very sensitive to variable ordering
 - Exponential size in worst case
 - Linear size in best case
 - Arithmetic multiplication has exponential size regardless of variable order.

... Binary Decision Diagrams ...

- An OBDD is a rooted DAG with vertex set V. Each nonleaf vertex has as attributes
 - a pointer index(v) $\in \{1,2,...n\}$ to an input variable $\{x_1,x_2,...,x_i,...,x_n\}$.
 - Two children low(v) and high(v) \in V.
- A leaf vertex v has as an attribute a value value(v) \in B.
- For any vertex pair {v,low(v)} (and {v,high(v)}) such that no vertex is a leaf, index(v)<index(low(v)) (index(v)<index(high(v))</p>
- An OBDD with root v denotes a function f^v such that
 - If v is a leaf with value(v)=1, then fv=1
 - If v is a leaf with value(v)=0, then fv=0
 - If v is not a leaf and index(v)=i, then $f^v = x_i \int f^{low(v)} + x_i \int f^{high(v)}$

... Binary Decision Diagrams

Example: f=(a+b)c

- Vertices {v1,v2,v3,v4,v5} (Fig. 2.20 (c))
- Variable x₁=a, x₂=b, x₃=c;
- v1 is the root; index(v1)=1 meaning that v1 is related to first variable in the order i.e. x₁=a

FIGURE 2.20

Binary decision diagrams for f = (a + b)c: (a) OBDD for the variable order (a, b, c). (b) OBDD for the variable order (a, c, b). (c) ROBDD for the variable order (a, b, c).

Reduced Binary Decision Diagrams ...

- Two OBDDs are isomorphic if there is a one-to-one mapping between the vertex set that preserves adjacency, indices and leaf values.
- Two isomorphic OBDDS represent the same function.
- An OBDD is said to be reduced OBDD (ROBDD) if
 - It contains no vertex v with low(v)=high(v)
 - Not any pair {u,v} such that the subgraphs rooted in u and in v are isomorphic.

ROBDDs are canonical

• All equivalent functions will result in the same ROBDD.

... Reduced Binary Decision Diagrams ...

```
REDUCE(OBDD)
      Set id(v) = 1 to all leaves v \in V with value(v) = 0;
      Set id(v) = 2 to all leaves v \in V with value(v) = 1;
      Initialize ROBDD with two leaves with id = 1 and id = 2 respectively;
                                                    /* nextid is the next available identifier value */
      nextid = 2:
      for (i = n \text{ to } 1 \text{ with } i = i - 1)
             V(i) = \{v \in V : index(v) = i\};\
                                                                     /* consider vertices at level i */
             foreach (v \in V(i)){
                   if (id(low(v)) = id(high(v)))
                                                                               /* redundant vertex */
                         id(v) = id(low(v));
                         Drop v from V(i);
                   else
                          key(v) = id(low(v)), id(high(v));
                                               /* define key(v) as the identifier pair of v's children */
                                               /* initial key that cannot be matched by any vertex */
             oldkev = 0.0;
             foreach v \in V(i) sorted by key(v) {
                                                                  /* graph rooted at v is redundant */
                   if (key(v) = oldkey)
                          id(v) = nextid
                                              /* nonredundant vertex to receive new identifier value */
                    else (
                          nextid = nextid + 1;
                          id(v) = nextid;
                          oldkey = key(v);
                          Add v to ROBDD with edges to vertices in ROBDD
                                whose id equal those of low(v) and high(v);
```

Reduced Binary Decision Diagrams ...

FIGURE 2.21

Binary decision diagrams for f = (a + b)c: (a) OBDD for the variable order (a, b, c). (b) OBDD with identifiers. (c) ROBDD for the variable order (a, b, c).

If-then-else (ITE) DAGs ...

- ROBDD construction and manipulation can be done with the *ite* operator.
- Given three scalar Boolean functions f, g and h
 Ite(f, g, h) = f . g + f' . h
- Let z=ite(f, g, h) and let x be the top variable of functions f, g and h.
- The function z is associated with the vertex whose variable is x and whose children implement ite(f_x,g_x,h_x) and ite(f_x,g_x,h_x).
 - $z = x z_x + x' z_{x'}$
 - = $x(fg + f'h)_x + x'(fg + f'h)_{x'}$
 - $= x(f_x g_x + f'_x h_x) + x'(f_{x'} g_{x'} + f'_{x'} h_{x'})$
 - = ite(x, ite(f_x, g_x, h_x), ite($f_{x'}, g_{x'}, h_{x'}$))

... If-then-else (ITE) DAGs

Terminal cases of ite operator

- Ite(f,1,0)=f, ite(1,g,h)=g, ite(0, g, h)=h, ite(f, g, g)=g and ite(f, 0, 1)=f'.
- All Boolean functions of two arguments can be represented in terms of *ite* operator.

