COE 561, Term 101

Digital System Design and Synthesis

HW\# 2 Solution

Due date: Tuesday, Nov. 9

Q.1. Consider the function $F(A, B, C, D)$ with the following ON -set and DC -set:

$$
\begin{aligned}
& F^{O N}=\sum \mathrm{m}(0,3,5,7,9,11,12,14) \\
& F^{D C}=\sum \mathrm{m}(4,15)
\end{aligned}
$$

(i) Compute the off-set using the recursive complementation procedure outlined in section 7.3.4
(ii) Apply the EXPAND procedure on the given cover using Espresso heuristics and show the obtained expanded cover. Compare your solution with the result obtained by ESPRESSO tool. Note that if there are minterms of the same weight, expand the minterm with the least number first (i.e. expand minterm 8 before 10). Similarly if raising all literals has the same benefit, expand the literals according to their order (i.e. literal A before B).
(iii) Apply the IRREDUNDANT procedure on the expanded cover using Espresso heuristics and show the obtained irredundant cover. Compare your solution with the result obtained by ESPRESSO tool.
(iv) Determine if any of the obtained prime implicants is an essential prime implicant or not using the method outlined in section 7.4.4. If it is essential, remove it from the cover and make the on-sets covered by it don't cares.
(v) Apply the REDUCE procedure on the irredundant cover using Espresso heuristics and show the obtained reduced cover. Compare your solution with the result obtained by ESPRESSO tool.
Q.2. Consider the following cover of a function $\mathrm{F}(A, B, C, D)$

$$
\begin{aligned}
& F=\bar{B} \bar{C}+\bar{C} D+B D+\bar{A} \bar{D}+\bar{A} B+C \bar{D} \\
& \text { With } F^{D C}=\sum \mathrm{m}(2,10,14)
\end{aligned}
$$

(i) Determine the relatively essential set of cubes, E^{r}.
(ii) Determine the totally redundant, R^{t}, and partially redundant, R^{p}, sets of cubes.
(iii) Find a subset of R^{p} that, together with E^{r}, covers the function by solving a covering problem.
(iv) Compare your solution with the result obtained by ESPRESSO tool.

HW \#2 Solution

Q1.

$$
\begin{aligned}
& F^{n}=\sum m(0,3,5,7,9,11,12,14) \\
& F^{n}=\operatorname{\sum m}(4,15)
\end{aligned}
$$

(i)

$$
\begin{aligned}
& F^{N} \cup F^{D}=\bar{a} \bar{b} \bar{c} \bar{d}+\bar{a} \bar{b} c d+\bar{a} b \bar{c} d+\bar{a} b c d \\
& +a \bar{b} \bar{c} d+a \bar{b} c d+a b \bar{c} \bar{d}+a b c d \\
& +\bar{a} b \bar{d}+a b c d \\
& =\bar{a}[\bar{b} \bar{c} \bar{d}+\bar{b} c d+b \bar{c} d+b c d+b \bar{c} \bar{d}] \\
& +a \quad[\bar{b} \bar{c} d+\bar{b} c d+b \bar{c} \bar{d}+b c \bar{d}+b c d] \\
& =\bar{a}[\hat{b}[\bar{c} J+c d]+b[\tau \bar{c} d+c d+\bar{c} d]] \\
& +a[\bar{b}[\bar{c} d+c d]+b[\bar{c} \bar{d}+\bar{c}+c d]] \\
& =\bar{a}[\bar{b}[\bar{c}[\bar{d}]+c[d]]+b[\bar{c}[d+\bar{d}] \\
& +c[d]]] \\
& +a[\bar{b}[\bar{c}[d]+c[d]]+b[\bar{c}[J]+ \\
& c[J+d]]] \\
& \Rightarrow F^{\text {fff }}=\bar{a}[\bar{b}[\bar{c}[d]+c[\bar{d}]]+b[\bar{c}[0]+c[\bar{d}]]] \\
& +a[\bar{b}[\bar{c}[\bar{d}]+c[\bar{d}]]+b[\bar{c}[d]+c[0]]] \\
& =\bar{a} \bar{b} \bar{c} d+\bar{a} \bar{b} c \bar{d}+\bar{a} b c \bar{d}+a \bar{b} \bar{c} \bar{d}+a \bar{b} c \bar{d} \\
& +a b=d
\end{aligned}
$$

