COE 561 Digital System Design \& Synthesis Logic Synthesis Background

Dr. Aiman H. El-Maleh

Computer Engineering Department
King Fahd University of Petroleum \& Minerals
[Adapted from slides of Prof. G. De Micheli: Synthesis \& Optimization of Digital Circuits]

Outline

- Boolean Algebra
- Boolean Functions
- Basic Definitions
- Representations of Boolean Functions
- Binary Decision Diagrams (BDDs)
- Ordered BDDs (OBDDs)
- Reduced Ordered BDDs (ROBDDs)
- If-then-else (ITE) DAGS
- Satisfiability and Minimum Cover Problems
- Branch and Bound Algorithm

Boolean Algebra

- Boolean algebra
- Quintuple (B,+, . , 0, 1)
- Satisfies commutative and distributive laws
- Identity elements are 0 and 1.
- Each element has a complement: a + a'=1 ; a . a' = 0
- Binary Boolean algebra $B=\{0,1\}$
- Some properties of Boolean algebraic systems

Associativity	$\mathrm{a}+(\mathrm{b}+\mathrm{c})=(\mathrm{a}+\mathrm{b})+\mathrm{c}$	$\mathrm{a}(\mathrm{bc})=(\mathrm{ab}) \mathrm{c}$
Idempotence	$\mathrm{a}+\mathrm{a}=\mathrm{a}$	$\mathrm{a} \cdot \mathrm{a}=\mathrm{a}$
Absorption	$\mathrm{a}+(\mathrm{ab})=\mathrm{a}$	$\mathrm{a}(\mathrm{a}+\mathrm{b})=\mathrm{a}$
De Morgan	$(\mathrm{a}+\mathrm{b})^{\prime}=\mathrm{a}^{\prime} . \mathrm{b}^{\prime}$	$(\mathrm{a} . \mathrm{b})^{\prime}=\mathrm{a}^{\prime}+\mathrm{b}^{\prime}$
Involution	$\left(\mathrm{a}^{\prime}\right)^{\prime}=\mathrm{a}$	

Boolean Functions

- Boolean function
- Single output:

$$
f: B^{n} \rightarrow B
$$

3-dimensional

 Boolean Space- Multiple output:

$$
f: B^{n} \rightarrow B^{m}
$$

- Incompletely specified
- don't care symbol *.
- $f: B^{n} \rightarrow\{0,1, *\}^{m}$

- Don't care conditions
- We don't care about the value of the function.
- Related to the environment:
- Input patterns that never occur.
- Input patterns such that some output is never observed.
- Very important for synthesis and optimization.

Definitions

- Scalar function
- ON-Set: subset of the domain such that f is true.
- Off-Set: subset of the domain such that f is false.
- Don't care Set: subset of the domain such that f is a don't care.
- Multiple-output function
- Defined for each component.
- Boolean literal: variable or its complement.
- Product or cube: product of literals.
- Implicant: product implying a value of a function (usually TRUE).
- Hypercube in the Boolean space.
- Minterm: product of all input variables implying a value of a function (usually TRUE).
- Vertex in the Boolean space.

... Definitions

- Let $f\left(x_{1}, x_{2, \ldots,}, x_{n}\right)$ be a Boolean function of n variables.
- The set $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called the support of the function.
- The cofactor of $f\left(x_{1}, x_{2}, \ldots, x_{i j}, \ldots, x_{n}\right)$ with respect to variable x_{i} is $f_{x i}=f\left(x_{1}, x_{2}, \ldots, x_{i}=1, \ldots, x_{n}\right)$
■ The cofactor of $f\left(x_{1}, x_{2}, \ldots, x_{i j}, \ldots, x_{n}\right)$ with respect to variable x_{i}^{\prime} is $f_{x i},=f\left(x_{1}, x_{2}, \ldots, x_{i}=0, \ldots, x_{n}\right)$
- Theorem: Shannon's Expansion

$$
\begin{aligned}
& \text { Let } f: B^{n} \rightarrow \text { B. Then } f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)=x_{i} \cdot f_{x_{i}}+x_{i}^{\prime} \cdot f_{x_{i}^{\prime}} \\
& =\left(x_{i}+f_{x_{i}^{\prime}}\right) \cdot\left(x_{i}^{\prime}+f_{x_{i}}\right) \forall \mathrm{i}=1,2, \ldots, \mathrm{n}
\end{aligned}
$$

- Any function can be expressed as sum of products (product of sums) of n literals, minterms (maxterms), by recursive expansion.