Operator	Equivalent ite form
0	0
$f \cdot g$	ite(f, g, 0)
$f \cdot g'$	ite(f, g', 0)
f	f
f'g	ite(f, 0, g)
g	g
$f \oplus g$	ite(f, g', g)
f + g	ite(f, 1, g)
(f+g)'	ite(f, 0, g')
$f \oplus g$	ite(f, g, g')
g'	ite(g, 0, 1)
f + g'	ite(f, 1, g')
f'	ite(f, 0, 1)
f' + g	ite(f, g, 1)
$(f \cdot g)'$	ite(f, g', 1)
1	1

ITE Algorithm

}

```
ITE(f, g, h){
   If (terminal case)
         return (r = trivial result)
   else {
         if (computed table has entry {(f,g,h), r})
                   return (r from computed table)
         else {
                  x top variable of f, g, h
                  \mathbf{t} = \mathsf{ITE}(\mathbf{f}_x, \mathbf{g}_x, \mathbf{h}_x)
                  e = ITE(f_{x'}, g_{x'}, h_{x'})
                  if ( t == e) return (t)
                  r = find_or_add_unique_table(x, t, e)
                  Update computed table with {(f,g,h), r})
                  return (r)
         }
```

... ITE Algorithm

Uses two tables

- Unique table: stores ROBDD information in a strong canonical form
 - Equivalence check is just a test on the equality of the identifiers
 - Contains a key for a vertex of an ROBDD
 - Key is a triple of variable, identifiers of left and right children
- Computed table: to improve the performance of the algorithm
 - Mapping between any triple (f, g, h) and vertex implementing ite(f, g, h).

Applications of ITE DAGs

Implication of two functions is Tautology

- $f \rightarrow g \equiv f' + g = 1$
- Check if ite(f, g, 1) has identifier equal to that of leaf value 1
- Alternatively, a function associated with a vertex is tautology if both of its children are tautology

Functional composition

- Replacing a variable by another expression
- $f_{x=g} = f_x g + f_{x'} g' = ite(g, f_{x'}, f_{x'})$

Consensus

• $f_x \cdot f_{x'} \equiv ite(f_x, f_{x'}, 0)$

Smoothing

• $f_x + f_{x'} \equiv ite(f_x, 1, f_{x'})$

Satisfiability

- Many synthesis and optimization problems can be reduced to a fundamental one: satisfiability.
- A Boolean function is satisfiable if there exists an assignment of Boolean values to the variables that makes the function TRUE.
- Most common formulation requires the function to be expressed in a product of sum form
 - Sum terms are called clauses
 - Assignment must make all clauses true
- Satisfiability problem is Intractable
 - 3-satisfiability (i.e. clauses with max. 3 literals) is intractable
 - 2-satisfiability can be solved in polynomial time

... Satisfiability

Example

- F=(a+b+c')(a+b'+c')(a+b'+c)(a'+b+c)(a'+b+c')(a'+b'+c')(a'+b'+c)
- Find an input assignment that makes F=1

Solution

- A=1, B=1, C=0 => Fails
- A=0, B=1, C=0 => Fails
- A=1, B=0, C=1 => Fails
- A=0, B=0, C=1 => Fails
- A=1, B=1, C=1 => Fails
- A=0, B=1, C=1 => Fails
- A=1, B=0, C=0 => Fails
- A=0, B=0, C=0 => Success!!

Satisfiability Formulation as Zero-One Linear Programming (ZOLP) Problem

Satisfiability problem can be modeled as a ZOLP

Example: Satisfiability problem

- (a+b)(a'+b'+c)
- Possible solution: a=1; b=1; c=1

ZOLP modeling

- a + b ≥ 1
- (1-a)+(1-b)+c ≥ 1
- a, b, c ∈ B

Minimum-cost satisfiability problem

Find x ∈ Bⁿ that minimizes the cost c^T x where c is a weight vector.

Minimum Covering Problem

- Given a collection C (called groups) of subsets of a finite set S. A minimum-covering problem is the search of a minimum number of subsets from C that cover S.
- **Let A \in B^{nxm}, where #rows=n=|S| and #columns=m=|C|**
 - A cover corresponds to a subset of columns having at least a 1 entry in all rows of A.
 - Corresponds to selecting $x \in B^m$, such that $Ax \ge 1$
 - Minimum-weighted cover corresponds to selecting x ∈ B^m, such that Ax ≥ 1 and c^T x is minimum.
- Intractable.
- Exact method
 - Branch and bound algorithm.
- Heuristic methods.

