COE 561, Term 091

Digital System Design and Synthesis

HW#4

Due date: Tuesday, Jan. 19

Q.1. Consider a technology library containing the following cells:

Cell	Area Cost
INV(x1) = x1'	1
NAND2(x1, x2) = (x1 x2)'	2
NAND3(x1, x2, x3) = $(x1 \ x2 \ x3)$ '	3
NOR2(x1, x2) = (x1 + x2)'	2
AOI21(x1, x2, x3) = ((x1 x2) + x3)'	3
OAI21(x1, x2, x3) = $((x1+x2) x3)$ '	3
AOI22(x1, x2, x3, x4) = (x1 x2 + x3 x4)'	4
OAI22(x1, x2, x3, x4) = $((x1+x2)(x3+x4))$ '	4

- (i) Show the **pattern trees** of the library cells using **NAND2** and **INV** as base functions. Assume that symmetric representations do not need to be stored.
- (ii) Using the dynamic programming approach, map the circuit given below using the given library into the minimum area cost solution. Inputs are $\{a, b, c, d, e, f, g, s\}$ and output is $\{t\}$.
- (iii) Using the given library, use the SIS command *read_libray* **q1.lib** to read the library. Then, map the circuit to the library using the sis command *map -s -m 0*. Compare your solution to the solution obtained in (iii) and comment on any differences. You can save the mapped circuit using the sis command *write_blif -n*.

- **Q.2.** Assuming **Boolean matching**, determine the <u>number</u> of ROBDD's that need to be stored in the cell library for each of the following cells. <u>Justify your answer</u>.
- (i) $f = a \oplus b \oplus c$
- (ii) f = a b + a c + b c
- (iii) f = a b + a' b' + a c + b c