(ii) Expand Procedure:

of			
$\bar{a} \bar{b} \bar{c} d$	10	10	10
$\bar{a} \bar{b} c \bar{d}$	10	10	01
$\bar{a} b c \bar{d}$	10	01	01
$a \bar{b} \bar{c} \bar{d}$	01	10	10
$a \bar{b} c \bar{d}$	01	10	01
$a b \bar{c} d$	01	01	10
	01		

we next compute the weights of the on-set:

$\bar{a} b \bar{c} d$	a	b	c	d	weight
$\bar{a} b c d$	10	10	10	10	15
$\bar{a} b \bar{c} d$	10	10	01	01	17
$\bar{a} b c d$	10	01	01	01	17
$a \bar{b} \bar{c} d$	01	10	10	01	17
$a \bar{b} c d$	01	10	01	01	17
abed	01	01	10	10	17
$a b c \bar{c}$	01	01	01	10	15
44	44	44	35		

We have 3 cubes of the same weight. we select the minterm with the least number ire anted.

- Expand abc:

$$
\text { Free }=\{2,4,6,8\} \text {. }
$$

Since the re is no column with all o's in $F^{\text {ff }}$, no colum can always be raised.

Intersection with the off-set impires that columns 2,6, and 8 caul be raised \Rightarrow Free $=\{4\}$ and overexpanded cube $=\bar{\pi} \bar{d}$.
since we have only ore free column, it is expander and we get the cube $\bar{a} \bar{d}$.

* Expand abED

$$
\text { Free }=\{1,3,6,8\}
$$

Instersection with effect implies that columns 3 ard 8 cant be raised \Rightarrow Free $=\{1,6\}$ and swerespourdect cube $=b \bar{d}$
we inly need to checll abri for being feasibly covered with abed

Super cube ($a b \bar{c} \bar{d}, a b c \bar{d}$) $=a b \bar{d}$ (feasible)
Free set $=\{15$ which canst be raised.
\Rightarrow expand to $a b \bar{d}$
The cube $a b c i$ is removed.

* Expand $\bar{a} \bar{b} \subset d$

Free $=\{2,4,5,7\}$.
Intersection with He offset implies thant colvmus 5 and 7 cant t be raised \Rightarrow Free $=\{2,43$ and over expanded cube $=$ cd
we need to check cubes abcol and abed for being Feasibly covered.

Supercube ($a \bar{b} c d, \bar{a} b c d$) $=\hat{a} c d$ (fersih/o)
Super cube ($\overline{\mathrm{a}} \mathrm{b} c d$, $a \bar{b} c d$) $=\bar{b} c d$ (feos/b/c)
Any can be selected. Select acid \Rightarrow free $=\{2\}$ can $b e$ raised \Rightarrow expanded cube is cd.

Remove cubes $\bar{a} b c d$ and $\bar{a} \bar{b}$ od.

* Expand $\bar{a} b \bar{c} d$

$$
\text { Free }=\{2,3,6,7\}
$$

Intersection with iff-set implies that culumess 2 and 3 cant be raised \Rightarrow Free $=\{5,7\}$ and ovorexponded cube $=\bar{c} b$.
No remaining cubes covered with oveiexporded rube \Rightarrow Find the largest prime impliciont covering He cube. Either $\bar{a} b \bar{c}$ or $a b d$ ran be selected. let us select abd.
α Expand $a \bar{b} \bar{c} d$

$$
\text { Free }=\{1,4,6,7\}
$$

Intersection with off-set myles that columns 1, 4 and b cant be raised \Rightarrow column 7 is raised and the cube is expander. to abd.

