COE 561, Term 091

Digital System Design and Synthesis

HW\# 2 Solution

Due date: Sunday, Dec. 6

Q.1. Consider the function $F(A, B, C, D)$ with the following ON-set and DC-set:

$$
\begin{aligned}
& F^{O N}=\sum \mathrm{m}(0,1,2,3,5,7,8,10,12,13) \\
& F^{D C}=\sum \mathrm{m}(4,15)
\end{aligned}
$$

(i) Compute the off-set using the recursive complementation procedure outlined in section 7.3.4
(ii) Apply the EXPAND procedure on the given cover using Espresso heuristics and show the obtained expanded cover. Compare your solution with the result obtained by ESPRESSO tool. Note that if there are minterms of the same weight, expand the minterm with the least number first (i.e. expand minterm 8 before 10). Similarly if raising all literals has the same benefit, expand the literals according to their order (i.e. literal A before B).
(iii) Apply the IRREDUNDANT procedure on the expanded cover using Espresso heuristics and show the obtained irredundant cover. Compare your solution with the result obtained by ESPRESSO tool.
(iv) Determine if any of the obtained prime implicants is an essential prime implicant or not using the method outlined in section 7.4.4. If it is essential, remove it from the cover and make the on-sets covered by it don't cares.
(v) Apply the REDUCE procedure on the irredundant cover using Espresso heuristics and show the obtained reduced cover. Compare your solution with the result obtained by ESPRESSO tool.
(vi) Apply the EXPAND procedure again on the obtained reduced cover using Espresso heuristics and show the obtained expanded cover. Compare your solution with the result obtained by ESPRESSO tool.

MW: \# 2 Solution

Ql.

$$
\begin{aligned}
& F^{O N}=\sum m(0,1,2,3,5,7,8,10,12,13) \\
& F^{D C}=\sum m(4,15)
\end{aligned}
$$

(i)

$$
\begin{aligned}
F^{\sigma N} U F^{D C}= & \bar{a} \bar{b} \bar{c} \bar{d}+\bar{a} \bar{b} \bar{d}+\bar{a} \bar{b} c \bar{d}+\bar{a} \bar{b} c d \\
& +\bar{a} b \bar{c} d+\bar{a} b c d+a \bar{b} \bar{d}+a \bar{b} c \bar{d} \\
& +a b \bar{c} \bar{d}+a b \bar{c} d+\bar{a} b \bar{c} \bar{d}+a b c d \\
= & \bar{a}[\bar{b} \bar{c} \bar{d}+\bar{b} \bar{c} d+\bar{b} c \bar{d}+\bar{b} c d \\
& +b \bar{c} d+b c d+b \bar{c} \bar{d}] \\
& +a[\bar{b} \bar{c} \bar{d}+\bar{b} c \bar{d}+b \bar{c} \bar{d}+b \bar{c} d+b c d] \\
= & \bar{a}[\bar{b}[\bar{c} \bar{d}+\bar{c} d+c \bar{d}+c d] \\
& +a[\bar{b}[\bar{c} d+c d+\bar{c} \bar{d}]] \\
& {[\bar{c} \bar{d}+c \bar{d}]+b[\bar{c} \bar{d}+\bar{c} d+c d]] } \\
& +\bar{b}[\bar{c}[\bar{d}+d]+c[\bar{d}+d]] \\
& +a[\bar{c}[d+\bar{d}]+c[d]]]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow F^{\text {off }}= \bar{a}[\bar{b}[\bar{c}[0]+c[0]]+b[\bar{c}[]+c[\bar{d}]]] \\
&+a[\bar{b}[\bar{c}[d]+c[d]]+b[\bar{c}[0]+c[\bar{d}]]] \\
& \text { Thus, } F^{\text {off }}=\bar{a} b c \bar{d}+a \bar{b} \bar{c} d+a \bar{b} c d+a b c \bar{d}
\end{aligned}
$$

(ii) Expand Procedure:
$F^{\text {off }}$

	a	b	c	d
$\bar{a} b c d$	10	01	01	10
$a \bar{b} \bar{c} d$	01	10	10	01
$a \bar{b} c d$	01	10	01	01
$a b c d$	01	01	01	10

we next compute the weights of the on-set;

	a	b	c	d	weights
$\bar{a} \bar{b} \bar{c} \bar{d}$	10	10	10	10	23
$\bar{a} b \bar{c} d$	10	10	10	01	23
$\bar{a} \bar{b} c \bar{d}$	10	10	01	10	21
$\bar{a} b c d$	10	10	01	01	21
$\bar{a} b \bar{c} d$	10	01	10	01	21
$\bar{a} b c d$	10	01	0101	19	
$a b \bar{c} \bar{d}$	01	10	10	10	21
$a b c \bar{d}$	01	10	01	10	19
$a b \bar{c} \bar{d}$	01	01	10	10	19
$a b \bar{c} d$	01	01	10	01	19

we have four cubes of the same weight. We select the minterm with the least number ire. abed.