... Definitions

- Example: $\mathrm{f}=\mathrm{ab}+\mathrm{ac}+\mathrm{bc}$
- $\mathrm{f}_{\mathrm{a}}=\mathrm{b}+\mathrm{c}$
- $f_{a^{\prime}}=b c$
- $\mathrm{F}=\mathrm{a} \mathrm{f}_{\mathrm{a}}+\mathrm{a}^{\prime} \mathrm{f}_{\mathrm{a}^{\prime}}=\mathrm{a}(\mathrm{b}+\mathrm{c})+\mathrm{a}^{\prime}(\mathrm{bc})$
- A Boolean function can be interpreted as the set of its minterms.
- Operations and relations on Boolean functions can be viewed as operations on their minterm sets
- Sum of two functions is the Union (\cup) of their minterm sets
- Product of two functions is the Intersection (\cap) of their minterm sets
- Implication between two functions corresponds to containment (\subseteq) of their minterm sets - $\mathrm{f}_{1} \rightarrow \mathrm{f}_{2} \equiv \mathrm{f}_{1} \subseteq \mathrm{f}_{2} \equiv \mathrm{f}_{1}{ }^{\prime}+\mathrm{f}_{2}=1$

... Definitions

- A function $f\left(x_{1}, x_{2,}, \ldots, x_{i j}, ., x_{n}\right)$ is positive (negative) Unate with respect to variable x_{i} if $\mathrm{f}_{\mathrm{xi}} \supseteq \mathrm{f}_{\mathrm{xi}}\left(\mathrm{f}_{\mathrm{xi}} \subseteq \mathrm{f}_{\mathrm{xi}}\right)$.
- A function is (positive/negative) Unate if it is (positive/negative) unate in all support variables, otherwise it is Binate (or mixed).
- Example: $\mathbf{f =} \mathbf{a}+\mathbf{b}+\mathbf{c}^{\prime}$
- f is positive unate with respect to variable a - $\mathrm{f}_{\mathrm{a}}=1 \supseteq \mathrm{f}_{\mathrm{a}}=\mathrm{b}+\mathrm{c}^{\prime}$
- Minterms of $\mathrm{f}_{\mathrm{a}}=\left\{\mathrm{bc}, \mathrm{b}^{\prime} \mathrm{c}, \mathrm{bc} \mathrm{c}^{\prime}, \mathrm{b}^{\prime} \mathrm{c}^{\prime}\right\} \rightleftharpoons$ minterms of $\mathrm{f}_{\mathrm{a}^{\prime}}=\left\{\mathrm{bc}, \mathrm{bc} c^{\prime}, \mathrm{b}^{\prime} \mathrm{c}^{\prime}\right\}$
- f is positive unate with respect to variable b
- f is negative unate with respect to variable c
- Thus, f is binate.

... Definitions

- The Boolean Difference of a function $f\left(x_{1}, x_{2}, \ldots, x_{i j}, \ldots, x_{n}\right)$ with respect to variable x_{i} is $\hat{o} / \partial x_{i}=f_{x i} \oplus f_{x i}$ '
- Indicates whether f is sensitive to changes in x_{i}
- The Consensus of a function $f\left(x_{1}, x_{2}, \ldots, x_{i j}, \ldots, x_{n}\right)$ with respect to variable x_{i} is $\mathrm{f}_{x i} \cdot \mathrm{f}_{x i^{\prime}}$
- Represents the component that is independent of x_{i}
- The Smoothing of a function $f\left(x_{1}, x_{2}, \ldots, x_{i j}, \ldots, x_{n}\right)$ with respect to variable x_{i} is $f_{x i}+f_{x i}$,
- Corresponds to dropping the variable from the function
- Example: $\mathrm{f}=\mathrm{ab}+\mathrm{ac}+\mathrm{bc}$
- $f_{a}=b+c \quad f_{a}=b c$
- Boolean difference $=f_{a} \oplus f_{a^{\prime}}=(b+c) \oplus b c=b^{\prime} c+b c^{\prime}$
- Consensus $=f_{a} \cdot f_{a}=(b+c) \cdot b c=b c$
- Smoothing $=f_{a}+f_{a^{\prime}}=(b+c)+b c=b+c$

