COE 561, Term 101 Digital System Design and Synthesis HW# 3 Solution

Due date: Tuesday, Dec. 14

Q.1. Consider the following function:

x = a d e + a f + a' b' c f + b c d e + b c f + c d' e' f

- (i) Compute all the kernels of X using the recursive kernel computation algorithm. Show all the steps.
- (ii) Compute all the kernels of X based on matrix representation. Compare your answer to the result obtained in (i).
- (iii) Use the sis command *print_kernel* and compare the kernels obtained to your answers in (i) and (ii).
- (iv) Find a <u>good</u> factor of X. Assume that input variables are sorted in lexicographic order. Determine the number of literals obtained. Compare your solution with the result obtained by running the sis commands *factor -g* x; print_factor; print_stats -f.
- **Q.2.** Consider the following function:

x = a b c d + a b c' d' + a b' e + a b' f + a' b e + a' b f + a' b' c d + a' b' c' d' + c e' f' + d e' f'

- (i) Compute all double-cube divisors of x along with their bases and their weights. Show only double-cube divisors that have non-empty bases.
- (ii) Apply the fast extraction algorithm based on extracting double-cube divisors along with complements or single-cube divisors with two-literals. Show all steps of the algorithm. Determine the number of literals saved. Compare your solution with the result obtained by running the sis commands fx.
- **Q.3.** Consider the logic network defined by the following expressions:

$$X = A + C;$$

$$Y = A X + X' B;$$

$$Z = Y + X;$$

Inputs are $\{A, B, C\}$ and output is $\{Z\}$.

(i) Compute the CDC set for the cut at the inputs of circuit Y.

- (ii) Compute the ODC set for node Y.
- (iii) Simplify the function of Y using both its ODC and CDC.
- (iv) Apply the sis command *full_simplify* and compare the solution obtained with your obtained solution based in (iii).
- Q.4. Consider the logic network defined by the following expressions:

```
g = a b
h = a' b'
i = g + h
j = c d
k = i j e
l = i j f
x = k + l
```

Inputs are {a, b, c, d, e, f} and output is $\{x\}$. Assume that the delay of a gate is related to the number of its inputs. Also, assume that the input data-ready times are zero except for input a, which is equal to 2.

- (i) Draw the logic network graph and compute the data ready times and slacks for all vertices in the network.
- (ii) Determine the maximum propagation delay and the topological critical path.
- (iii) Suggest an implementation of the function x to reduce the delay of the circuit. What is the **maximum propagation delay** after the modified implementation?

COE 551

Dr. Aiman El-Malch

HW #3

X = ade + af + abcf + b cde + b cf + c def Q1. Recursive Kernel Computation (1)we assume that the variables are ordered in lexicographic order: 2a, a, b, b, c, d, d, e, e, fg. <u>i=1:jag</u> cubes containing a : {ade, af } 7 2 C = aKernel found : de+f Recursive call on the kernel with d=2 {a} Since the number of cubes containing each variable is <2, no Rennels will be found. 1 = 2 : 1 = 3 Cubes containing à : ¿ab cf } < 2 => no Kernels found c = 3 : 263 Cubes containing b: { bede, befg > 2 C = bcKernel found : de + f Recursive call on the Kernel with i=4 will not produce any Kernel. i = 4 : 253Cubes containing B: { = b cf } < 2 => no Kernels found

$$\frac{c=5:5c}{c=5}$$
Cubes containing C: $\frac{1}{2} = 5cf$, bede, bef, $cdef$?
C = c
Kernel found : $\overline{a} = 5f + bde + bf + def$
Recursive call on the Kernel with $c=6$; $d3$
- No Kernels will be found for $c=6$; $d3$
to $c=9$; $\frac{1}{2}c^{2}$; since number $\frac{1}{2}c^{2}b^{2}c^{2}$; $cbes$ containing f : $\frac{1}{2}a = 5f$, bf , $\overline{d}ef$?
C = f
Kernel found = $\overline{a}b + b + \overline{d}e$
Recursive call on the Kernel will not
produce any Kernel.
 $\frac{c=6:\frac{1}{2}d^{2}}{C = de}$
Kernel found = $a + bc$
Recursive call on the Kernel with $c=7$; $\overline{d}f$?
 $\frac{c=7:\frac{1}{2}d^{2}}{Cubes containing } \overline{d}$: $\frac{1}{2}c = \overline{d}f$; $c=3$; $\frac{1}{2}c = \frac{1}{2}$
Cubes containing \overline{d} : $\frac{1}{2}c = \frac{1}{2}c^{2}$ no Kernels found
 $\frac{c=8:\frac{1}{2}c^{2}}{Cubes containing } \overline{d}$: $\frac{1}{2}c = \frac{1}{2}c^{2}$ no Kernels found
 $\frac{c=8:\frac{1}{2}c^{2}}{Cubes containing } e$; $\frac{1}{2}ade$, $bcde^{2} = 2$
C = de
Since the cube contains literal $d < 8$, no
Kernels will be found at