This, the expanded cover is:

$$
\{\bar{a} \bar{d}, a b \bar{d}, \quad c d, \bar{a} b d, a \bar{b}\} .
$$

In comparison with Espresso tool, the same expanded cover is obtained.

```
hw2q1ii.pla
.i }
.o 1
.ilb a b c d
.olb y
.p }1
0000 1
00111
0 1 0 1 1
0 1 1 1 1
10011
10111
1 1 0 0 1
11101
0100 -
1111 -
.e
# espresso -d -t -Dexpand hw2q1ii.pla
# UC Berkeley, Espresso Version #2.3, Release date 01/31/88
.olb y
# READ Time was 0.00 sec, cost is c=8(8) in=32 out=8 tot=40
# COMPL Time was 0.00 sec, cost is c=4(4) in=14 out=4 tot=18
# PLA is hw2q1ii.pla with 4 inputs and 1 outputs
# ON-set cost is c=8(8) in=32 out=8 tot=40
# OFF-set cost is c=4(4) in=14 out=4 tot=18
# DC-set cost is c=2(2) in=8 out=2 tot=10
EXPAND: 0000 1 (covered 0)
EXPAND: 1100 1 (covered 1)
EXPAND: 1001 1 (covered 1)
EXPAND: 0101 1 (covered 1)
EXPAND: 0011 1 (covered 0)
# EXPAND Time was 0.00 sec, cost is c=5(0) in=14 out=5 tot=19
# READ 1 call(s) for 0.00 sec ( 0.0%)
# COMPL 1 call(s) for 0.00 sec ( 0.0%)
# EXPAND 1 call(s) for 0.00 sec ( 0.0%)
# expand Time was 0.00 sec, cost is c=5(0) in=14 out=5 tot=19
.i }
.o 1
.ilb a b c d
.p}
0-00 1
11-0 1
10-1 1
01-1 1
--11 1
.e
# WRITE Time was 0.00 sec, cost is c=5(0) in=14 out=5 tot=19
```

(iii) Irredundunt Procedure:

The expanded cover is $\{\bar{a} \bar{d}, ~ a h \bar{d}, c d, ~ a b d, ~ a b d\}$.
First, we need to checll whattry each of these cubes is relatively essential.

- Check if $\{a b \bar{d}$, $c d, \bar{a} b d, a \bar{a} d, \bar{a} b \bar{c} \bar{d}$, abed $\}$ covers $\bar{a} \bar{C} J$

$$
\begin{aligned}
& \{a b d, c d, \bar{a} b d, a \bar{b} d, \bar{a} b \bar{d}, \text { abed }\}=\bar{c} \bar{d} \\
& =\{0,0,0,0, b, 0\}
\end{aligned}
$$

Since the cofactor is not tautology, this implies that $\bar{a} \bar{d}$ is relatively eisentral.

- check for abd:

$$
\begin{aligned}
& \{\bar{a} \bar{d}, c d, \text { abd, abd, a} b \bar{c} \bar{d}, \text { abed \} a b d ~ } \\
& =\{0,0,0,0,0,0\} \Rightarrow \text { relatively essential }
\end{aligned}
$$

- check for cd :

$$
\begin{aligned}
& \text { check for } c \bar{d} \\
& \{\bar{a} \bar{d}, a b \bar{d}, \bar{a} b d, a \bar{b} d, \bar{a} b \bar{c} \bar{d}, a b c d\} c d \\
& =\{0,0, \bar{a} b, a \bar{b}, 0, a b\} \Rightarrow \text { not lantology } \Rightarrow \text { relatively essential }
\end{aligned}
$$

- Check for abd:

$$
\begin{aligned}
& \{\bar{a} \bar{d}, a b \bar{d}, c d, a b d, a b \bar{c} J, a b c i\} \text { abd } \\
& =\{0,0, c, 0,0,0\} \Rightarrow \text { relatively essential }
\end{aligned}
$$

- check for $a b d$:

$$
\begin{aligned}
& \{\bar{a}-J, a b \bar{d}, c d, \bar{a} b d, \bar{a} b E d, a b c d\} a b d \\
& =\{0,0, c, 0,0,0\} \Rightarrow \text { relatively essential }
\end{aligned}
$$