Boolean Expansion Based on Orthonormal Basis

- Let $\phi_{i}, \mathrm{i}=1,2, \ldots, k$ be a set of Boolean functions such that $\Sigma_{i=1}$ to $k \quad \phi_{i}=1$ and $\phi_{\mathrm{i}} \cdot \phi_{\mathrm{j}}=0$ for $\forall \mathrm{i} \neq \mathrm{j} \in\{1,2, \ldots, \mathrm{k}\}$.
- An Orthonormal Expansion of a function f is $\mathrm{f}=\Sigma_{\mathrm{i}=1 \text { to } \mathrm{k}} \quad \mathrm{f}_{\mathrm{\phi} \mathrm{i}} . \phi_{\mathrm{i}}$
- $f_{\phi i}$ is called the generalized cofactor of f w.r.t. $\phi_{\mathrm{i}} \forall \mathrm{i}$.
- The generalized cofactor may not be unique
- $\mathrm{f} . \phi_{i} \subseteq \mathrm{f}_{\mathrm{\phi i}} \subseteq f+\phi_{\mathrm{i}}$
- Example: $\mathrm{f}=\mathrm{ab}+\mathrm{ac}+\mathrm{bc} ; \phi_{1}=\mathrm{ab} ; \phi_{2}=\mathrm{a}^{\prime}+\mathrm{b}^{\prime} ;$
- $a b \subseteq f_{\phi 1} \subseteq 1$; let $f_{\phi 1}=1$
- $a^{\prime} b c+a b ' c \subseteq f_{\phi 2} \subseteq a b+b c+a c ;$ let $f_{\phi 2}=a^{\prime} b c+a b b^{\prime} c$
- $f=\phi_{1} f_{\phi 1 .}+\phi_{2} f_{\phi 2}=a b(1)+\left(a^{\prime}+b^{\prime}\right)\left(a^{\prime} b c+a b^{\prime} c\right)=a b+b c+a c$

... Boolean Expansion Based on Orthonormal Basis ...

- Theorem
- Let f, g, be two Boolean functions expanded with the same orthonormal basis $\phi_{1}, \mathrm{i}=1,2, \ldots, \mathrm{k}$
- Let \otimes be a binary operator on two Boolean functions

$$
f \otimes g=\sum_{i=1}^{k} \Phi_{i} \cdot\left(f_{\Phi_{i}} \otimes g_{\Phi_{i}}\right)
$$

- Corollary
- Let f, g, be two Boolean functions with support variables $\left\{\mathrm{x}_{\mathrm{i}}\right.$, $\mathrm{i}=1,2, \ldots, \mathrm{n}\}$.
- Let \otimes be a binary operator on two Boolean functions

$$
f \otimes g=x_{i} \cdot\left(f_{x_{i}} \otimes g_{x_{i}}\right)+x_{i}^{\prime} \cdot\left(f_{x_{i}} \otimes g_{x_{i}}\right)
$$

... Boolean Expansion Based on Orthonormal Basis

- Example:
- Let $\mathrm{f}=\mathrm{ab}+\mathrm{c} ; \mathrm{g}=\mathrm{a}$ 'c +b ; Compute $\mathrm{f} \oplus \mathrm{g}$
- Let $\phi_{1}=a^{\prime}{ }^{\prime} ; \phi_{2}=a^{\prime} b ; \phi_{3}=a b^{\prime} ; \phi_{4}=a b ;$
- $\mathrm{f}_{\phi 1}=\mathrm{c} ; \mathrm{f}_{\phi 2}=\mathrm{c} ; \mathrm{f}_{\phi 3}=\mathrm{c} ; \mathrm{f}_{\phi 4}=1$;
- $g_{\phi 1}=c ; g_{\phi 2}=1 ; g_{\phi 3}=0 ; g_{\phi 4}=1$;
- $\mathrm{f}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}(\mathrm{c} \oplus \mathrm{c})+\mathrm{a}^{\prime} \mathrm{b}(\mathrm{c} \oplus 1)+\mathrm{ab}(\mathrm{c} \oplus 0)+\mathrm{ab}(1 \oplus 1)$
$=a^{\prime} b c^{\prime}+a b^{\prime} c$
- $F=(a b+c) \oplus\left(a^{\prime} c+b\right)=(a b+c)\left(a+c^{\prime}\right) b^{\prime}+\left(a^{\prime}+b^{\prime}\right) c^{\prime}\left(a^{\prime} c+b\right)$
$=(a b+a c) b^{\prime}+\left(a^{\prime} c+a^{\prime} b\right) c^{\prime}=a b^{\prime} c+a^{\prime} b c^{\prime}$