* Expand abed :

$$
\text { Free }=\{2,3,5,7\}
$$

since there is no column with all oils in $\mathrm{F}^{\text {off }}$, no column can always be raised.
Intersection with the off-set, column 7 canst be raised, Free $=\{2,3,5\}$, overexpanded cube $=d$.

We only need to check cubes $\bar{a} \bar{b} \bar{c} d, \bar{a} \bar{b} c d, \bar{a} b \bar{c} d$ and abed for being feasibly covered with a bed.

Supercube ($\bar{a} b<d, \bar{a} \bar{c} \bar{d}$) $=$ ad (feasible)
Supercube ($\bar{a} b c d, \bar{a} \bar{b}<d$) $=\bar{a} c d$ (feasible)
Supercube ($\bar{a} b c d, \bar{a} b \bar{c}$) $=\bar{a} b d$ (feasible)
Super cube ($\bar{a} b c d, a b \bar{c})=b d$ (feasible)
The expanded cube ad is selected and Free $=\{2\}$ which cannot be raised. ad is selected as it covers more cubes.
The covered cubes $\bar{a} \bar{b} \bar{c} d, \bar{a} \bar{b} c d$ and $\bar{a} b \bar{c} d$ are removed.

* Expand a bcd

$$
\text { Free }=\{1,4,5,8\}
$$

Intersecting with the off-set implies that columns 4 and 8 cannot be raised. Thus, Free $=\{1,5\}$ and overexpanded cube $=\bar{b} \bar{d}$.
we need to check the cubes $\bar{a} \bar{c} \bar{d}$, $\bar{a} \bar{c} \bar{d}$ and $a \bar{b} \bar{J}$ for being feasibly covered. Since the supercube does not cover off-set cubes, this implies that all of them will be feasibly covered.
Supercube ($a \bar{b} c \bar{d}, \bar{a} \bar{b} \bar{c} \bar{d}$) $=\bar{b} \bar{d}$ (feasible)
Supercube (a $\bar{b} \subset \bar{d}, \bar{a} \bar{b} \subset \bar{d})=\bar{b} \subset \bar{d}$ (feasible)
Supercube ($a \bar{b} c \bar{d}, a \bar{b} \overline{\bar{d}}$) $=a \bar{b} \bar{d}$ (feasible) The expanded cube $\bar{b} \bar{d}$ is selected and Free $=\{ \}$. The covered cubes $\bar{a} \bar{b} \bar{d}, \bar{a} \bar{b} \bar{d}$ and $a \bar{b} \bar{c} \bar{d}$ are removed.

* Expand $a b \overline{\bar{d}}$:

$$
\text { Free }=\{1,3,6,8\} \text {. }
$$

Intersecting with the off-set, column 6 cant be raised. Free $=\{1,3,8\}$, over expanded cube $=\bar{c}$. We only need to check cube abed for being feasibly covered.
Supercube (abc, $a b \bar{c} d$) $=a b \bar{c}$ (feasible) The resulting expanded cube is $a b \bar{c}$ and Free $=\{1,3\}$. Intersecting with the off oct column 3 cant be raised and Free $=\{1\}$.
Finally, column 1 is raised an the expanded cube is $b \bar{c}$.

Thus, the expanded cover is $\{\bar{a} d, \bar{b} \bar{d}, b \bar{c}\}$. In comparison with Espresso tool, the same cover is obtained.
hw2q1ii.pla

```
.i 4
.o 1
.ilb a b c d
.olb y
.p 10
0000 1
0001 1
0010 1
0011 1
0101 1
0111 1
1000 1
1010 1
1100 1
1 1 0 1 1
0100 -
1111 -
.e
```