Since all implicants are relatively essential, then the cover is irredundant. This is consistent will what is produced by Espresso tail.

```
Input:
.i }
.o 1
.ilb a b c d
.p}
0-00 }
11-0 1
10-1 1
01-1 1
--11 1
0100 -
1111 -
.e
# espresso -Dirred -t -d hw2q1ii_irred_input.pla
# UC Berkeley, Espresso Version #2.3, Release date 01/31/88
# READ Time was 0.00 sec, cost is c=5(5) in=14 out=5 tot=19
# COMPL Time was 0.00 sec, cost is c=0(0) in=0 out=0 tot=0
# PLA is hw2q1ii_irred_input.pla with 4 inputs and 1 outputs
# ON-set cost is c=5(5) in=14 out=5 tot=19
# OFF-set cost is c=0(0) in=0 out=0 tot=0
# DC-set cost is c=2(2) in=8 out=2 tot=10
# IRRED: F=5 E=5 R=0 Rt=0 Rp=0 Rc=0 Final=5 Bound=0
# IRRED Time was 0.00 sec, cost is c=5(5) in=14 out=5 tot=19
# READ 1 call(s) for 0.00 sec ( 0.0%)
# COMPL 1 call(s) for 0.00 sec ( 0.0%)
# IRRED 1 call(s) for 0.00 sec ( 0.0%)
# irred Time was 0.00 sec, cost is c=5(5) in=14 out=5 tot=19
.i4
.o 1
.ilb a b c d
.p }
0-00 1
11-0 1
10-1 1
01-1 1
--11 1
.e
# WRITE Time was 0.00 sec, cost is c=5(5) in=14 out=5 tot=19
```

(iv) Essentral forme Implicants:

$$
\begin{aligned}
& F=\bar{a} \bar{d}+a b \bar{d}+c d+\text { abd }+a \bar{F}_{x} d \\
& F^{n c}=\bar{a} b \bar{c} d+a b c d
\end{aligned}
$$

- Checking $\bar{a} E J$.

$$
\begin{aligned}
& G=\{a b d, c d, \bar{a} b d, a \bar{b} d, \bar{a} b \bar{c} J, a b c d\} \\
& \epsilon \# \bar{a} \bar{c} \bar{d}=\{a b \bar{d}, \bar{d}, \bar{a} b d, a \bar{b}, a b c d\} \\
& H=\text { consensus }(\sigma \# \bar{a} \bar{c} \bar{d}, \bar{a} \bar{\sigma} J)=\{b \bar{c} J, \bar{a} b \bar{c}\}
\end{aligned}
$$

Then, we checll if HUff He covers $^{\text {an }} \mathrm{C}$

$$
\begin{aligned}
& \Rightarrow\{b \bar{c} J, \bar{a} b \bar{c}, \bar{a} b \bar{c} J, a b c d\} \bar{a} \bar{d} J \\
& =\{b, b, b, 0\}
\end{aligned}
$$

Since it rs not tautology, this means that $\bar{a} \bar{e} \bar{d}$ is an essential prime implicant.

- Checking abd:

$$
\begin{aligned}
& 6=\{\bar{a} \bar{c} J, c d, \bar{a} b d, a \bar{b} d, \bar{a} b \bar{c} J, a b c d\} \\
& 6 \# a b \bar{d}=\{\bar{a} \bar{c} J, c d, \bar{a} b d, a \bar{b} d, \bar{a} b \bar{c} \bar{d}, a b c d\} \\
& H=\text { consensus }(\epsilon \# a b d, a b \bar{d})=\{b \bar{c} \bar{d}, a b c, b \bar{c} J, a b c\}
\end{aligned}
$$

Then, checll if $H \cup f^{D C}$ covers abd

$$
\begin{aligned}
& \Rightarrow\{b \bar{c} \bar{d}, a b c, \bar{a} b \bar{c} \bar{J}, \text { abed }\} a b \bar{d} \\
& =\{\bar{c}, c, 0,0\}=\text { Tautology }
\end{aligned}
$$