Representations of Boolean Functions

- There are three different ways of representing Boolean functions:
- Tabular forms
- Personality matrix
- Truth table
- Implicant table
- Logic expressions
- Expressions of literals linked by the + and. Operators
- Expressions can be nested by parenthesis
- Two-level: sum of products or products of sum
- Multilevel: factored form
- Binary decisions diagrams
- Represents a set of binary-valued decisions, culminating in an overall decision that can be either TRUE or FALSE

Tabular Representations

- Truth table
- List of all minterms of a function.
- Implicant table or cover
- List of implicants of a function sufficient to define a function.
- Implicant tables are smaller in size.
- Example: $x=a b+a \prime c ; y=a b+b c+a c$

Cubical Representation of Minterms and Implicants

- f1 $=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a b^{\prime} c+a b c+a b c^{\prime}=a^{\prime} b^{\prime}+b^{\prime} c+a c+a b$
- $\mathfrak{f} 2=a^{\prime} b^{\prime} c+a b \prime c=b \prime c$

Binary Decision Diagrams ...

- Binary decision diagrams (BDDs) can be represented by trees or rooted DAGs, where decisions are associated with vertices.
- Ordered binary decision diagrams (OBDDs) assume an ordering on the decision variables.
- Can be transformed into canonical forms, reduced ordered binary decision diagrams (ROBDDs)
- Operations on ROBDDs can be made in polynomial time of their size i.e. vertex set cardinality
- Size of ROBDDs depends on ordering of variables
- Adder functions are very sensitive to variable ordering
- Exponential size in worst case
- Linear size in best case
- Arithmetic multiplication has exponential size regardless of variable order.

... Binary Decision Diagrams

- An OBDD is a rooted DAG with vertex set V. Each nonleaf vertex has as attributes
- a pointer index(v) $\in\{1,2, \ldots n\}$ to an input variable $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{i}}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$.
- Two children low(v) and high(v) $\in \mathrm{V}$.
- A leaf vertex v has as an attribute a value value(v) $\in \mathrm{B}$.
- For any vertex pair \{v,low(v)\} (and \{v,high(v)\}) such that no vertex is a leaf, index(v)<index(low(v)) (index(v)<index(high(v))
- An OBDD with root v denotes a function f^{v} such that
- If v is a leaf with value $(v)=1$, then $f^{v}=1$
- If v is a leaf with value $(v)=0$, then $f^{v}=0$
- If v is not a leaf and index(v)=i, then $f^{v}=x_{i}{ }^{\prime} . f^{f l o w(v)}+x_{i}$. fhigh(v)

Binary Decision Diagrams

- Example: $\mathrm{f}=(\mathrm{a}+\mathrm{b}) \mathrm{c}$
- Vertices \{v1,v2,v3,v4,v5\} (Fig. 2.20 (c))
- Variable $\mathrm{x}_{1}=\mathrm{a}, \mathrm{x}_{2}=\mathrm{b}, \mathrm{x}_{3}=\mathrm{c}$;
- v 1 is the root; index(v1)=1 meaning that v 1 is related to first variable in the order i.e. $x_{1}=a$
index $=1$
index $=2$
index $=3$

(a)

(b)

(c)

FIGURE 2.20
Binary decision diagrams for $f=(a+b) c$: (a) OBDD for the variable order (a, b, c). (b) OBDD for the variable order (a, c, b). (c) ROBDD for the variable order (a, b, c).

Reduced Binary Decision Diagrams

- Two OBDDs are isomorphic if there is a one-to-one mapping between the vertex set that preserves adjacency, indices and leaf values.
- Two isomorphic OBDDS represent the same function.
- An OBDD is said to be reduced OBDD (ROBDD) if
- It contains no vertex v with low(v)=high(v)
- Not any pair $\{u, v\}$ such that the subgraphs rooted in u and in v are isomorphic.
- ROBDDs are canonical
- All equivalent functions will result in the same ROBDD.

