HW\# 4 Solution

Q.1. Consider a technology library containing the following cells:

Cell	Area Cost
INV $(\mathrm{x} 1)=\mathrm{x} 1^{\prime}$	1
NAND2 $\mathrm{x} 1, \mathrm{x} 2)=(\mathrm{x} 1 \mathrm{x} 2)^{\prime}$	2
NAND3 $(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)=(\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 3)^{\prime}$	3
NOR2 $(\mathrm{x} 1, \mathrm{x} 2)=(\mathrm{x} 1+\mathrm{x} 2)^{\prime}$	2
AOI21(x1, x2, x3) $=((\mathrm{x} 1 \mathrm{x} 2)+\mathrm{x} 3)^{\prime}$	3
OAI21 $(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)=\left((\mathrm{x} 1+\mathrm{x} 2)^{\prime} \mathrm{x} 3\right)^{\prime}$	3

(i) Show the pattern trees of the library cells using NAND2 and INV as base functions. Assume that symmetric representations do not need to be stored.

(ii) Decompose the function $\mathrm{f}=\mathrm{a}+\mathrm{b}^{\prime}+\mathrm{c}$ using NAND2 and INV as base functions into all possible non-symmetric decompositions. Then, map the decomposed circuits using the given library and determine the decomposition that leads to a lower area cost.

The function $f=a+\bar{b}+c$ can be decomposed into 2 -input $O R$ gates by one of the following decompositions:

The first and second decompositions have the same structure and will lead to a solution of the same cost. So, we will consider mapping the first and third decompositions.

The minimum solution for mapping this decomposition has a cost of 5 as shown below:

Next, we consider the third decomposition.

The minimum solution for mapping this decomposition has a cost of 4 as shown below:

(iii) Using the dynamic programming approach, map the circuit given below using the given library into the minimum area cost solution. Inputs are $\{a, b, c, d, e, f, g\}$ and output is $\{Z\}$.

Thus, the minimum cost is 11 and the mapped solution is shown below;

(iv) Using the given library, use the SIS command read_libray q1.lib to read the library. Then, map the circuit to the library using the sis command map $-\boldsymbol{s}-\boldsymbol{m} 0$. Compare your solution to the solution obtained in (iii). You can save the mapped circuit using the sis command write_blif -n. Why do you think the solution obtained by SIS is better than your solution?

The solution achieved by SIS is given below with a total area of 10 .

```
.model hw4q1_081.blif
.inputs abcdefg
.outputs g10
.default_input_arrival 0.00 0.00
.default_output_required 0.00 0.00
.default_input_drive 0.20 0.20
.default_output_load 1.00
.default_max_input_load 999.00
.gate NAND3 a=g b=e c=f O=[101]
.gate AOI21 a=c b=a c=b O=g5
.gate NOR2 a=d b=g5 O=g7
.gate NAND2 a=[101] b=g7 O=g10
.end
```


The obtained solution is better than the solution we obtained because SIS uses an additional optimization technique by inserting pairs of inverters at each line in the subject graph and then finding an optimal mapping of the subject graph. Any mapped pair of inverters can then be eliminated. Using this technique it is possible to obtain a better mapping of the given network.
(v) Assuming Boolean matching, determine the number of ROBDD's that need to be stored in the cell library for each of the following cells. Justify your answer.
a. $f=a b+a c+b c$

$$
\begin{aligned}
& \text { since } a, b, \text { and } c \text { are all symmetric } \\
& c_{3}=\{(a, b, c)\} \Rightarrow \text { ROBDD's }=1
\end{aligned}
$$

b. $f=a b c+a^{\prime} b^{\prime} d$

Q.2. Consider the incompletely-specified FSM that has 6 states, two inputs and one output, represented by the following state table:

Present State	Next State, Output			
	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
S1	S2, 0	,--	$\mathrm{S} 5,1$,--
S2	$\mathrm{S} 1,0$	$\mathrm{~S} 3,-$,--	,--
S3	$\mathrm{S} 3,-$	$\mathrm{S} 1,1$	$\mathrm{~S} 5,-$	$\mathrm{S} 4,1$
S4	,---	$\mathrm{S} 2,-$	$\mathrm{S} 1,-$,--
S5	$\mathrm{S} 3,-$	$\mathrm{S} 2,1$,- 0	$\mathrm{~S} 6,-$
Sb	$\mathrm{S} 6,1$	$\mathrm{~S} 1,-$	$\mathrm{S} 2,-$	$\mathrm{S} 5,-$

(i) Determine the incompatible and the compatible states along with their implied pairs.