D: \Courses\coe561\091>espresso -d -t -Dexpand hw2q1ii.pla > hw2q1ii_expand.pla
\# espresso -d -t -Dexpand hw2q1ii.pla
\# UC Berkeley, Espresso Version \#2.3, Release date 01/31/88
.olb y
\# READ Time was 0.00 sec , cost is $\mathrm{c}=10$ (10) in=40 out=10 tot=50
\# COMPL Time was 0.00 sec , cost is $\mathrm{c}=2(2)$ in=6 out=2 tot=8
\# PLA is hw2q1i.pla with 4 inputs and 1 outputs
\# ON-set cost is $c=10(10)$ in=40 out=10 tot=50
\# OFF-set cost is c=2(2) in=6 out=2 tot=8
\# DC-set cost is $c=2(2)$ in=8 out=2 tot=10
EXPAND: 11001 (covered 2)
EXPAND: 10101 (covered 3)
EXPAND: 01111 (covered 2)
\# EXPAND Time was 0.00 sec , cost is $\mathrm{c}=3(0)$ in=6 out=3 tot=9
\# READ
1 call(s) for $0.00 \mathrm{sec}(0.0 \%)$
\# COMPL $\quad 1$ call(s) for $0.00 \mathrm{sec}(0.0 \%)$
\# EXPAND 1 call(s) for $0.00 \mathrm{sec}(0.0 \%)$
\# expand Time was 0.00 sec , cost is $\mathrm{c}=3(0)$ in=6 out=3 tot=9
.i 4
.01
.ilb a b c d
.p 3
-10-1
-0-0 1
0--1 1
.e
\# WRITE Time was 0.00 sec , cost is $\mathrm{c}=3(0)$ in=6 out=3 tot=9
(iii) Irredundant Procedure:

The expanded cover is $\{\bar{a} d, \bar{b} \bar{d}, b \bar{c}\}$.
First, we need to check whether each of these cubes is relatively essential.

- check if $\{\bar{b} \bar{J}, b \bar{c}, \bar{a} b \bar{c} \bar{d}, a b c d\}$ covers ad

$$
\{\bar{b} \bar{d}, b \bar{c}, \bar{a} b \bar{c} \bar{d}, a b c d\}_{\overline{a d}}=\{0, b \bar{c}, 0,0\}
$$

Since the cafactor is not tautology, this implies that ad is relatively essential.

- check if $\{\bar{a} d, b \bar{c}, \bar{a} b \bar{c} \bar{J}, a b c d\}$ covers $\bar{b} \bar{d}$

$$
\{\bar{a} d, b \bar{c}, \bar{a} b \bar{c} J, a b<d\} \bar{b}=\{0,0,0,0\}
$$

Not tautology \Rightarrow bd is relatively essentral.

- check if $\{\operatorname{ad}, \bar{b} \bar{d}, ~ a ̄ b \bar{d}, a b c d\}$ covers $b \bar{c}$.

$$
\{\bar{a} d, \bar{b} \bar{d}, \bar{a} b \bar{c} \bar{d}, a b c d\}_{b \bar{c}}=\{\bar{a} d, a, \bar{a} \bar{d}, 0\}
$$

Not tautology $\Rightarrow b \bar{c}$ is relatively essential.
Since all implicants are relatively essential, then the cover is irredundant.
This is consistent with what is produced by Espresso tool.

D:\Courses\coe561\091>espresso -Dirred -t -d hw2q1ii_expand.pla > hw2q1iii_irred.pla

```
# espresso -Dirred -t -d hw2q1iii_expand.pla
# UC Berkeley, Espresso Version #2.3, Release date 01/31/88
.olb y
# READ Time was 0.01 sec, cost is c=3(3) in=6 out=3 tot=9
# COMPL Time was 0.00 sec, cost is c=0(0) in=0 out=0 tot=0
# PLA is hw2q1ii_expand.pla with 4 inputs and 1 outputs
# ON-set cost is c=3(3) in=6 out=3 tot=9
# OFF-set cost is c=0(0) in=0 out=0 tot=0
# DC-set cost is c=0(0) in=0 out=0 tot=0
# IRRED: F=3 E=3 R=0 Rt=0 Rp=0 Rc=0 Final=3 Bound=0
# IRRED Time was 0.00 sec, cost is c=3(3) in=6 out=3 tot=9
# READ 1 call(s) for 0.01 sec (93.7%)
# COMPL 1 call(s) for 0.00 sec ( 0.0%)
# IRRED 1 call(s) for 0.00 sec ( 0.0%)
# irred Time was 0.03 sec, cost is c=3(3) in=6 out=3 tot=9
.i 4
.0 1
.ilb a b c d
.p }
-10-1
-0-0 1
0--1 1
.e
# WRITE Time was 0.00 sec, cost is c=3(3) in=6 out=3 tot=9
```

(iv) Essential Prime Implicants:

$$
\begin{aligned}
& F=\bar{a} d+\bar{b} \bar{d}+b \bar{c} \\
& F^{0 c}=a b \bar{c} \bar{d}+a b c d
\end{aligned}
$$