Reduced Binary Decision Diagrams ...

```
REDUCE(OBDD){
    Set id(v)=1 to all leaves v\inV with value(v)=0;
    Set id(v)=2 to all leaves v\inV with value(v)=1;
    Initialize ROBDD with two leaves with id =1 and id =2 respectively;
    nextid =2; /* nextid is the next available identifier value */
    for (i=n to 1 with i=i-1){
        V(i)={v\inV:index (v)=i};
        foreach (v\inV(i)){ /* consider vertices at level i*/
            if (id(low(v)) =id(high(v))){
                id}(v)=id(\operatorname{low}(v))
            Drop v from V (i);
            }
            else
                        key(v)=id(low(v)),id(high(v));
                            /* define key (v) as the identifier pair of v's children */
        }
        oldkey = 0,0; /* initial key that cannot be matched by any vertex */
        foreach v\inV(i) sorted by key(v) {
            if (key (v) =oldkey) /* graph rooted at v is redundant */
            id}(v)=nexti
                    else {
                            /* nonredundant vertex to receive new identifier value */
                        nextid = nextid + 1;
                            id(v) = nextid;
            oldkey = key(v);
            Add v to ROBDD with edges to vertices in ROBDD
                    whose id equal those of low(v) and high(v);
            }
        }
    }

\section*{Reduced Binary Decision Diagrams}

(a)

(b)

(c)

FIGURE 2.21
Binary decision diagrams for \(f=(a+b) c\) : (a) OBDD for the variable order \((a, b, c)\). (b) OBDD with identifiers. (c) ROBDD for the variable order \((a, b, c)\).

\section*{If-then-else (ITE) DAGs}
- ROBDD construction and manipulation can be done with the ite operator.
- Given three scalar Boolean functions \(\mathbf{f}, \mathbf{g}\) and \(\mathbf{h}\)
- Ite(f, g, h) = f. g + f' . h
- Let \(\mathrm{z}=\mathrm{ite}(\mathrm{f}, \mathrm{g}, \mathrm{h})\) and let x be the top variable of functions \(\mathrm{f}, \mathrm{g}\) and h .
- The function \(z\) is associated with the vertex whose variable is \(x\) and whose children implement ite \(\left(f_{x}, g_{x}, h_{x}\right)\) and ite \(\left(f_{x^{\prime}}, \mathrm{g}_{x^{\prime},}, \mathbf{h}_{x^{\prime}}\right)\).
\({ }^{\circ} z=x z_{x}+x^{\prime} z_{x^{\prime}}\)
- \(=x\left(f g+f^{\prime} h\right)_{x}+x^{\prime}\left(f g+f^{\prime} h\right)_{x^{\prime}}\)
- \(=x\left(f_{x} g_{x}+f^{\prime}{ }_{x} h_{x}\right)+x^{\prime}\left(f_{x^{\prime}} g_{x^{\prime}}+f^{\prime} x^{\prime} h_{x^{\prime}}\right)\)
- \(=i \operatorname{ite}\left(x, \operatorname{ite}\left(f_{x}, g_{x}, h_{x}\right)\right.\), ite( \(\left.\left(f_{x^{\prime}}, g_{x^{\prime}}, h_{x^{\prime}}\right)\right)\)

\section*{... If-then-else (ITE) DAGs}
- Terminal cases of ite operator
- Ite(f, 1,0\()=\mathrm{f}, \mathrm{ite}(1, \mathrm{~g}, \mathrm{~h})=\mathrm{g}\), ite \((0, g, h)=h\), ite \((f, g, g)=g\) and ite(f, 0, 1)=f'.
- All Boolean functions of two arguments can be represented in terms of ite operator.
\begin{tabular}{cc}
\hline Operator & Equivalent ite form \\
\hline 0 & 0 \\
\(f \cdot g\) & ite \((f, g, 0)\) \\
\(f \cdot g^{\prime}\) & ite \(\left(f, g^{\prime}, 0\right)\) \\
\(f\) & \(f\) \\
\(f^{\prime} g\) & ite \((f, 0, g)\) \\
\(g\) & \(g\) \\
\(f \oplus g\) & ite \(\left(f, g^{\prime}, g\right)\) \\
\(f+g\) & ite \((f, 1, g)\) \\
\((f+g)^{\prime}\) & ite \(\left(f, 0, g^{\prime}\right)\) \\
\(f \oplus g\) & ite \(\left(f, g, g^{\prime}\right)\) \\
\(g^{\prime}\) & ite \((g, 0,1)\) \\
\(f+g^{\prime}\) & ite \(\left.f, 1, g^{\prime}\right)\) \\
\(f^{\prime}\) & itee \(f, 0,1)\) \\
\(f^{\prime}+g\) & ite \((f, g, 1)\) \\
\((f \cdot g)^{\prime}\) & ite \(\left(f, g^{\prime}, 1\right)\) \\
1 & 1 \\
\hline
\end{tabular}

\section*{ITE Algorithm ...}
```