\Rightarrow and is not on essential prime implicant

- Checking od:

$$
\begin{aligned}
& G=\{\hat{a} \hat{c} \bar{d}, a b \bar{d}, \bar{a} b d, a \bar{b} d, \hat{a} b \widehat{c} \bar{d}, a b c d\} \\
& G \neq d=\{\bar{a} \bar{c} \bar{d}, a b \bar{d}, \bar{a} b \bar{c} d, a \bar{b} \hat{c} d, \bar{a} b \bar{c} \bar{d}\} \\
& H=\text { Consensus }(\sigma \notin c d, c d)=\{a b c, a b d, a \bar{b} d\}
\end{aligned}
$$

Then, checll if $H \cup F^{D C}$ covers $C D$

$$
\Rightarrow \quad\{a b c, \bar{a} b d, a \bar{b} d, \bar{a} b \bar{c} \bar{d}, a b c d\} c d
$$

$=\{a b, \bar{a} b, a \bar{b}, 0, a b\} \Rightarrow$ Not Tautology
\Rightarrow cot is an essential prime implierant.

- Checking a bd:
$G=\{\bar{a} \bar{a} \bar{d}, a b \bar{d}, c d, a \bar{b} d, \bar{a} b \bar{d} \bar{d}, a b c d\}$
$G \nexists \bar{a} b d=\{\bar{a} \bar{c} \bar{d}$, $a b d, a c d, \overline{b c d}$, abd, abed, $a b c d\}$

$$
G \nexists \bar{a} b d=2 \bar{a} c d, \bar{a} \bar{a} b \bar{a}, b c d, \bar{a} c d, \bar{a} b \bar{c},
$$

bod 3 ,
Then, cherll if H VF ${ }^{\text {DC }}$ covers $\bar{a} b d$

$$
\begin{aligned}
& \text { Then, check if } H \mathcal{V}, \vec{a}, \bar{a} d, \bar{a} b \bar{c}, b c d, \bar{a} b \bar{c} \bar{d}, a b c d\} a b d \\
& \Rightarrow\{\bar{a}, b, 0\} \Rightarrow \text { Tavtology } \\
& =\{\bar{c}, c, c, \bar{c}, c, 0,0,
\end{aligned}
$$

\Rightarrow abd is not an essential prime implicant.

- Checlling a $\bar{b} d:$
$G=\{\bar{a} \bar{d}$, abd, ad, $\bar{a} b d, \bar{a} \overline{\mathrm{c}} \boldsymbol{J}$, abcd\}
$\epsilon \# \overline{a b d}=\{\bar{a} \bar{c} \bar{d}$, abd, $\overline{a c d}$, bcd, $\bar{a} b d, \bar{a} b \bar{c} \bar{d}, a b c d\}$

Then, check if HUF.DC covers abd
$\Rightarrow \quad\{\bar{b} c d, a<d, \bar{a} b \bar{c}, a b c d\} a \bar{b} d$
$=\{a, c, 0,0\} \Rightarrow$ Not Tavtolay
\Rightarrow abd is an essentral forme implicant.
Thus, the essential forme mpircants are $\{\bar{a} \bar{c} \bar{d}, r d, a b d\}$.

Thus, after removing the essential prime implrcants from the cover, the cover becomes $\{a b \bar{d}, \bar{a} b d\}$ and $F^{D C}$ becomes $\{\bar{a} \bar{C} \bar{d}, c d, a \bar{b} d\}$.
(v) Reduce Procedure:

First, we compute the weight of each implicant in the cover.

$a b d$	a	b	c	d	weight
abd	01	01	11	10	8
10	01	11	01	8	

since both have the same weight, we can reduce any of them.

