# COE 561, Term 091 <br> Digital System Design and Synthesis HW\# 3 Solution 

Due date: Tuesday, Dec. 29
Q.1. Consider the following function:

$$
X=A C E+B C E+A C^{\prime} D^{\prime}+B C^{\prime} D^{\prime}+D E+F
$$

(i) Compute all the kernels of $X$ using the recursive kernel computation algorithm. Show all the steps.
(ii) Compute all the kernels of X based on matrix representation. Compare your answer to the result obtained in (i).
(iii) Find a quick factor of $X$ by using the first level-0 kernel found. Assume that input variables are sorted in lexicographic order. Determine the number of literals obtained. Compare your solution with the result obtained by running the sis commands factor -q $\boldsymbol{x}$; print_factor; print_stats $\mathbf{- f}$.
Q.2. Consider the following function:

(i) Compute all double-cube divisors of $X$ along with their bases and their weights. Show only double-cube divisors that have non-empty bases.
(ii) Apply the fast extraction algorithm based on extracting double-cube divisors along with complements or single-cube divisors with two-literals. Show all steps of the algorithm. Determine the number of literals saved. Compare your solution with the result obtained by running the sis commands $f x$.
Q.3. Consider the logic network defined by the following expressions:

$$
\begin{aligned}
& X=A B^{\prime}+A^{\prime} B ; \\
& Y=X C+A B ; \\
& Z=Y+A^{\prime} ;
\end{aligned}
$$

Inputs are $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ and output is $\{\mathrm{Z}\}$.
(i) Compute the SDC set for node X .
(ii) Compute the ODC set for node Y.
(iii) Simplify the function of Y using both its ODC and SDC of node X .
(iv) Compute the ODC set for node X based on the optimized network on (iii).
(v) Simplify the function of X using its ODC.
(vi) Apply the sis command full_simplify and compare the solution obtained with your obtained solution based in (iv).
Q.4. Consider the logic network defined by the following expressions:

$$
\begin{aligned}
& \mathrm{e}=\mathrm{a} \quad \mathrm{~b} \text { d } \\
& \mathrm{f}=\mathrm{c} \text { d } \\
& \mathrm{g}=\mathrm{e}+\mathrm{f} \\
& \mathrm{~h}=\mathrm{ad} \\
& \mathrm{i}=\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{d}^{\prime} \\
& \mathrm{j}=\mathrm{h}+\mathrm{i} \\
& \mathrm{k}=\mathrm{b} \text { d } \\
& \mathrm{l}=\mathrm{j}+\mathrm{k} \\
& \mathrm{x}=\mathrm{g}+\mathrm{l}
\end{aligned}
$$

Inputs are $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and output is $\{\mathrm{x}\}$. Assume that the delay of a gate is related to the number of its inputs. Also, assume that the input data-ready times are zero except for input d, which is equal to 2 .
(i) Draw the logic network graph and compute the data ready times and slacks for all vertices in the network.
(ii) Determine the maximum propagation delay and the topological critical path.
(iii) Suggest an implementation of the function $\boldsymbol{x}$ to reduce the delay of the circuit. What is the maximum propagation delay after the modified implementation?

HW \#3

QI. $X=A C E+B C E+A \bar{C} \bar{D}+B \bar{C} \bar{D}+D E+F$
(1) Recursive Kernel Computation:

We assume that the variables are ordered in lexicographre order: $\{A, B, C, \bar{C}, D, \bar{D}, E, F\}$

$$
\dot{\epsilon}=1:\{A\}
$$

Cubes containing $A:\{A C E, A \bar{C} \bar{D}\} \geqslant 2$

$$
C=A
$$

Kernel found: $C E+\bar{C} \bar{D}$
Recursive call on the Kernel with $c^{\prime}=2\{B\}$

- $i=2:\{B\}$ No Kernels found
- $\hat{i}=3:\{c\}$ No kernels found

The process will continue for all the variables and no kernels will be found.