The incompatible states are:
$\left(s_{1}, s_{4}\right),\left(s_{1}, 5_{5}\right),\left(s_{1}, 56\right),(52,56),\left(53,5_{4}\right)$
The compatible states with their implied pairs:
(s_{1}, s_{2})
$\left(\mathrm{si}_{1}, \mathrm{~S}_{3}\right) \Leftarrow\left(\mathrm{S}_{2}, \mathrm{~s}_{3}\right)$
$\left(S_{2}, S_{3}\right) \rightleftarrows\left(S_{1}, S_{3}\right)$
$\left(S_{2}, S_{4}\right)$
$\left(S_{2}, S_{3}\right)$
$(52,55) \Leftarrow(51,53),(52,53)$
$\left(s_{3}, S_{5}\right) \leftarrow\left(S_{1}, 5_{2}\right),\left(s_{4}, 56\right)$
$(53,56) \Leftarrow(52,55),(54,55)$
(54,55)
$(54,56) \Leftarrow\left(S_{i}, S_{2}\right)$
$(55,56) \Leftarrow(51,52),(53,56)$
(ii) Compute the maximal compatible classes along with their implied state pairs.
$\frac{\text { Maximal compatible classes: }}{\text { assign for every state }}$ si variable x_{i}.
we assign for every incompatible state pairs we have
$\left(\bar{x}_{1}+\bar{x}_{4}\right)\left(\bar{x}_{1}+\bar{x}_{5}\right)\left(\bar{x}_{1}+\bar{x}_{6}\right)\left(\bar{x}_{2}+\bar{x}_{6}\right)\left(\bar{x}_{3}+\bar{x}_{4}\right)$
$=\left(\bar{x}_{1}+\bar{x}_{4} \bar{x}_{5}\right)\left(\bar{x}_{1}+\bar{x}_{6}\right)\left(\bar{x}_{2}+\bar{x}_{6}\right)\left(\bar{x}_{3}+\bar{x}_{4}\right)$
$=\left(\bar{x}_{1}+\bar{x}_{4} \bar{x}_{5} \bar{x}_{6}\right)\left(\bar{x}_{2}+\bar{x}_{6}\right)\left(\bar{x}_{3}+\bar{x}_{4}\right)$
$=\left(\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} \bar{x}_{6}+\bar{x}_{2} \bar{x}_{4} \bar{x}_{5} \bar{x}_{6}+\bar{x}_{4} \bar{x}_{5} \bar{x}_{6}\right)\left(\bar{x}_{3}+\bar{x}_{4}\right)$
$=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}+\bar{x}_{1} \bar{x}_{2} \bar{x}_{4}+\bar{x}_{1} \bar{x}_{3} \bar{x}_{6}+\bar{x}_{1} \bar{x}_{4} \bar{x}_{6}$
$+\bar{x}_{3} \bar{x}_{4} / \bar{x}_{5} \bar{x}_{6}+\bar{x}_{4} \bar{x}_{5} \bar{x}_{6}$
Thus, we have 5 maximal compatible classes
as follows:
$\overline{x_{1}} \overline{x_{2}} \overline{x_{3}}: d:\left(s_{4}, s_{5}, s_{6}\right) \Leftarrow\left(s_{1}, s_{2}\right),\left(s_{3}, s_{6}\right)$
$\bar{x}_{1} \bar{x}_{3} \bar{x}_{6}: c 3:(52,54,55) \Leftarrow(52,53),(s 1,53),(54,56)$
$\bar{x}_{1} \bar{x}_{4} \bar{x}_{6}: c 4:(52,53,55) \Leftarrow(51,53),(51,52),(5,5)$ $\bar{x}_{1} \bar{x}_{4} \bar{x}_{6}, \bar{x}_{5} \bar{x}_{6}:(5,5:(5,52,53)$
(iii) Reduce the state table into the minimum number of states and show the reduced state table.