- Reduce abd

$$
\begin{aligned}
& \alpha=a b \bar{d} \\
& Q=\left\{F \cup F^{x}\right\}-\alpha=\{\operatorname{abd}, \bar{a} \bar{c} \bar{d}, \text { ad, } a \bar{b} d\} \\
& Q \alpha=\{0,0,0,0\}=\{0\} \\
& \bar{Q}_{x}=1, \tilde{\alpha}=\alpha \cap \operatorname{supercabe}\left(\bar{Q}_{x}\right)=a b \bar{d} \cap 1=a b \bar{d}
\end{aligned}
$$

- Reduce and

$$
\begin{aligned}
& \alpha=\bar{a} b d \\
& Q=\left\{F \cup F^{x c}\right\}-\alpha=\{a b \bar{d}, \bar{a} \bar{c} \bar{d}, c d, a \bar{b} d\} \\
& Q \alpha=\{0,0, c, 0\}=\{c\} \\
& \bar{Q}_{\alpha}=\{\bar{c}\} \\
& \tilde{\alpha}=\alpha \cap \operatorname{supercubc}\left(\bar{Q}_{\alpha}\right)=\bar{a} b d \cap \bar{c}=\bar{a} b \bar{c} d
\end{aligned}
$$

Thus, the reduced cover is $\{a b \bar{d}, \bar{a} b \bar{C} d\}$. this is consistent with the result produced by Espresso.

```
Input:
.i }
.o }
.ilb a b c d
.p }
0-00 -
11-0 1
10-1 -
01-1 1
--11 -
.e
# espresso -Dreduce -t -d hw2q1v.pla
# UC Berkeley, Espresso Version #2.3, Release date 01/31/88
# READ Time was 0.00 sec, cost is c=2(2) in=6 out=2 tot=8
# COMPL Time was 0.00 sec, cost is c=0(0) in=0 out=0 tot=0
# PLA is hw2q1v.pla with 4 inputs and 1 outputs
# ON-set cost is c=2(2) in=6 out=2 tot=8
# OFF-set cost is c=0(0) in=0 out=0 tot=0
# DC-set cost is c=3(3) in=8 out=3 tot=11
REDUCE: 01-1 1 to 0101 10.00 sec
# REDUCE Time was 0.00 sec, cost is c=2(1) in=7 out=2 tot=9
# READ 1 call(s) for 0.00 sec ( 0.0%)
# COMPL 1 call(s) for 0.00 sec ( 0.0%)
# REDUCE 1 call(s) for 0.00 sec ( 0.0%)
# reduce Time was 0.00 sec, cost is c=2(1) in=7 out=2 tot=9
.i }
.o 1
.ilb a b c d
.p }
11-0 1
01011
.e
# WRITE Time was 0.00 sec, cost is c=2(1) in=7 out=2 tot=9
```

Q2.

$$
\begin{aligned}
& F=\bar{B} \bar{C}+\bar{C} D+B D+\bar{A} \bar{D}+\bar{A} B+\bar{C} \bar{D} \\
& F^{D}=\bar{a} \bar{b} \cdot \bar{d}+a \bar{b} \cdot \bar{d}+a b c \bar{d}
\end{aligned}
$$

(i) Relatively Essertral set E^{r} :

- cherk $\bar{B} \bar{C}$

$$
\begin{aligned}
& \{\overline{C D}, \overline{B D}, \bar{A} \bar{D}, \bar{A} B, C \bar{D}, \bar{A} \bar{B} C \bar{D}, \overline{A B C D}, A B C \bar{D}\} \bar{B} \bar{C} \\
= & \{D, 0, \bar{A} \bar{D}, 0,0,0,0,0\} \Rightarrow \text { No Tavtology }
\end{aligned}
$$

$\Rightarrow \bar{B} \bar{C}$ is relatively essentral.

- Check $\overline{C D}$

$$
\begin{aligned}
& \{\bar{B} \bar{C}, B D, \bar{A} \bar{D}, \bar{A} B, C \bar{D}, \bar{A} \bar{B} \subset \bar{n}, A \overline{B C} \bar{D}, A B C \bar{B}\} \bar{C} \\
= & \{\bar{B}, B, 0, \bar{A} B, 0,0,0,0\} \Rightarrow \text { Tavtolsg } \quad
\end{aligned}
$$

$\Rightarrow \angle D$ is not relatively essentral.