$$
\frac{i=2:\{B\}}{\text { Cubes containing } B:\{B C E, B \bar{C} \bar{D}\} \geqslant 2}
$$

$$
C=B
$$

Kernel found: $C E+\bar{C} \bar{D}$
Recursive call on the Kernel with $i=3$ will not produce any Kernel.
$i=3:\{c\}$
Cubes containing $C:\{A C E, B C E\} \geqslant 2$
$C=C E$
Kernel found: $A+B$
Recursive call with $i=4$ will not produce any kernel

$$
i=4:\{\bar{c}\}
$$

Cubes containing $\bar{C}:\{A \bar{C} \bar{D}, B \bar{C} \bar{D}\} \geqslant 2$

$$
c=\bar{C} \bar{D}
$$

Kernel found: $A+B$
Recursive call with $i=5$ will not produce any kernel.

$$
i=5:\{D\}
$$

Cubes containmey $D:\{D E\}$ No Kernels found

$$
i=6:\{\overline{0}\}
$$

cubes containing $\bar{D}:\{A \overline{C D}, B \bar{C} \bar{D}\} \geqslant 2$

$$
C=\bar{C} \bar{D}
$$

since the cube contains literal $\bar{C}$, no Kernel will be generated

$$
i=7:\{E\}
$$

Cubes containing $E:\{A C E, B C E, D E\} \geqslant 2$

$$
C=E
$$

Kernel found: $A C+B C+D$
Recursive call with $L=8$ will produce no Kernels

$$
i=8:\{F\}
$$

No kernels will be generated

(II) Kernel computation using matrix representation:


| Prime Rectangle | Cube | Kernel |
| :--- | :--- | :--- |
| $(\{1,3\},\{1\})$ | $A$ | $C E+\overline{C \bar{D}}$ |
| $(\{2,4\},\{2\})$ | $B$ | $C E+\overline{C D}$ |
| $(\{1,2\},\{3,7\})$ | $C E$ | $A+B$ |
| $(\{3,4\},\{4,6\})$ | $\overline{C \bar{D}}$ | $A+B$ |
| $C\{1,2,5\},\{7\})$ | $E$ | $A C+B C+D$ |

(iii) Qurck factor of $x$ based on first level-o Kernel found

$$
L(A)=2>1
$$

$C=A$
Then, we call the procedure one-level-o-Kernel

$$
\sin \frac{x}{A}=C E+\bar{C}
$$

Since all variable occur only once, the first level-o kernel found is $C E+\bar{C} \bar{D}$.

$$
\begin{aligned}
& \text { first level-o } \\
& (h, r)=\text { pride }(x, k=C E+\bar{C} \bar{b})
\end{aligned}
$$

$$
h=A+B \quad, \quad r=D E+F
$$

Then, Quick factor will be called on $h$ \&r but they canst be factored further. Thus, $x=(A+B)(C E+\bar{C})+D E+F \quad 9$ literals $-3-$

SIS produces the same quick factor as shown below:
sis> read_eqn hw3q1.eqn
sis> print
$\{X\}=A C E+A C^{\prime} D^{\prime}+B C E+B C^{\prime} D^{\prime}+D E+F$
sis> factor -q X; print_factor; print_stats -f
$\{X\}=\left(C E+C^{\prime} D^{\prime}\right)(B+A)+D E+F$
hw3q1.eqn pi=6 po=1 node= 1 latch= 0 lits(sop)= 15 lits(ff)= 9
sis>

Q2. $\quad \quad \quad=A C+B C+A D+B D+\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} \bar{D}+A E F+B E F$ $+A \bar{E} \bar{F}+B \bar{E} \bar{F}+\bar{A} \bar{B} E \bar{F}+\bar{A} \bar{B} \bar{E} F$