If we consider the maximal compatible
classes to find a minsuun cover, we
will get either $1<1<3<5$ or cic2cucs
ire. a minimum of four reduced states.
However, the state table can be reduced
into 3 states by using the following
cover:
($51,52,53$) $(54,55),(56)$
The reduced state table is: Next state, output

| Present state | so | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5123 | 5123,0 | 5123,1 | 545,1 | 545,1 |
| 545 | 5123, | 5123,1 | 5123,0 | $56,-$ |
| 56 | 56,1 | 51, | $52,-$ | $55,-$ |

Q.3. Consider the incompletely-specified FSM that has 4 states, two inputs and two outputs, represented by the following state table:

Product	Input	Present State	Next State	Output
P1	10	S1	S2	11
P2	00	S2	S2	11
P3	01	S2	S2	00
P4	00	S3	S2	00
P5	10	S2	S1	11
P6	10	S3	S1	11
P7	00	S1	S1	--
P8	01	S3	So	00
P9	11	S1	S1	10
P10	11	S3	S3	01
P11	11	SO	So	11

(i) Assuming the following constraints, $\mathrm{S} 0=\mathrm{S} 1 \mathrm{OR}$ S3, and that the code of S 2 is covered by all other state codes, the state table can be reduced into the table shown below. Using implicant merging, covering and disjunctive relations show step by step how you can obtain the reduced state stable given below.

Input	Present State	Next State	Output
-0	S1, S2	S2	11
10	S2, S3	S1	11
00	S1	S1	--
01	S3	So	00
11	So, S1	S1	10
11	SO, S3	S3	01

- pl can be changed to:
- 0 st $\mathrm{s}_{2} \quad 11$
if we impose the covering constraint $S_{1} \geqslant 52$
- P2 can be changed to:
if we impose the covering constraint $s_{1} \geqslant s_{2}$
these two rows can now be merged to:
- These two rows can now be merged to:
-0 $\quad S_{1}, s_{2}$
11
- $\begin{gathered}P_{3} . \text { can be changed to: } \\ 0- \\ S_{2}\end{gathered}$
- P_{4} can be changed to:

- Now P3 and P4 can be merged into:

$$
0-52,53 \quad 52
$$

- If we impose the disjunctive constraint that so $=$ si or sh, then pill can be removed and $p 9$ and $p l o$ changed to.
pg 11 so,si $51 \quad 10$
- Finally, the following row it is assumed that the code of 52 is covered by all other codes ire. the code of 0 - 52,53 5200
(ii) Show the encoding constraint matrix and compute all the seed dichotomies of the encoding constraint matrix. Then, eliminate seed dichotomies that violate the given covering and disjunctive constraints.

Encoding constraint Matrix:

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Seed Dichotomies:
sta: (s1,s2), (so) x sta: $\left(s_{1}, s_{2}\right),\left(s_{3}\right) \times$
$s_{1 b}$: (So), (S_{1}, S_{2})
sha: $(52,53)$ ($(50) \times$
sHa: $\left(s 2, s_{3}\right),\left(s_{1}\right) x$
S36: (so), (s2,s3)
Sta: (so, si), (S2)
sub: (si), (S2,s3)

S5b: $\left(S_{2}\right),\left(S_{0}, S_{1}\right) x$
sta: (50,51) , (S_{3})
sta: $(50,53),(51)$
s7b: $(51),(50,53) \times$
sb: (si), (s os) x
Ssa: $\left(S_{0}, 53\right)\left(S_{2}\right)$
sen: $\left(S_{2}\right),\left(50, S_{3}\right) \times$
(iii) Compute all the prime dichotomies and eliminate those that violate the disjunctive constraints.