Cubes containing \overline{e} : $\{c\overline{d}\overline{c}f\} < 2 \Rightarrow$ no Kernels found $\underline{c} = 10: \underline{\ell}f\underline{3}$ Cubes containing $f: \underline{\ell}af$, $\overline{a}bcf$, bcf , $c\overline{d}\overline{e}f\underline{3}$ C = f Kernel found: $a + \overline{a}bc + bc + c\overline{d}\overline{e}$ Recursive call on Kernel will not produce any Kernel.
<u>C = 10 : Efg</u> Cubes containing f: Eaf, abcf, bcf, c Jefg C = f Kernel found : a + abc + bc + c Je Recursive call on Kernel will not produce any Kernel. The the set of Kernels and their co-Kernels are:
C = f Kernel found : a + abc + bc + cde Recursive call on Kernel will not produce any Kernel. The the set of Kernels and their co-Kernels are:
Recursive call on Kernel Will not produce any Kernel. The the set of Kernels and their co-Kernels are:
the set of Kernels and their co-Kernels are:
Kernel Co-Kernel
de+f a, bc
abf+bde+bf+Jef c
ab+b+de cf
a + bc de
a + abc + bc + cde f
× 1

	vor.	a	6	Ь	(F	C	d	9	e	e	t
cube	R/C	ι	2	3	ન	5	5	7	8	9	10
ade	1	Π				· · ·	11		$\neg \neg$		
af	2	<u> </u>					{				
ābef	3		1		١	1	})		T
bede	4		5	1			14		1		
bcf	5			<u> </u>		11					11
cdef	6					1	}	¥		ł	L
•											
Prime	e Rectai	MIC		(<i>cub</i>	<u> </u>		ne	erne	t	
({1/23	5, (13)				a			d	e +	t	
(٤4,5	3, {3,5	£)	556697 . 566 - 166 - 1993 7 <u>-</u> 18		bc			de	+ .	f	
(23,4	15,63, {	5()			С			ā b-	(+	bde	+ bf + def
(21/42	5, 25,8	3)			de			9	+ 5	c	
({ ² /3	5,63,2	103)			t	_		a	+ ā	Ъc	+ bc+cJe

(11) Kernel Computation using matrix representation:

The same set of Kernels are obtained as found in (1).

({ 3, 5, 6 } , [5, 10 })

ct

 $\overline{ab} + b + \overline{de}$

-4-

(iii) <u>Computing kernels using SIS</u>:

```
sis> read_eqn hw3q1.eqn

sis> print

{X} = a d e + a f + a' b' c f + b c d e + b c f + c d' e' f

sis> print_kernel

Kernels of {X}

(a) * (d e + f)

(b c) * (d e + f)

(c) * (a' b' f + b d e + b f + d' e' f)

(c f) * (a' b' + b + d' e')

(d e) * (a + b c)

(f) * (a + a' b' c + b c + c d' e')

(-1-) * (a d e + a f + a' b' c f + b c d e + b c f + c d' e' f)
```

(iv) Good factoring

we need to compute all the Kernels with their value and select the Kernel that has the highest value.