Minimum-Vertex Cover Example

Vertex/edge incidence matrix

 $A_{I} = \begin{pmatrix} 0 \ 1 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 1 \\ 1 \ 0 \ 0 \\ 1 \ 0 \\ 0 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 1 \end{pmatrix}$

Minimum vertex cover

- Edge set corresponds to S and vertex set to C
- $A = A_I^T$ and c = 1.
- Possible covers: $x^1 = [10010]^T$, $x^2 = [01101]^T$, $x^3 = [01111]^T$
- Note that $Ax \ge 1$ for $x = x^1$, x^2 , x^3
- Vector x¹ is a minimum cover

Minimum-Edge Cover Example

Vertex/edge incidence matrix

$$A_{I} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Minimum edge cover

- Vertex set corresponds to S and edge set to C
- $A = A_1$ and c = 1.
- A minimum cover is $\{a, b, d\}$ or $x=[11010]^T$
- Let c=[1, 2, 1, 1, 1]^T; a minimum cover is {a, c, d}, x=[10110]^T

Covering Problem Formulated as Satisfiability Problem

- Associate a selection variable with each group (element of C)
- Associate a clause with each element of S
 - Each clause represents those groups that can cover the element
 - Disjunction of variables corresponding to groups
- Note that the product of clauses is a unate expression
 - Unate cover
- Edge-cover example
 - (x1+x3)(x1+x2+x5)(x2+x3+x5)(x4)(x2+x3+x4)=1
 - (x1+x3) denotes vertex v1 must be covered by edge a or c
 - x=[11010]T satisfies the product of sums expression

Branch and Bound Algorithm ...

Tree search of the solution space

- Potentially exponential search.
- For each branch, a lower bound is computed for all solutions in subtree.
- Use bounding function
 - If the lower bound on the solution cost that can be derived from a set of future choices exceeds the cost of the best solution seen so far
 - Kill the search.
- Good pruning may reduce run-time.

... Branch and Bound Algorithm

BRANCH AND BOUND {

```
Current best = anything; Current cost = \infty; S = s0;
while (S \neq 0) do {
     Select an element s \in S; Remove s from S;
     Make a branching decision based on s yielding sequences \{s_i, i = 1, 2, ..., m\};
     for ( i = 1 to m) {
               Compute the lower bound b<sub>i</sub> of s<sub>i</sub>;
               if (b_i \ge Current cost) Kill s_i;
               else {
                         if (s<sub>i</sub> is a complete solution )&(cost of s<sub>i</sub> < Current cost) {
                                   Current best = s<sub>i</sub>; Current cost = cost of s<sub>i</sub>;
                         } else if (s<sub>i</sub> is not a complete solution ) Add s<sub>i</sub> to set S;
           • S denotes a solution or group of solutions with a subset of
}
           decisions made
```

 s0 denotes the sequence of zero length corresp. to initial state with no decisions made

Covering Reduction Strategies ...

Partitioning

- If A is block diagonal
 - Solve covering problem for corresponding blocks.

Essentials

- Column incident to one (or more) rows with single 1
 - Select column,
 - Remove covered row(s) from table.

Column dominance

- If $a_{ki} \ge a_{ki} \forall k$: remove column j.
- Dominating column covers more rows.

Row dominance

- If $a_{ik} \ge a_{ik} \forall k$: remove row i.
- A cover for the dominated rows is a cover for the set.

... Covering Reduction Strategies

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

- Fourth column is essential.
- Fifth column is dominated by second column.
- Fifth row dominates fourth row.

Reduced matrix A =

Branch and Bound Exact Covering Algorithm

}

```
EXACT_COVER(A, x, b) {
  Reduce matrix A and update corresponding x;
  if (Current estimate \geq |b|) return(b);
                                                   x contains current solution
  if ( A has no rows ) return (x);
                                                     initially set to 0;
                                                   b contains best solution
  Select a branching column c;
                                                     initially set to 1;
  X_{c} = 1;
  A^{\sim} = A after deleting c and rows incident to it;
  x^{-} = EXACT_COVER(A^{-}, x, b);
  if (|x^{-}| < |b|)  b = x^{-};
   X_{c} = 0;
   A^{\sim} = A after deleting c ;
  x^{-} = EXACT_COVER(A^{-}, x, b);
  if (|x^{-}| < |b|)  b = x^{-};
  return (b);
```

Bounding function ...

- Estimate lower bound on the covers derived from the current x.
- The sum of 1's in x, plus bound on cover for local A
 - Independent set of rows: no 1 in same column.
 - Build graph denoting pairwise independence.
 - Find clique number (i.e. largest clique)
 - Approximation (lower) is acceptable.

Row 4 independent from 1,2, 3
Clique number is 2; Bound is 2

... Bounding function

- There are no independent rows.
- Clique number is 1 (1 vertex).
 - Bound is 1 + 1 (already selected essential).
- Choose first column x₁
 - Recur with A[~] = [11].
 - Delete one dominated column.
 - Take other col. (essential); assume it x₂
- New cost is 3; x=[11010]^T and b=[11010]^T
- Exclude first column x₁
 - Both columns are essential
 - x=[01110]^T; cost is 3 (discarded)

Returned solution is x=[11010]^T

 $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

 $\mathbf{A}^{\sim} = \left(\begin{array}{c} \mathbf{0} \ \mathbf{1} \\ \mathbf{1} \ \mathbf{0} \\ \mathbf{0} \end{array} \right)$