Prime Dichotomies:

$p 1:(51 b, 52 b, 57 a, 58 a):(50,53),(51,52)$
PL: $(53 b, 54 b, 55 a, 56 a):(50,51),(52,53)$
P3: $\left(S_{5 a}, S_{8 a}\right):\left(S_{0}, S_{1}, S_{3}\right),\left(S_{2}\right)$
$p_{4}:(51 b, 53 b):(50),(51,52,53)$
Note that $p 4$ violates the disjunctive constraint and has to be discarded. Also, P3 violates the disjunctive constraint if we assume 2 -bits encoder.
(iv) Find a state encoding satisfying the given constraints. Verify that your encoding satisfies all the constraints.

A minimum cover is P_{1} and P_{2} which results in the following state encoding

state	code	
so	1	1
si	0	1
s2	0	0
ss	1	0

Note that the disjunctive constraint so $=51$ OR SB is satisfied since $11=01$ OR 10 .
Also, the code of $52=00$, which is covered by all other codes.
Also, $S_{1 . S 2}=0-$, which does not intersect with other codes.
$52.53=-0$, which does not intersect with other codes.
so.s1 $=-1$, which does not intersect with other codes.
SO.S3 $=1$-, which does not intersect with other codes.
(v) Using K-MAP, obtain the equations for the output and flip-flops. Compare your solution to the solution obtained by running the SIS command stg_to_network using the state codes obtained in (iii).

$$
D_{1}=I_{0} F_{1}
$$

$$
O_{1}=I_{1} \bar{I}_{0}+\bar{I}_{0} \bar{F}_{1}+F_{0}
$$

\# of literals $=21$ literals

The circuit resulting based on the stg_to_network command is as follows:

```
sis> read_blif hw4q3_081.blif
sis> stg_to_network
sis> print
    [0] = IN_0 IN_1 LatchOut_v2 + IN_0' IN_1 LatchOut_v2
    [1] = IN_0 IN_1' LatchOut_v3' + IN_0' IN_1 LatchOut_v2 + IN_0' LatchOut_v3+ IN_1
LatchOut_v3
    \(\{\) OUT_0 \(\}=\) IN_0 IN_1' LatchOut_v3' + IN_1 LatchOut_v3 + IN_1' LatchOut_v2'
    \{OUT_1\} = IN_0 IN_1 LatchOut_v2 + IN_0 IN_1' LatchOut_v3' + IN_1' LatchOut_v2'
sis> print_stats
hw4q3_081 pi=2 po=2 nodes= 4 latches= 2
lits(sop)= 31 \#states \((S T G)=4\)
```

Note that the number of literals is more than what we have obtained using K-map because the objective here is to minimize the number of products and not the number of literals. To optimize the number of literals, we need to do single output optimization using the command stg_to_network -e 2 which produces the following circuit:

```
sis> read_blif hw4q3_081.blif
sis> stg_to_network -e 2
sis> print
    [0] = IN_1 LatchOut_v2
    [1] = IN_0 IN_1' LatchOut_v3' + IN_0' IN_1 LatchOut_v2 + IN_0' LatchOut_v3
+ IN_1 LatchOut_v3
    {OUT_0} = IN_0 IN_1' + IN_1' LatchOut_v2' + LatchOut_v3
    {OUT_1} = IN_0 LatchOut_v2 + IN_1' LatchOut_v2'
sis> print_stats
hw4q2_081 pi=2 po=2 nodes= 4 latches=2
lits(sop)= 21 #states(STG)= 4
```

(vi) Perform state assignment using the program nova by running the SIS command state_assign nova. Compare the obtained solution to your solution in (v) in terms of number of literals.

The result produced is as follows which is worse that the solution obtained in (v).

```
sis> read_blif hw4q3_081.blif
sis> state_assign nova
Running nova, written by Tiziano Villa, UC Berkeley
sis> print
    \(\{\) OUT_0 \(=\) IN_0 IN_1' LatchOut_v2' + IN_1 LatchOut_v2 LatchOut_v3 + IN_1' LatchOut_v2 +
IN_1' LatchOut_v3' + LatchOut_v2 LatchOut_v3'
    \{OUT_1\} = IN_0 LatchOut_v2' + IN_1' LatchOut_v2 + IN_1' LatchOut_v3' + LatchOut_v2
LatchOut_v3'
    v4.0 = IN_0 IN_1' LatchOut_v2' + IN_0' IN_1 LatchOut_v3 + IN_0' LatchOut_v2+ IN_1
LatchOut_v2 LatchOut_v3 + LatchOut_v2 LatchOut_v3'
    v4.1 = IN_0 LatchOut_v2' + IN_0' LatchOut_v2 + IN_1 LatchOut_v2 LatchOut_v3
sis> print_stats
hw4q3_081 pi=2 po=2 nodes= 4 latches= 2
lits(sop) \(=40\) \#states \((S T G)=4\)
```