34 literals
(i) Double Cube Drisors

| Double - Cube divisor | Base | werght |
| :---: | :---: | :---: |
| $A+B$ | c, $D, E F, \bar{E} \bar{F}$ | $4 \times 2-4-2+6+4=12$ |
| $C+D$ | $A, B$ | $2 \times 2-2-2+2+0=2$ |
|  | $A, B$ | $2 \times 3-2-3+2=3$ |
| $C+E F$ | A, B | $2 \times 3-2-3+2=3$ |
| $c+\bar{E} \bar{F}$ | , | $2 \times 3-2-3+2=3$ |
| $D+E F$ | $A, B$ | $2 \times 3-2-3+2=3$ |
|  | $A, B$ | $2 \times 3-2-3+2=3$ |
| $D+E F$ | $\bar{A} \bar{B}$ | $1 \times 2-1-2+2+0=1$ |
| $\bar{e}+\overline{0}$ | $\bar{A} \bar{B}$ | $1 \times 3-1-3+2=1$ |
| $\bar{C}+E \bar{F}$ | $\bar{A} \bar{B}$ | $1 \times 3-1-3+2=1$ |
| $\bar{C}+\bar{E} F$ |  | $1 \times 3-1-3+2 \leq 1$ |
| $\bar{D}+E \bar{F}$ | A |  |
| $\bar{n}+\bar{E} F$ | $\bar{A} \bar{B}$ | $1 \times 3-1-3+2=1$ |
| $\overline{E F}+\overline{E F}$ | $A, B$ | $3 \times 4-3-4+4=9$ |
|  | E | $1 \times 5-1-5+1=0$ |
| $A F+\overline{A B F}$ |  | $1 \times 5-1-5+1=0$ |
| $A E+\bar{A} \bar{B} \bar{E}$ | F | $1 \times 5-1-5+1=0$ |
| $B F+\bar{A} \bar{B} \bar{F}$ | E | $1 \times 5-1-5+1 \leq 0$ |
| $B E+\bar{A} \bar{B} \bar{E}$ | F | $1 \times 5-1-5+1 \leq 0$ |
| $A \bar{E}+\bar{A} \bar{B} E$ | $\bar{F}$ | $1 \times 5-1-5+1=0$ |
| $A \bar{F}+\bar{A} \bar{B} F$ | $\bar{E}$ | $1 \times 5-1-5+1=0$ |
| $\bar{B} \bar{E}+\bar{A} \bar{B} E$ | $\bar{F}$ | $1 \times 5-1-5+1=0$ |
| $B \bar{F}+\bar{A} \bar{B} F$ | $\bar{E}$ | $1 \times 5-1-5+1=0$ |
| $E \bar{F}+\bar{E} F$ | $\bar{A} \bar{B}$ | $3 \times 4-3-4+4=9$ |

(ii) Fast Extraction

From part (i), we can see that $W_{d_{\text {max }}}=12$ and the double cube divisor $A+B$ has the highest weight.
The highest weight single cube divisor is $\bar{A} \bar{B}$ with a weight of 2 .
Thus, the double cube dorsor is selected and the resulting network is:

$$
\begin{aligned}
{[1]=} & A+B \\
X= & C[1]+D[1]+\bar{C} \overline{[1]}+\bar{D} \overline{[1]}+E F[1] \\
& +\overline{E F}[1]+E \bar{F} \overline{[1]}+\overline{E F} \overline{[1]} \quad 22 \text { literals }
\end{aligned}
$$

Double cube dividers are updated in the same way and the double cube divider $E F+\bar{E} \bar{F}$ is extracted as it has the highest weight of $2 \times 4-2-4+2=4$, Thus, the resulting network will be:

$$
\begin{aligned}
& {[1] }=A+B \\
& {[2] }=E F+\bar{E} \bar{F} \\
& x=C[1]+D[1]+\bar{C} \overline{[1]}+\bar{D} \overline{[1]}+[2][1]+\overline{[2]} \overline{[1}] \\
& 18 \text { llerals }
\end{aligned}
$$

since none of the remaining double cube divisors or simple cube divisors has a positive weight, none of them will be extracted.

SIS has resulted in the same extracted network as shown below:
sis> read_eqn hw3q2.eqn
sis> print
$\{X\}=A C+A D+A E F+A E^{\prime} F^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} D^{\prime}+A^{\prime} B^{\prime} E F^{\prime}+A^{\prime} B$
${ }^{\prime} E^{\prime} F+B C+B D+B E F+B E^{\prime} F^{\prime}$
sis> print_stats
hw3q2.eqn pi=6 po= 1 node= 1 latch= 0 lits(sop)= 34 lits(ff)= 16
sis>fx
sis> print
$\{\mathrm{X}\}=\mathrm{C}[1]+\mathrm{C}^{\prime}[1]^{\prime}+\mathrm{D}[1]+\mathrm{D}^{\prime}[1]^{\prime}+[1][2]+[1]^{\prime}[2]^{\prime}$
[1] = A + B
[2] = E F + E' F'
sis> print_stats
hw3q2.eqn pi= 6 po= 1 node= 3 latch= 0 lits(sop)= 18 lits(ff)= 14
sis>
23.

