COE 405, Term 041

COE 561 Digital System Design and Synthesis

HW# 3

Due date: Tuesday, Nov. 23

Q.1. Consider the logic network defined by the following expressions:

$$x = a d' + a' b' + a' d' + b c + b d' + a c$$

$$y = a + b$$

$$z = a' c' + a' d' + b' c' + b' d' + e$$

$$u = a' c + a' d + b' d + e'$$

- (i) Substitute y into f_x by performing the algebraic division f_x/f_y . Show all steps. Determine the number of literals saved. Compare your solution with the result obtained by running the sis command *resub* –*d* (resubstitute without complement).
- (ii) Compute all kernels and co-kernels of z and u. Extract a multiple-cube subexpression common to f_z and f_u . Show all the steps. Determine the number of literals saved. Compare your solution with the result obtained by running the sis command *gkx*.
- **Q.2.** Consider the logic network defined by the following expressions:

x = a b c f + e f c + d ey = a c d e f + b d e fz = b c d + a c f

- (i) Determine the cube-variable matrix and all prime rectangles.
- (ii) Determine the minimum-literal network that can be derived by cube extraction. Determine the number of literals saved. Compare your solution with the result obtained by running the sis command *gcx*.
- **Q.3.** Consider the following function:

$$x = b d + c d + b e + c e + a f d + a f e + a b g + a c g + a f g$$

- (i) Find a quick factor of x by using the first level-0 kernel found. Assume that input variables are sorted in lexicographic order. Determine the number of literals obtained. Compare your solution with the result obtained by running the sis commands *factor* qx; *print_factor*; *print_stats f*.
- (ii) Find a good factor of x based on using the best kernel. Determine the number of literals obtained. Compare your solution with the result obtained by running the sis commands *factor –g x*; *print_factor; print_stats –f*.

- (iii) Decompose x using quick decomposition based on using the first level-0 kernel found. Determine the number of literals obtained. Compare your solution with the result obtained by running the sis commands *decomp* -q. Compare your solution to the factored solution obtained in (i).
- (iv) Decompose *x* using good decomposition based on using based on using the best kernel. Determine the number of literals obtained. Compare your solution with the result obtained by running the sis commands *decomp* −*g*. Compare your solution to the factored solution obtained in (ii).
- (v) Run the sis command fx and compare the solution obtained to that obtained in (iii) and (iv).
- Q.4. Consider the logic network defined by the following expressions::

$$x = a'b'c d + a'b'c'd' + acd' + ac'd + bcd' + bc'd$$
$$y = a'b'c + a'b'd + ac'd' + bc'd'$$

- (i) Compute all double-cube divisors of x and y along with their bases.
- (ii) Apply the fast extraction algorithm based on extracting double-cube divisors along with complements or single-cube divisors with two-literals. Show all steps of the algorithm. Determine the number of literals saved. Compare your solution with the result obtained by running the sis commands fx.
- (iii) Run the sis commands gkx followed by gcx and compare the solution obtained to that obtained in (ii).
- **Q.5.** Consider the logic network defined by the following expressions:

$$d = b'$$

$$f = (a+d)'$$

$$e = (c a)'$$

$$x = f e$$

$$y = d \oplus e$$

Inputs are $\{a, b, c\}$ and output are $\{x, y\}$.

- (i) Assume $CDC_{in} = abc'$. Compute CDC_{out} .
- (ii) Compute the ODC sets for all internal and input vertices, assuming that the outputs are fully observable.
- **Q.6.** Consider the logic network defined by the following expressions:

$$u = a b' + b c$$
$$x = a u + b$$
$$y = a'u' + c'$$

Inputs are $\{a, b, c\}$ and outputs are $\{x, y\}$.

- (i) Compute the SDC set and ODC set for node *u*.
- (ii) Simplify *u* using its ODC set.

- (iii) Simplify *x* and *y* using the SDC set.
- (iv) Apply the sis command *full_simplify* and compare the solution obtained to what you obtained as a result of applying steps (ii) and (iii).
- **Q.7.** Consider the logic network defined by the following expressions:

$$o = e g$$
$$e = (a + b)'$$
$$g = d + c$$
$$d = a b$$

Inputs are $\{a, b, c\}$ and output is $\{o\}$.

- (i) Consider the network perturbation replacing d by 0, i.e. $\delta = a \ b \oplus 0 = a \ b$. Determine if this perturbation is feasible or not.
- (ii) Is the fault *d* stuck-at-0 testable. If it is testable find all tests detecting the fault. If the fault is untestable optimize the network by eliminating redundancy.
- (iii) Is the fault *e stuck-at-1* testable. If it is testable find all tests detecting the fault. If the fault is untestable optimize the network by eliminating redundancy.