ITE(f, g, h)\{
If (terminal case)
return (r = trivial result)
else \{
if (computed table has entry $\{(f, g, h), r\})$
return (r from computed table)
else \{
\mathbf{x} top variable of $\mathbf{f}, \mathrm{g}, \mathrm{h}$
$\mathrm{t}=\operatorname{ITE}\left(\mathrm{f}_{\mathrm{x}}, \mathrm{g}_{\mathrm{x}}, \mathrm{h}_{\mathrm{x}}\right)$
$\mathrm{e}=\operatorname{ITE}\left(\mathrm{f}_{\mathrm{x}^{\prime}}, \mathrm{g}_{\mathrm{x}^{\prime},}, \mathrm{h}_{\mathrm{x}^{\prime}}\right)$
if ($\mathrm{t}=\mathrm{=} \mathrm{e}$) return (t)
$r=$ find_or_add_unique_table (x, t, e)
Update computed table with $\{(f, g, h), r\})$
return (r)
\}
\}
\}

```

\section*{... ITE Algorithm}
- Uses two tables
- Unique table: stores ROBDD information in a strong canonical form
- Equivalence check is just a test on the equality of the identifiers
- Contains a key for a vertex of an ROBDD
- Key is a triple of variable, identifiers of left and right children
- Computed table: to improve the performance of the algorithm
- Mapping between any triple (f, g, h) and vertex implementing ite(f, g, h).

\section*{Applications of ITE DAGs}
- Implication of two functions is Tautology
- \(\mathrm{f} \rightarrow \mathrm{g} \equiv \mathrm{f}+\mathrm{g}=1\)
- Check if ite(f, g, 1) has identifier equal to that of leaf value 1
- Alternatively, a function associated with a vertex is tautology if both of its children are tautology
- Functional composition
- Replacing a variable by another expression
- \(f_{x=9}=f_{x} g+f_{x^{\prime}} g^{\prime}=\operatorname{ite}\left(g, f_{x^{\prime}}, f_{x^{\prime}}\right)\)
- Consensus
- \(\mathrm{f}_{\mathrm{x}} \cdot \mathrm{f}_{\mathrm{x}^{\prime}} \equiv \operatorname{ite}\left(\mathrm{f}_{\mathrm{x}^{\prime}} \mathrm{f}_{\mathrm{x}^{\prime}}, 0\right)\)
- Smoothing
- \(\mathrm{f}_{\mathrm{x}}+\mathrm{f}_{\mathrm{x}^{\prime}} \equiv \operatorname{ite}\left(\mathrm{f}_{\mathrm{x}^{\prime}} 1, \mathrm{f}_{\mathrm{x}^{\prime}}\right)\)

\section*{Satisfiability ...}
- Many synthesis and optimization problems can be reduced to a fundamental one: satisfiability.
- A Boolean function is satisfiable if there exists an assignment of Boolean values to the variables that makes the function TRUE.
- Most common formulation requires the function to be expressed in a product of sum form
- Sum terms are called clauses
- Assignment must make all clauses true
- Satisfiability problem is Intractable
- 3-satisfiability (i.e. clauses with max. 3 literals) is intractable
- 2-satisfiability can be solved in polynomial time

\section*{... Satisfiability}

\section*{- Example}
- \(F=\left(a+b+c^{\prime}\right)\left(a+b^{\prime}+c^{\prime}\right)\left(a+b^{\prime}+c\right)\left(a^{\prime}+b+c\right)\left(a^{\prime}+b+c^{\prime}\right)\left(a^{\prime}+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b^{\prime}+c\right)\)
- Find an input assignment that makes \(\mathrm{F}=1\)
- Solution
- \(A=1, B=1, C=0=>\) Fails
- \(A=0, B=1, C=0=>\) Fails
- \(A=1, B=0, C=1=>\) Fails
- \(A=0, B=0, C=1\) => Fails
- \(A=1, B=1, C=1=>\) Fails
- \(A=0, B=1, C=1=>\) Fails
- \(A=1, B=0, C=0=>\) Fails
- \(A=0, B=0, C=0=>\) Success!!

\section*{Satisfiability Formulation as Zero-One Linear Programming (ZOLP) Problem}