$$
\begin{aligned}
& x=A \bar{B}+\bar{A} B \\
& y=X C+A B \\
& z=Y+\bar{A}
\end{aligned}
$$

(i)

$$
\begin{aligned}
\delta C_{X} & =X \Theta(A \bar{B}+\bar{A} B)=\bar{X}(A \bar{S}+\bar{A} B)+x(A B+\bar{A} \bar{B}) \\
& =\bar{X} A \bar{B}+\bar{X} \bar{A} B+x A B+x \bar{A} \bar{B}
\end{aligned}
$$

(ii) $O D C_{\gamma}=\bar{A}$
(iii) Simplification of $Y$


There are several possible solutions for $\gamma$. one solution is:

$$
y=\bar{x}+c
$$

(iv)

$$
O D C_{x}=C+\bar{A}
$$

(v) Simplification of $x$


$$
x=\bar{B}
$$

Thus, the optimized network is:

$$
x=\bar{B} \quad \gamma=\bar{x}+C \quad z=\gamma+\bar{A}
$$

SIS has resulted in the same simplified network as shown below:

```
sis> read_eqn hw3q3.eqn
sis> print
    \(\{\mathrm{Z}\}=\mathrm{A}^{\prime}+\mathrm{Y}\)
    \(\mathrm{X}=\mathrm{A} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}\)
    \(Y=A B+C X\)
sis> print_stats
hw3q3.eqn pi= 3 po= 1 node= 3 latch= 0 lits(sop)= 10 lits(ff)= 10
sis> full_simplify
sis> print
    \(\{\mathrm{Z}\}=\mathrm{A}\) ' +Y
    \(\mathrm{X}=\mathrm{B}^{\prime}\)
    \(\mathrm{Y}=\mathrm{C}+\mathrm{X}^{\prime}\)
sis> print_stats
hw3q3.eqn pi=3 po=1 node= 3 latch= 0 lits(sop)= 5 lits(ff)= 5
sis>
```

Qu.
(i)


The data ready torres are shown on the froure. The maximum propagation delay is $R$. To compute the slack for each node, the required tome for $x$ is set to 12 .

$$
\begin{aligned}
& \bar{t}_{x}=12 \quad s_{x}=12-12=0 \\
& E_{g}=12-2=10 \quad s_{g}=10-7=3 \\
& E_{l}=12-2=10 \quad s_{l}=10-10=0 \\
& E_{e}=10-2=8 \quad s_{c}=8-5=3 \\
& E_{f}=10-2=8 \quad s_{f}=8-4=4 \\
& E_{j}=10-2=8 \quad s_{j}=8-8=0 \\
& E_{k}=10-2=8 \quad s_{x}=8-4=4 \\
& E_{n}=8-2=6 \quad s_{h}=6-4=2 \\
& E_{f}=8-2=6 \quad s_{i}=6-6=0 \\
& E_{a}=\min \{8-3,6-2,6-3-1\}=2 \\
& E_{b}=\min \{8-3,6-3-1,8-2\}=2 \\
& E_{c}=8-2=6, \quad s_{a}=2-0=2 \\
& E_{c}=\min \{8-3,8-2,6-2,6-3-1,8-2\}=2 \\
&
\end{aligned}
$$

(ii) The maximum propagation delay is 12 and the topological critical path is:

$$
\{d, i, j, l, x\} .
$$

(iii)

$$
\begin{aligned}
x & =g+l=e+f+j+k \\
& =a b d+c d+a d+\bar{a} \bar{b} \bar{d}+b d \\
& =d[a b+c+a+b]+\bar{a} \bar{b} \bar{d} \\
& =d[a+b+c]+\bar{a} \bar{b} \bar{d}
\end{aligned}
$$

This, to improve the delay of $x$, we can implement it as follows:


Thus, the delay of $x$ is reduced from 12 to 7. At the same time, the area of the circuit was improved.