- Checr BD

$$
\begin{aligned}
& \{\bar{B} \bar{C}, \overline{C D}, \bar{A} \bar{D}, \bar{A} B, \overline{C D}, \bar{A} \bar{B} C \bar{D}, \vec{A} \bar{B} C \bar{D}, A B C \bar{D}\} B B \\
= & \{0, \bar{C}, 0, \bar{A}, 0,0,0,0\} \Rightarrow \text { Not Tautotg } 00
\end{aligned}
$$

$\Rightarrow B D$ is relatively essentral.

- check $\overline{A D}$

$$
\begin{aligned}
& \{\bar{B} \bar{C}, \bar{C} D, B D, \bar{A} B, C \bar{n}, \bar{A} \bar{B} \subset \bar{D}, A \bar{B} C \bar{D}, A B C \bar{D}\} \bar{A} \bar{D} \\
= & \{\bar{B} \bar{C}, 0,0, B, C, \bar{B} C, 0,0\} \Rightarrow \text { Tavtology }
\end{aligned}
$$

$\Rightarrow \bar{A} \bar{D}$ is not relatruely essentral.

- Checn AB

$$
\begin{aligned}
& \{\bar{B} \bar{C}, \overline{C D}, B D, \overline{A D}, \overline{C D}, \bar{A} \bar{B} C \bar{D}, \overline{A B C} \bar{D}, A B C \bar{D}\} \overline{A B} \\
= & \{0, \overline{C D}, \bar{D}, \bar{D}, \overline{C D}, 0,0,0\} \Rightarrow \text { Tavitula } 0,
\end{aligned}
$$

$\Rightarrow A B$ is not relatively essential.

- check c in

$$
\begin{aligned}
& \{\bar{B} \bar{C}, \bar{C}, B D, \bar{A} \bar{D}, \overline{A B}, \bar{A} \bar{B} C \bar{D}, \overline{A B C} \bar{D}, A B C \bar{D}\} \bar{C} \\
= & \{0,0,0, \bar{A}, \bar{A} B, \bar{A} \bar{B}, \bar{A} \bar{B}, A B\} \Rightarrow \text { Tautologic }
\end{aligned}
$$

$\Rightarrow C \bar{D}$ is not relatively essential.
Thus, $E^{r}=\{\bar{B} \bar{C}, B D\}$
(ii) Totally redundant set R^{t} :

- Check $\overline{C D}$

$$
\begin{aligned}
& \{\bar{B} \bar{C}, B D, \bar{A} \bar{B} \bar{C} \bar{A}, \bar{B} \subset \bar{D}, A B \subset \bar{D}\} \overline{C D} \\
= & \{\bar{B}, B, 0,0,0\} \Rightarrow \text { Tautology } \Rightarrow \text { redundant }
\end{aligned}
$$

- Check $\bar{A} \bar{D}$

$$
\begin{aligned}
& \frac{C \text { hecK } A D}{} \begin{array}{l}
\{\bar{B} \bar{C}, \overline{B D}, \bar{A} \bar{B} C \bar{D}, A \bar{B} C \bar{D}, A B C \bar{D}\} \bar{A} \bar{D} \\
=
\end{array}\{\overline{B C}, 0, \bar{B} C, 0,0\} \Rightarrow \text { Not Tautology } \Rightarrow \text { mot redundant }
\end{aligned}
$$

- Check $\bar{A} B$
- Check CD

$$
\begin{aligned}
& \text { Check } C D \\
& \{\bar{B} \bar{C}, B D, \bar{A} \bar{B} C \bar{D}, A \bar{B} C \bar{D}, A B C \bar{D}\} C \bar{D} \\
& \text { Not Tanto }
\end{aligned}
$$

$=\{0,0, \bar{A} \bar{B}, \overrightarrow{A B}, A B\} \Rightarrow$ Not Tautology \Rightarrow Not reduad.
Thus, $R^{t}=\{\bar{C} D\}$ and $R^{p}=\{\bar{A} \bar{D}, \bar{A} B, \overline{C D}\}$,
(iii) First, we find coverage relations.
$-\bar{A} \bar{D}$.