- Satisfiability problem can be modeled as a ZOLP
- Example: Satisfiability problem
- \((a+b)\left(a{ }^{\prime}+b^{\prime}+c\right)\)
- Possible solution: \(a=1 ; b=1 ; c=1\)
- ZOLP modeling
- \(a+b \geq 1\)
- \((1-a)+(1-b)+c \geq 1\)
- \(a, b, c \in B\)
- Minimum-cost satisfiability problem
- Find \(x \in B^{n}\) that minimizes the cost \(c^{\top} x\) where \(c\) is a weight vector.

\section*{Minimum Covering Problem}
- Given a collection C (called groups) of subsets of a finite set S. A minimum-covering problem is the search of a minimum number of subsets from C that cover S .
- Let \(\mathrm{A} \in \mathrm{B}^{\mathrm{nxm}}\), where \#rows=n=|S| and \#columns=m=|C|
- A cover corresponds to a subset of columns having at least a 1 entry in all rows of A.
- Corresponds to selecting \(x \in B^{m}\), such that \(A x \geq 1\)
- Minimum-weighted cover corresponds to selecting \(x \in B^{m}\), such that \(A x \geq 1\) and \(c^{\top} x\) is minimum.
- Intractable.
- Exact method
- Branch and bound algorithm.
- Heuristic methods.

\section*{Minimum-Vertex Cover Example}

Vertex/edge incidence matrix
\[
A_{I}=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
\]

- Minimum vertex cover
- Edge set corresponds to \(S\) and vertex set to \(C\)
- \(A=A_{1}^{\top}\) and \(c=1\).
- Possible covers: \(x^{1}=[10010]^{\top}, x^{2}=[01101]^{\top}, x^{3}=[01111]^{\top}\)
- Note that \(A x \geq 1\) for \(x=x^{1}, x^{2}, x^{3}\)
- Vector \(x^{1}\) is a minimum cover

\section*{Minimum-Edge Cover Example}

Vertex/edge incidence matrix
\[
A_{I}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)
\]

(a)

(b)
- Minimum edge cover
- Vertex set corresponds to \(S\) and edge set to \(C\)
- \(A=A_{1}\) and \(\mathrm{c}=1\).
- A minimum cover is \(\{a, b, d\}\) or \(x=[11010]^{\top}\)
- Let \(c=[1,2,1,1,1]^{\top}\); a minimum cover is \(\{a, c, d\}\), \(x=[10110]^{\top}\)

\section*{Covering Problem Formulated as Satisfiability Problem}
- Associate a selection variable with each group (element of C)
- Associate a clause with each element of S
- Each clause represents those groups that can cover the element
- Disjunction of variables corresponding to groups
- Note that the product of clauses is a unate expression
- Unate cover
- Edge-cover example
- \((x 1+x 3)(x 1+x 2+x 5)(x 2+x 3+x 5)(x 4)(x 2+x 3+x 4)=1\)
- \((x 1+x 3)\) denotes vertex v1 must be covered by edge a or c
- \(x=[11010] T\) satisfies the product of sums expression

\section*{Branch and Bound Algorithm ...}
- Tree search of the solution space
- Potentially exponential search.
- For each branch, a lower bound is computed for all solutions in subtree.
- Use bounding function
- If the lower bound on the solution cost that can be derived from a set of future choices exceeds the cost of the best solution seen so far

- Kill the search.
- Good pruning may reduce run-time.

\section*{... Branch and Bound Algorithm}

\section*{BRANCH AND BOUND \{}

Current best = anything; Current cost \(=\propto ; \mathrm{S}=\mathbf{s 0}\);
while \((S \neq 0)\) do \{
Select an element \(s \in S\); Remove \(s\) from \(S\);
Make a branching decision based on \(s\) yielding sequences \(\left\{s_{i}, i=1,2, \ldots, m\right\} ;\)