- Checking ard :

$$
\left.\begin{array}{l}
G=\{\bar{b} \bar{d}, b \bar{c}, \bar{a} b \bar{c} \bar{d}, a b c d\} \\
G \# \bar{a} d=\{\bar{b} \bar{d}, b \bar{c} \bar{d}, a b \bar{c}, \bar{a} b \bar{c} \bar{d}, a b c d\} \\
H=
\end{array}\right) \text { Consensus }(G \neq \bar{a} d, \bar{a})=\{\bar{a} \bar{b}, \bar{a} b \bar{c}, b \bar{c} d,\}
$$

Then, we check of $M U F^{B C}$ covers ad

$$
\begin{aligned}
& \Rightarrow\{\bar{a} \bar{b}, \bar{a} b \bar{c}, b \bar{c} d, \bar{a} b \bar{c}, b c d, \bar{a} b \bar{c} \bar{d}, a b c d\} a d \\
& =\{\bar{b}, b \bar{c}, b \bar{c}, b \bar{c}, b c, 0,0\} \Rightarrow \text { tautology }
\end{aligned}
$$

since it is tautology, this means that ad is nod an essential prime implicant.

- checking SJ:

$$
\begin{aligned}
G & =\{\bar{a} d, b \bar{c}, \bar{a} b \bar{c} \bar{d}, a b c d\} \\
G & \nRightarrow \bar{b} \bar{d}=\{\bar{a} d, b \bar{c}, \bar{a} b \bar{c} \bar{d}, a b c d\} \\
H & =\text { consensus }(G \neq \bar{b} \bar{d}, \bar{b} \bar{d}) \\
& =\{\bar{a} \bar{b}, \bar{c} \bar{d}, \bar{a} \bar{d}\}
\end{aligned}
$$

Then, we check if $H \cup F^{D C}$ covers $\bar{b} \bar{d}$.

$$
\begin{aligned}
& \Rightarrow\{\bar{a} \bar{b}, \bar{c} \bar{d}, \bar{a} \bar{c} \bar{d}, \bar{a} \bar{c} \bar{d}, \text { abcd }\} \bar{b} \bar{d} \\
& =\{\bar{a}, \bar{c}, \bar{a} \bar{c}, 0,0\} \Rightarrow \text { Not tautology }
\end{aligned}
$$

This means that \bar{J} is an essential prone implore cant.

- Checking be:

$$
\left.\begin{array}{l}
G=\{\overline{a d}, \bar{b} \bar{d}, \bar{a} b \bar{c} \bar{d}, a b c d\} \\
G \# b \bar{c}=\{\bar{a} \bar{b} d, \bar{a} c d, b \bar{d}, a b c d\} \\
H
\end{array}=\text { consensus }(G \# b \bar{c}, b \bar{c})\right\}
$$

Then, we check if $H \cup F^{b c}$ covers $b \bar{c}$.
\{ā̄d, abd, द̄ग, abd, abc, $a b c d\}_{b \bar{c}}$
$=\{\bar{a} d, \bar{a} d, \bar{\delta}$, ad, $\bar{a} \bar{d}, 0\} \Rightarrow$ Tautology
This means that is not an essential prime implicant.

Thus, only bd is an essential prime mpircant. The cover becomes $\{\bar{a} d, b \bar{c}\}$ and $F^{b c}$ becomes $\{\bar{b}, \bar{a} b \bar{c} \bar{d}, a b c d\}$.
(v) Reduce Procedure:

First, we compute the weight of each impircant in the cover.

a	b	c	d	weight	
ad	10	11	11	01	10
11	01	10	11	10	

since both have the same weight, we cant start reducing any one of them.

- Reduce ad:

$$
\begin{aligned}
& \alpha=\overline{a d} \\
& Q=\left\{F \cup F^{D C}\right\}-\alpha=\{b \bar{c}, \bar{b} \bar{\delta}, \bar{a} b \bar{c} \bar{d}, a b c d\} \\
& Q_{\alpha}=\{b \bar{c}, 0,0,0\} \\
& \bar{Q}_{\alpha}=\bar{b}+c \\
& \tilde{\alpha}=\alpha \cap \operatorname{supercube}\left(\bar{Q}_{\alpha}\right)=\operatorname{ad} \cap 1=\overline{a d}
\end{aligned}
$$

- Reduce bc:

$$
\begin{aligned}
& \alpha=b \bar{c} \\
& Q=\left\{F \cup F^{0 c}\right\}-\alpha=\{\bar{a} d, \bar{b} \bar{d}, \bar{a} b \bar{c} \bar{d}, a b c d\} \\
& Q_{\alpha}=\{\bar{a} d, 0, \bar{a} J, 0\}=\{\bar{a}\} \\
& \bar{Q}_{\alpha}=a \\
& \widetilde{\alpha}=b \bar{c} \cap a=a b \bar{c}
\end{aligned}
$$