The state assignment generated by nova is: $\{S 0=10, S 1=11, S 2=00, S 3=01\}$.
Q.4. Consider the following circuit with inputs $\{a, b, c\}$ and outputs $\{F 1, F 2\}$. Assume that the delay of an Inverter is 1 unit delay, the delay of a 2 -input AND gate is 2 unit delays, and the delay of a 2 -input OR gate is 2 unit delays. Consider the circuit given below:

(i) Determine the critical path of this circuit and the maximum propagation delay.

(ii) Using only the Retiming transformation, reduce the critical path of this circuit with the minimum number of flip-flops possible.

$$
\begin{aligned}
& \text { The critical delay can be reduced to } \\
& 4 \text { with an extra flip-flop as fo } \\
& \text { - Retime } 96 \text { by }+1 \\
& \text { - Retime } 84 \text { by }+1 \\
& \text { - Retime } 9^{3} \text { by }+1 \\
& \text { - Retime } 95 \text { by }+1 \\
& \text { - Retime } 51 \text { by }+1 \\
& \text { - Retime } 52 \text { by }+1
\end{aligned}
$$

The resulting circuit after retiring is:

It is clear that the critical path of the
retired circuit is 4 delay units.
(iii) Read the library q4.lib using the command read_library q4.lib. Then, map your design to the library using the command map $-s$. Then, retime the circuit using the command retime -i. Compare the maximum arrival time before and after retiming. Compare the obtained solution to the solution you obtained in (ii).

The result of applying the retiming transformation is given below:
final cycle delay $\quad=4.00$
final number of registers $=4$
final logic cost $\quad=11.00$
final register cost $\quad=64.00$
RETIME: Final cycle time achieved $=4.00$
The resulting circuit is:
.model hw4q4_081.blif
.inputs ab c
.outputs fl ff
.default_input_arrival 0.000 .00
.default_output_required 0.000 .00
.default_input_drive 0.000 .00
.default_output_load 1.00
.default_max_input_load 999.00
.match dff_re $\mathrm{D}=[90] \mathrm{Q}=[121]$ NIL 3
.match dff_re $\mathrm{D}=\mathrm{f} 1 \mathrm{Q}=[124]$ NIL 3
.mlatch dff_re $\mathrm{D}=[70] \mathrm{Q}=[127]$ NIL 3
.mlatch dff_re $\mathrm{D}=\mathrm{f} 2 \mathrm{Q}=[130]$ NIL 3
.gate and $21 \mathrm{~A}=\mathrm{a} 1 \mathrm{~B}=\mathrm{b} \mathrm{O} 2=\mathrm{g} 1$
.gate or $21 \mathrm{~A}=\mathrm{c} 1 \mathrm{~B}=\mathrm{g} 1 \mathrm{O} 1=[90]$
.gate and2 $1 \mathrm{~A}=[121] 1 \mathrm{~B}=[124] \mathrm{O} 2=\mathrm{g} 3$
.gate inv $1 \mathrm{~A}=\mathrm{f} 2 \mathrm{O}=[70]$
.gate or $21 \mathrm{~A}=\mathrm{g} 31 \mathrm{~B}=[127] \mathrm{O} 1=\mathrm{f} 1$
.gate and2 $1 \mathrm{~A}=[121] 1 \mathrm{~B}=[130] \mathrm{O} 2=\mathrm{f} 2$
.end

Note that the number of registers obtained by SIS is different due to our description of the circuit having the fanout connecting to G5 not coming directly from F2. This is why we were able to minimize the number of registers more than what the tool could have done. If we have connected F2 to a buffer representing S2 and then let S2 fanout, SIS will obtain the same solution we have obtained.