for ( \(\mathrm{i}=1\) to m ) \{
Compute the lower bound \(b_{i}\) of \(s_{i}\); if ( \(b_{i} \geq\) Current cost) Kill \(s_{i}\); else \{
if \(\left(s_{i}\right.\) is a complete solution )\&(cost of \(s_{i}<\) Current cost) \{ Current best \(=\mathrm{s}_{\mathrm{i}}\); Current cost \(=\) cost of \(\mathrm{s}_{\mathrm{i}}\);
\} else if ( \(\mathrm{s}_{\mathrm{i}}\) is not a complete solution ) Add \(\mathrm{s}_{\mathrm{i}}\) to set S ;
\}
\}

\section*{Covering Reduction Strategies}
- Partitioning
- If A is block diagonal
- Solve covering problem for corresponding blocks.
- Essentials
- Column incident to one (or more) rows with single 1
- Select column,
- Remove covered row(s) from table.
- Column dominance
- If \(a_{k i} \geq a_{k j} \forall k\) : remove column \(j\).
- Dominating column covers more rows.
- Row dominance
- If \(\mathrm{a}_{\mathrm{ik}} \geq \mathrm{a}_{\mathrm{ik}} \forall \mathrm{k}\) : remove row i .
- A cover for the dominated rows is a cover for the set.

\section*{... Covering Reduction Strategies}
\[
A=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)
\]

(a)

(b)
- Fourth column is essential.
- Fifth column is dominated by second column.
- Fifth row dominates fourth row.

Reduced matrix \(\quad A=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)\)

\section*{Branch and Bound Exact Covering Algorithm}

EXACT_COVER(A, x, b) \{
Reduce matrix \(A\) and update corresponding \(x\);
if (Current estimate \(\geq|b|\) ) return(b); if ( A has no rows ) return (x); Select a branching column c;
\(\mathrm{X}_{\mathrm{c}}=1\);
\(\mathrm{A}^{\sim}=\mathrm{A}\) after deleting c and rows incident to it; \(x^{\sim}=\) EXACT_COVER(A \(\left.{ }^{\sim}, \mathrm{x}, \mathrm{b}\right)\); if \(\left(\left|x^{\sim}\right|<|b|\right) \quad b=x^{\sim}\);
\(\mathrm{X}_{\mathrm{c}}=0\);
\(\mathrm{A}^{\sim}=\mathrm{A}\) after deleting c ;
\(x^{\sim}=\) EXACT_COVER(A \({ }^{-}\), \(\left.x, b\right)\);
if \(\left(\left|x^{\sim}\right|<|b|\right) \quad b=x^{-}\);
return (b);
\}

\section*{Bounding function ...}
- Estimate lower bound on the covers derived from the current X.
- The sum of 1's in x, plus bound on cover for local A
- Independent set of rows: no 1 in same column.
- Build graph denoting pairwise independence.
- Find clique number (i.e. largest clique)
- Approximation (lower) is acceptable.
\[
A_{I}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right.
\]

- Row 4 independent from 1,2, 3
- Clique number is 2; Bound is 2

\section*{... Bounding function}
- There are no independent rows.
- Clique number is 1 ( 1 vertex).
\[
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
\]
- Bound is 1 + 1 (already selected essential).
- Choose first column \(x_{1}\)
- Recur with \(\mathrm{A}^{\sim}=[11]\).
- Delete one dominated column.
- Take other col. (essential); assume it \(\mathrm{x}_{2}\)
- New cost is 3 ; \(x=[11010]^{\top}\) and \(b=[11010]^{\top}\)
- Exclude first column \(x_{1}\)
- Both columns are essential
- \(\mathrm{x}=[01110]^{\top}\); cost is 3 (discarded)
\[
A^{\sim}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right)
\]
- Returned solution is \(x=[11010]^{\top}\)```