Value of a Kernel = $nl - n - l + (c - i) \stackrel{n}{\geq} |cki|$

Kernel	Co-Kernel	Value
de+f	a, bc	2×3-2-3+(2-1)(+2)=4
abf+bde+bf+def	c	x - 1 - 11 + (y - 1) = 2
ab + b + de	cł	$1 \times 5 - 1 - 5 + (3 - 1) \times 2 = 3$
at bc	de	$1 \times 3 - 1 - 3 + (2 - 1) \times 2 = 1$
a + abc + bc + cdf	f	$ x_9 - 1 - 9 + (4 - 1)x = 2$

Thus, we select the divisor detf

 \Rightarrow $X = (de+f)(a+bc) + \overline{ab}cf + cd\overline{e}f$

Factoring is then applied recursively on the divisor, quotrent and remainder. The divisor and quotrent cannot be factored further.

Then, we need to find all the Ke els for abef + cdef and select the one with the best value. Since the only Kernel found is ab +de, the remainder is factored as cf (ab +de).

$$\Rightarrow \chi = (de+f)(a+bc) + cf(ab+de)$$

Good Factoring using SIS:

sis> print {X} = a d e + a f + a' b' c f + b c d e + b c f + c d' e' f sis> factor -g X sis> print_factor {X} = c f (d' e' + a' b') + (b c + a) (f + d e) sis> print_stats -f hw3q1.eqn pi= 6 po= 1 node= 1 latch= 0 lits(sop)= 20 lits(ff)= 12

Q2. X = abcd + abcd + abcd + abe + abf + abe + abcd + abcd + cef + def

34 literals

(i) Double - Cube Divisors

Double-cube divisor	Base	weight
6 + 29	ab, 25	$2 \times 4 - 2 - 4 + 4 = 6$
bed + be	a	1×5-1-5+1=0
bcd + bf	a	$1 \times 5 - 1 - 5 + 1 = 0$
acd tae	b	1×5-1-5+1=0
acd tat	Ь	1×5-1-5+1=0
ab + 25	cd, 23	4 × 4 - 4 - 4 + 6 = 14
abd + ef	C	$1 \times 5 - 1 - 5 + 1 = 0$
abc + ēf	9	1×5-1-5+1=0
bod + be	a	1×5-1-5+1=0
b टरे + bf	a	1×5-1-5+1=0
acd tae	b	1×5-1-5+1=0
acd taf	b	1×5-1-5+1 =0
e + f	ab, ab	$2 \times 2 - 2 - 2 + 4 + 2 = 6$
ob tab	e,f	4 × 4 - 4 - 4 + 6 = 14
ae + acd	ī	1×5-1-5+1=0
ae + a c d	Ъ	1×5-1-5+1=0
af + ācd	Б	1×5-1-5+1=0
of tacd	Ъ	1×5-1-5+1=0
be + bcd	ā	$1 \times 5 - 1 - 5 + 1 = 0$
be + Jeg	ā	1×5-1-5+1=0
		and the second

Double-cube divisor	Base	werght
bf + bcd	ā	1×5-1-5+1=0
र्भ + फेटरे	ā	x 5 - 1 - 5 + 1 = 0
abd + ef	C	1×5-1-5+1=0
abc + ef	d	1×5-1-5+1=0
	ēf	x 2 - 1 - 2 + 2 + 2 = 3

(11) Fast Extraction

From part (1), we can see that Wilmax = 14 and double-cube divisors { (ab + ab), (ab + ab)} have the highest weight -The highest single cube divisors are Eab, ab, cd, cd, ab, ab, ef 3 all with a weight of o. we select the double-cube divisor abtab and the resulting network is . $[1] = a\overline{b} + \overline{a}b$ $x = cd\overline{11} + c\overline{1}\overline{11} + c\overline{1}\overline{11} + c\overline{11} + f\overline{11}$ + cef + def 20 literals Next, double-cube divisors are updated in the same way ; weight Base Double - cube divisor 1×4-1-4+1=0 62+62 513 dED tef 1 × 4 - 1 - 4 + 1 = 0 C d 1×1-1-4+1=0 CEIJ + ef 1×2-1-2+1+2=2 E1] e +f ēf $1 \times 2 - 1 - 2 + 2 + 1 = 2$ c + d

