COE 561, Term 051
 Digital System Design and Synthesis
 HW\# 4
 Due date: Tuesday, Dec. 6

Q.1. Consider the logic network defined by the following expressions:

$$
\begin{aligned}
& x=a b d e^{\prime}+c d^{\prime} e+c d e^{\prime}+a b d^{\prime} e+a b c \\
& y=a b+c
\end{aligned}
$$

(i) Substitute y into f_{x} by performing the algebraic division $\mathrm{f}_{\wedge} / \mathrm{f}_{y}$. Show all steps. Determine the number of literals saved.
(ii) Compare your solution with the result obtained by running the sis command resub-d (resubstitute without complement).
Q.2. Consider the following function:

$$
x=a c h+b c h+d g h+e g h+f g h+i
$$

(i) Compute all the kernels of x using the recursive kernel computation algorithm. Show all the steps.
(ii) Compute all the kernels of x based on matrix representation. Compare your answer to the result obtained in (i).
Q.3. Consider the following function:

$$
x=a c+b c+b e+d c+d e
$$

(i) Find a quick factor of x by using the first level-0 kernel found. Assume that input variables are sorted in lexicographic order. Determine the number of literals obtained. Compare your solution with the result obtained by running the sis commands factor - $\boldsymbol{q} \boldsymbol{x}$; print_factor; print_stats $\mathbf{- f}$.
(ii) Find a good factor of x based on using the best kernel. Determine the number of literals obtained. Compare your solution with the result obtained by running the sis commands factor $-\boldsymbol{g} \boldsymbol{x}$; print_factor; print_stats $-\mathbf{f}$.
Q.4. Consider the logic network defined by the following expressions:

$$
x=a c d+a e f^{\prime}+a e^{\prime} g^{\prime}+a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} d^{\prime}+a^{\prime} b^{\prime} e f+a^{\prime} b^{\prime} e^{\prime} g+b c d
$$

(i) Compute all double-cube divisors of x along with their bases.
(ii) Apply the fast extraction algorithm based on extracting double-cube divisors along with complements or single-cube divisors with two-literals. Show all steps of the algorithm. Determine the number of literals saved. Compare your solution with the result obtained by running the sis commands $f x$.
Q.5. Consider the logic network defined by the following expressions:

$$
\begin{aligned}
& d=a+b \\
& e=b^{\prime}+c \\
& f=c d+a e+b c^{\prime}
\end{aligned}
$$

Inputs are $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and output is $\{\mathrm{f}\}$.
(i) Compute CDC for the cut including the inputs of functions f .
(ii) Compute the SDC set for nodes d and e .
(iii) Using the CDC set of node f and the SDC for nodes d and e , simplify the function f .
(iv) Compute the ODC set for node e. Consider the network perturbation replacing e by 0 , i.e. $\delta=\left(\mathrm{b}^{\prime}+\mathrm{c}\right) \oplus 0=\mathrm{b}^{\prime}+\mathrm{c}$. Determine if this perturbation is feasible or not. Is the fault \mathbf{e} stuck-at- $\mathbf{0}$ testable. If it is testable find all tests detecting the fault. If the fault is untestable optimize the network by eliminating redundancy.
(v) Apply the sis command full_simplify and compare the solution obtained with your obtained solution based on optimizations made in (iii) \& (iv).

