COE 561, Term 051

Digital System Design and Synthesis

HW# 2

Due date: Wednesday, Oct. 12

- **Q.1.** Consider the function $f=(a\oplus b)c$.
 - (i) Compute $\partial f/\partial a$, $C_a(f)$ and $S_a(f)$.
 - (ii) Compute an expansion on the orthonormal basis $\{\emptyset_1=a, \emptyset_2=a'b, \emptyset_3=a'b'\}$.
 - (iii) Compute an expansion on the orthonormal basis $\{\emptyset_1 = a+b, \emptyset_2 = a'b'\}$.
 - (iv) Draw the ROBDD for the function $f=(a\oplus b)c$ using the variable order $\{a, b, c\}$.
 - (v) Draw the ROBDD for the function $f=(a\oplus b)c$ using the variable order $\{a, c, b\}$.
- **Q.2.** Consider the two function functions $f=(a\oplus b)c$ and g=abc + a'b'c'.
 - (i) Compute the following functions: $f \cdot g$, f + g, and $f \oplus g$.
 - (ii) Draw the ITE DAGs for the following functions: f . g, f + g, and $f \oplus g$.
- Q.3. Consider the following given matrix representing a covering problem:

```
A = \begin{bmatrix} 11010100\\01010000\\10000100\\00010111\\00000101\\01100000\\10001000 \end{bmatrix}
```

- (i) Find a minimum cover using EXACT_COVER procedure. Show the details of the algorithm.
- (ii) Formulate the problem as a satisfiability problem. Discuss how you can solve this problem to find all possible minimum assignments.