The double-cube divisor	s c+d	and etf	have
the highest weight of 2	and	single cub	e
divisor. with the best	- weight	rs et w	rith
weight =1.			
Let us choose ctd	and H	resulting	network rs;
$[1] = a\overline{b} + \overline{a}b$			
[2] = c + d			
$X = cd \overline{E1} + \overline{E2}E1$	1] tell] + + [1] + e	+ [2]
Double- cube divisors	are upde	ated on the	18 11 terals
same way ?			
Double-cube divisor	Base	Weight	
$cd + \overline{c2}$	<u> </u>	1×3-1-	3+1=0
e +f	[1]	1 × 2 - 1	-2+1+1=1
Since etf has the high	est welg	ih, it is a	extracted

Since eff has the input of and the resulting network is: E1] = ab + ab E2] = c+d E3] = e+f X = cdE1] + E1]E2] + E1]E3] + E2]E3]Here is a second sec

Fast Extraction using SIS:

sis> read_eqn hw3q2.eqn sis> print $\{x\} = a b c d + a b c' d' + a b' e + a b' f + a' b e + a' b f + a' b' c$ a' b' c' d' + c e' f' + d e' f'sis> fxsis> print $<math>\{x\} = [1] [3] + [1]' [2]' + [1]' c d + [2] [3]'$ [1] = a b' + a' b [2] = c + d [3] = e + fsis> print_stats hw3q2.eqn pi= 6 po= 1 node= 4 latch= 0 lits(sop)= 17 lits(ff)= 16

$$\begin{array}{rcl} Q_{3}, & \chi &= & A + C \\ & \chi &= & A \times + \times G \\ & \mathcal{Z} &= & \chi + \chi \end{array}$$

(i) The cut is
$$\{A, x, B\}$$

 $SDC_{x} = x \oplus (A+c) = xAC + \overline{x}A + \overline{x}C$
 $CDC = xAC + \overline{x}A + \overline{x}C$
 $We need to remove C'.$
 $\Longrightarrow CDC_{cxt} = (x\overline{A} + \overline{x}A)(\overline{x}A + \overline{x})$
 $= (x\overline{A} + \overline{x}A)(\overline{x})$
 $= \overline{x}A$

(iii)
$$ODCy = X$$

$$x \xrightarrow{AB} \xrightarrow{OO} \xrightarrow{OI} \xrightarrow{II} \xrightarrow{II} \xrightarrow{IO} \xrightarrow{II} \xrightarrow{$$

Simplification of Y using SIS:

sis> read_eqn hw3q3.eqn sis> print $\{Z\} = X + Y$ X = A + CY = A X + B X'sis> full_simplify sis> print $\{Z\} = X + Y$ X = A + CY = B

The data ready times are shown on the figure.
The maximum propagation delay is 12.
To compute the slack for each node, the
required time for x is soft to 12.

$$\overline{t}_x = 12$$
, $S_x = 12 - 12 = 0$
 $\overline{t}_x = 12 - 2 = 10$, $S_x = 10 - 10 = 0$
 $\overline{t}_z = 12 - 2 = 10$, $S_z = 10 - 10 = 0$
 $\overline{t}_z = \min\{10 - 3, 10 - 3\} = 7$, $S_z = 7 - 7 = 0$
 $\overline{t}_z = \min\{10 - 3, 10 - 3\} = 7$, $S_z = 7 - 7 = 0$
 $\overline{t}_z = \min\{10 - 3, 10 - 3\} = 7$, $S_z = 7 - 7 = 0$
 $\overline{t}_z = 7 - 2 = 5$, $S_y = 5 - 4 = 1$
 $\overline{t}_h = 7 - 2 = 5$, $S_h = 5 - 5 = 0$
 $\overline{t}_h = \min\{5 - 2, 5 - 2 - 1\} = 2$, $S_h = 2 - 0 = 2$
 $\overline{t}_c = 7 - 2 = 5$, $S_c = 5 - 0 = 5$
 $\overline{t}_d = 7 - 2 = 5$, $S_c = 5 - 0 = 5$
 $\overline{t}_d = 7 - 2 = 5$, $S_c = 5 - 0 = 5$
 $\overline{t}_d = 7 - 2 = 5$, $S_c = 5 - 0 = 5$

Q 4

$$\overline{te} = 10 - 3 = 7$$
, $se = 7 - 0 = 7$
 $\overline{te} = 10 - 3 = 7$, $s_{f} = 7 - 0 = 7$

This, delay of X is reduced from 12 to 9. At the same time, the area of the circuit has improved.