Term 051

COE 561 Digital System Design and Synthesis

HW# 5

Due date: Sunday, Dec. 18

Q.1. Consider the logic network defined by the following expressions:

k = (i . j)' j = (d . h)' i = (f . e)' h = (g)' g = (c . f)'f = (a . b)'

Inputs are $\{a, b, c, d, e\}$ and output is $\{k\}$. Assume that the delay of inverter gate is 1 and that the delay of the 2-input NAND gate is 2. Also, assume that the input data-ready times are zero except for input a which is equal to 2.

- (i) Draw the logic network graph and compute the data ready times and slacks for all vertices in the network.
- (ii) Determine the topological critical path.
- (iii) Suggest an implementation of the function k to reduce the delay of the circuit and determine the maximum propagation delay in the optimized circuit. Has the area been affected?
- **Q.2.** Determine the number of ROBDDs required to be stored for each of the following library cells for Boolean matching. Justify your answer.
 - (i) F = a b + b' c.
 - (ii) F = a b + c d.
 - (iii) F = a b + c' d'.

Q.3. Consider a library containing the following cells:

Cell	Area Cost	
INV	1	
NAND2	2	
AND2	2.5	
NOR2	2	
OR2	2.5	
AOI21	4	
AOI22	4.5	

Assume that you have the following network:

i = d';	j = e';	k = h';	
l = a b;	m = l + c;	n=i+j;	
o = f + g;	p = m + n;	q = o + k;	r = p q;

- (i) Decompose the given network using the base cells NAND2 and INV.
- (ii) Find a minimal cover (in terms of area) based on the given library for each subject graph using dynamic programming approach. Pattern strings for the library cells are given in Fig. 10.8.
- (iii) Using the given library, use the sis command *read_libray* to read the library. Then, map the network to the library using the sis command *map –s –m 0*. Compare your solution to the solutions obtained in (iv) & (v). You can save the mapped circuit using the sis command *write_blif –n*.