$$
\begin{aligned}
& \{\bar{B} \bar{C}, B D, \bar{A} \bar{B} C \bar{D}, A \bar{B} C \bar{D}, A B C \bar{D}, \bar{A} B, C \bar{C}\} \bar{A} \bar{B} \\
& =\{\bar{B} \bar{B}, 0, \bar{B} C, 0,0, B, C\}
\end{aligned}
$$

- Expand on B:
$-B=1:\{0,0,0,0,0,1, C\} \Rightarrow$ added $\operatorname{rim}(1,1, \cdots)$
$-B=15:\{0,0, c, 0,0,0, c\} \Rightarrow$ no row adder ${ }^{\prime}$
- $\bar{A} B:$

$$
\begin{aligned}
& \{\bar{B} \bar{C}, B D, \bar{A} \bar{B} C \bar{D}, A \bar{B} C \bar{D}, A B C \bar{D}, \bar{A} \bar{D}, C \bar{D}\} \bar{A} B \\
= & \{0, D, 0,0,0, \bar{D}, \bar{D}\} \Rightarrow \operatorname{added} \text { row }(1,1,0) \\
- & \widehat{C} \bar{D}: \\
& \{\bar{B} \bar{C}, B D, \bar{A} \bar{B} C \bar{D}, A \bar{B} C \bar{D}, A B C \bar{D}, \bar{A} \bar{D}, \bar{A} B\} C \bar{D} \\
= & \{0,0, \bar{A} \bar{B}, A \bar{B}, A B, \bar{A}, \bar{A} B\}
\end{aligned}
$$

- Expand or A :

$$
\begin{aligned}
& \text { Expand sn } A: \\
& -A=1:\{0,0,0, \bar{B}, B, 0,0\} \Rightarrow \text { wo rows added } \\
& -A=0:\{0,0, \bar{B}, 0,0,1, B\} \Rightarrow \text { added row }(1,1,1)
\end{aligned}
$$

Coverage Matrix:

	$\bar{A} \bar{D}$	$\bar{A} B$	$C \bar{D}$
$\bar{A} \bar{D}$	1	1	0
$\bar{A} B$	1	1	0
$\bar{C} \bar{D}$	1	1	1

Thus, either $\bar{A} \bar{D}$ or $\bar{A} B$ car be selected.

Minimal cover is

$$
\begin{aligned}
& \{\overline{B C}, B D, \overline{A D}\} \text { or } \\
& \{\overline{B C}, B D, \overline{A B}\} .
\end{aligned}
$$

(iv) Espresso tool generated the second cover.

```
Q2 input
.i4
.o }
.ilb a b c d
.olb y
.p}
-00-1
--01 1
-1-1 1
0--0 1
01-- 1
--10 1
0010 -
1010-
1110-
.e
# espresso -Dirred -t -d hw2q2.pla
# UC Berkeley, Espresso Version #2.3, Release date 01/31/88
.olb y
# READ Time was 0.00 sec, cost is c=6(6) in=12 out=6 tot=18
# COMPL Time was 0.00 sec, cost is c=0(0) in=0 out=0 tot=0
# PLA is hw2q2.pla with 4 inputs and 1 outputs
# ON-set cost is c=6(6) in=12 out=6 tot=18
# OFF-set cost is c=0(0) in=0 out=0 tot=0
# DC-set cost is c=3(3) in=12 out=3 tot=15
# IRRED: F=6 E=2 R=4 Rt=1 Rp=3 Rc=1 Final=3 Bound=0
# IRRED Time was 0.00 sec, cost is c=3(3) in=6 out=3 tot=9
# READ 1 call(s) for 0.00 sec ( 0.0%)
# COMPL 1 call(s) for 0.00 sec (0.0%)
# IRRED 1 call(s) for 0.00 sec ( 0.0%)
# irred Time was 0.00 sec, cost is c=3(3) in=6 out=3 tot=9
.i }
.o 1
.ilb a b c d
.p}
-00-1
-1-1 1
01-- 1
.e
# WRITE Time was 0.00 sec, cost is c=3(3) in=6 out=3 tot=9
```