Thus, the reduced cover is $\{\bar{a} d, a b \bar{c}\}$.
This is consistent with the results produced by Espresso.

```
.i 4
.o 1
.ilb a b c d
.p }
0--1 1
-10-1
-0-0 -
0100 -
1111 -
.e
D:\Courses\coe561\091>espresso -Dreduce -t -d hw2q1v.pla > hw2q1v_red.pla
# espresso -Dreduce -t -d hw2q1v.pla
# UC Berkeley, Espresso Version #2.3, Release date 01/31/88
# READ Time was 0.00 sec, cost is c=2(2) in=4 out=2 tot=6
# COMPL Time was 0.00 sec, cost is c=0(0) in=0 out=0 tot=0
# PLA is hw2q1v.pla with 4 inputs and 1 outputs
# ON-set cost is c=2(2) in=4 out=2 tot=6
# OFF-set cost is c=0(0) in=0 out=0 tot=0
# DC-set cost is c=3(3) in=10 out=3 tot=13
REDUCE: -10-1 to 110-1 0.00 sec
# REDUCE Time was 0.00 sec, cost is c=2(1) in=5 out=2 tot=7
# READ 1 call(s) for 0.00 sec ( 0.0%)
# COMPL 1 call(s) for 0.00 sec ( 0.0%)
# REDUCE 1 call(s) for 0.00 sec ( 0.0%)
# reduce Time was 0.00 sec, cost is c=2(1) in=5 out=2 tot=7
    .i 4
    .o 1
.ilb a b c d
.p }
110-1
0--1 1
.e
# WRITE
Time was 0.00 sec, cost is c=2(1) in=5 out=2 tot=7
```

(vi) Expand Procedure on Reduced Cover:

$$
\begin{aligned}
& F=\bar{a} d+a b \bar{c} \\
& F^{b c}=\bar{b} \bar{d}+\bar{a} b \bar{c} \bar{d}+a b c d
\end{aligned}
$$

we compute the weight of each cube:

a	b	b	c	d	weight
abc	10	11	11	01	9
01	01	10	11	8	

Thus, we expand abc first

- Expand $a b \bar{c}$:

$$
\text { Free }=\{1,3,6\}
$$

Intersecting with the off-set, columns 3 and 6 canst be raised. Free $=\{1\}$ and over expanded cube is be.
Cube ad is not feasibly covered since it is not covered by the overexpanded cube $b \bar{c}$. Then, column 1 is raised and the cubers expanded to $b \bar{c}$.

- Expand ad:

$$
\text { Free }=\{2,7\}
$$

Intersecting wo th the rff-set, none of the columns can be raised and free $=\{ \}$.

Thus, the expanded cover rs $\{\bar{a} d, b \bar{c}\}$.
This is consistent with the results produced by Espresso.

```
.i 4
.o 1
.ilb a b c d
.p 2
0--1 1
110-1
-0-0 -
0100 -
1111 -
.e
```

D:\Courses\coe561\091>espresso -Dexpand -t -d hw2q1vi.pla > hw2q1vi_expand.pla

```
# espresso -Dexpand -t -d hw2q1vi.pla
# UC Berkeley, Espresso Version #2.3, Release date 01/31/88
# READ Time was 0.00 sec, cost is c=2(2) in=5 out=2 tot=7
# COMPL Time was 0.00 sec, cost is c=2(2) in=6 out=2 tot=8
# PLA is hw2q1vi.pla with 4 inputs and 1 outputs
# ON-set cost is c=2(2) in=5 out=2 tot=7
# OFF-set cost is c=2(2) in=6 out=2 tot=8
# DC-set cost is c=3(3) in=10 out=3 tot=13
EXPAND: 110-1 (covered 0)
EXPAND: 0--1 1 (covered 0)
# EXPAND Time was 0.00 sec, cost is c=2(0) in=4 out=2 tot=6
# READ 1 call(s) for 0.00 sec ( 0.0%)
# COMPL 1 call(s) for 0.00 sec ( 0.0%)
# EXPAND
    1 call(s) for 0.00 sec ( 0.0%)
# expand Time was 0.00 sec, cost is c=2(0) in=4 out=2 tot=6
    .i 4
.o 1
.ilb a b c d
.p }
-10-1
0--1 1
.e
# WRITE
Time was 0.00 sec, cost is c=2(0) in=4 out=2 tot=6
```

