COE 561, Term 051

Digital System Design and Synthesis

HW\# 3

Due date: Tuesday, Oct. 25

Q.1. Consider the function \boldsymbol{f} whose ON -set is $\mathrm{F}^{\mathrm{ON}}=\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}^{\prime}+\mathrm{a}^{\prime} \mathrm{c}^{\prime} \mathrm{d}+\mathrm{ab}$ ' $\mathrm{d}+\mathrm{cd}^{\prime}$, and whose DC -set is $F^{D C}=a$ ' $c d$.
(i) Represent the ON-set and DC-set in the positional cube notation.
(ii) Compute the off-set using each of the following techniques:

1. The SHARP operator.
2. The DISJOINT SHARP operator.
3. The recursive complementation procedure outlined in section 7.3.4
(iii) Determine whether \boldsymbol{f} conatins cube b'd by checking the tautology of the cofactor. Use the procedure outlined in section 7.3.4 for tautology check. Show all steps.
(iv) Compute all prime implicants of \boldsymbol{f} using the method outlined in section 7.3.4.
(v) Compute all essential prime implicants of \boldsymbol{f} using the method outlined in section 7.4.4.
(vi) Find a minimum cover of \boldsymbol{f}.
(vii)Find a minimum cover by using the tool ESPRESSO-EXACT.
(viii)Find a minimal cover by using the tool ESPRESSO.
Q.2. Consider the function $f(a, b, c, d)=\sum m(0,1,2,3,5,6,7,9,10,11,14)$.
(i) Apply the following procedures in the given order EXPAND, IRREDUNDANT, REDUCE, EXPAND to obtain a minimized cover. Apply the heuristics used by ESPRESSO. Show each step in detail.
(ii) Verify your results after each step performed by running the ESPRESSO tool.
