COE 561, Term 111

Digital System Design and Synthesis

HW\# 1 Solution
Due date: Saturday, Oct. 15
Q.1. Consider the following OBDD with the variable ordering $\{a, b, c\}$. Reduce it based on Reduce function to obtain the ROBDD. Show the details of your work.

Q.2. Consider the function $\mathrm{f}=\mathrm{a}(\mathrm{b}+\mathrm{c})(\mathrm{d}+\mathrm{e})$:
(i) Draw the ROBDD for the function using the variable order $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$.
(ii) Draw the ROBDD for the function using the variable order $\{b, d, a, c, e\}$.
(iii) Comment on the difference between the two obtained ROBDDS and what heuristic do you suggest one should choose in selecting a variable order.
Q.3. Consider the two functions $\mathrm{f}=\mathrm{a} \oplus \mathrm{b} \oplus \mathrm{c}$ and $\mathrm{g}=\mathrm{b} \oplus \mathrm{c}^{\prime} \oplus \mathrm{d}$:
(i) Compute the function f.g based on orthonormal basis expansion.
(ii) Draw the ITE DAG for the function $\mathrm{f} \oplus \mathrm{g}$. Show the details of the ITE algorithm step by step. Use the variable order $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
Q.4. Consider the following given matrix representing a covering problem:

$$
A=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Find a minimum cover using EXACT_COVER procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed: $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$.
Q.5. Consider the function $F(A, B, C, D)=\bar{A} \bar{C}+C D+A B+B C+\bar{B} \bar{D}+A D$. Using recursive paradigm, determine if the function F is tautology or not. You need to choose the right variable for expansion to minimize computations.
Q.6. Consider the function $F(A, B, C, D)=\bar{B} \bar{D}+A C D+B \bar{C}+B C \bar{D}$
(i) Compute the complement of the function using the recursive complementation procedure outlined in section 7.3.4. You need to choose the right variable for expansion to minimize computations.
(ii) Compute all the prime implicants of the function using the method outlined in section 7.3.4. You need to choose the right variable for expansion to minimize computations.

HWy\# \#

QI.

First, we set $i d(v)=1$ for all leaf vertices with value : and $i d(v)=2$ for all leaf vertices with value 1 .
We initialize RoßBOD with two leaf vertices for 0 and 1 . process vertices at keel 3 , lie. nodes Then, we process vertices at
with index $=c . \quad V=\{u, 5,6,7\}$ None of the vertices is removed since id $(\operatorname{low}(v)) \neq$ $\therefore i^{\prime}(\operatorname{ligh}(x))$. we assign $K_{c y s}$ to all vertices $\in V$. $k_{\text {cog }}(1)=(1,2), \quad \operatorname{leg}_{\text {eg }}(5)=(2,1), k_{\text {cyl }}(6)=(2,1), K_{e y}(7)=(1,2)$.
old key $=(0,0)$.
We next soot to their keys. This, $V=\{4,7,5,6\}$.
$v=\{4\}$: since $k_{(i)}(i) \neq$ old $x_{i, j}$, nested $=3$, $i d(u)=3, \quad$ old key $=(1,2)$. we add $v=\{4\}$ to the ROBDO.
$V=\{7\}:$ since $\operatorname{Key}(7)=$ sid Key, $\operatorname{id}(7)=3$.
$v=\{5\}$: since $K e_{-j}(5) \neq$ old key, nexted $=4$, $d d(5)=4$, sid $x_{e-j}=(2,1)$.
wive add $v=\{5\}$ to the ROBDD.
$V=\{\epsilon\}$; since $k_{e y} y(6)=0 \quad d x_{e y}, \quad d d(6)=4$.
Next, we process vertices at level 2 with index $=b$,

$$
\nabla=\{2,3\}
$$

None of the veitress is removed.

$$
\text { key }(2)=(3,4), \quad \text { key }(3)=(4,3), \quad 1 A k+y=(0,0) \text {. }
$$

$V=\{2\}:$ since $x_{e y}(2) \neq 6\left(d x_{y} y\right.$, nexted $=5$,

$$
r d(2)=5, \quad \text { oldxxy }=(34)
$$

we add $V=\{2\}$ to the ROBDD:
$V=\{3\}$: since key $(3) \neq$ old key, vextird $=6$,

$$
\operatorname{rd}(3)=6, \text { old ley }=(4,3)
$$

wee add $v=\{3\}$ to the ROBDD.
Finally, we process vertices att level with index $=a, \quad \vec{V}=\{1\}$.
Since $\quad r d(\operatorname{low}(1)) \neq r d(\operatorname{high}(1))$, He vertex is not removed.
 nextid $=7, / d(i)=7$, we add $v=\{i\}$ to the ROBDD. Thus, the framed kOBDD is:

Q2, $\quad f=a(b+c)(d+c)$
(i) varrable order $\{a, b, c, d, c\}$

(ii) varrable order $\{b, d, a, c, c\}$

(iii) We can see that the variable order in (i) produces a smaller size Robrror than (ii). As a general heuristic, wee should choose the variable that eliminates the largest number of terms in the expression.

(i) $f . g$

$$
\begin{aligned}
f & =\bar{b} \bar{c}[a]+\bar{b} c[\bar{a}]+b \bar{c}[\bar{a}]+b c[a] \\
g & =\bar{b} \bar{c}[\bar{d}]+\bar{b} c[d]+b \bar{c}[d]+b c[\bar{d}] \\
f \cdot g & =\bar{b} \bar{c}[a \bar{d}]+\bar{b} c[\bar{a} d]+b \bar{c}[\bar{a} d]+b c[a \bar{d}]
\end{aligned}
$$

(ii) ITE diagram for the function $f(1) g$

$$
\begin{aligned}
& f \oplus,=\operatorname{ITE}(f, \bar{g}, g) \quad\{a, b, c, d\} \\
& =I T E(a \oplus) b \oplus c, b \oplus c \oplus d, b \oplus \bar{c} \oplus d) \\
& -x=a
\end{aligned}
$$

$$
\begin{aligned}
& -x=b \\
& t=\operatorname{ITE}(c, \overline{c \epsilon d}, c \oplus d) \\
& -x=c \\
& t=\operatorname{ITE}(1, d, \bar{d})=d \text { (trorral canc) } \\
& \text { we assign } r d=3 \Rightarrow t=3 \\
& e=\operatorname{ITE}(0, d, d)=d \text { (trivial cast) } \\
& \Rightarrow \quad c=3
\end{aligned}
$$

since $t=e$, we return 3

$$
\begin{aligned}
& \Rightarrow t=3 \\
& e=\operatorname{ITE}(\bar{c}, c \oplus d, \bar{c} \oplus d) \\
& -x=c \\
& t=\operatorname{ITE}(0, \bar{d}, d)=d \quad \text { (trivial case) } \\
& \Rightarrow t=3 \\
& e=\operatorname{ITE}(1, d, \bar{d})=d \quad \text { (trivial case) } \\
& \Rightarrow e=3
\end{aligned}
$$

since $t=e$, we return 3

$$
\Rightarrow c=3
$$

since $t=e$, we return 3

$$
\begin{aligned}
\Rightarrow t & =3 \\
e & =\operatorname{ITE}(b \oplus c, b \oplus c \oplus d, b \oplus \bar{c} \oplus d) \\
- & x=b \\
t & =\operatorname{ITE}(\bar{a}, \overline{C \oplus d}, c \oplus d) \\
- & x=c \\
\quad t= & \operatorname{ITE}(0, d, J)=J \text { (trivial cade) }
\end{aligned}
$$

we assign,$d=4 \Rightarrow t=4$

$$
e=\operatorname{ITE}(1, \bar{d}, d)=\bar{d} \text { (trivial case) }
$$

$$
\Rightarrow \quad e=4
$$

since $t=e$, we return 4

$$
\Rightarrow t=4
$$

$$
\begin{aligned}
& e=I_{T E}(c, c \oplus d, \bar{c}(\Phi d) \\
& -x=c \\
& t=I T E(1, d, d)=\bar{d} \quad \text { (trivial case) } \\
& \quad \Rightarrow t=4 \\
& e=I T E(0, d, \bar{d})=\bar{d} \quad \text { (trivial case) } \\
& \Rightarrow e=4
\end{aligned}
$$

since $t=e$, we return 4

$$
\Rightarrow e=4
$$

since $t \neq e$, we add the entry $(a, 3,4)$ in the unique table with id $=5$
Unique Table:

id	var	H	L
3	d	2	1
4	d	1	2
5	a	3	4

Computed Table:

Q4. The matrix to be covered:

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	c_{6}
1	1	1	0	0	0	0
12	0	1	1	1	0	0
13	1	0	0	1	0	1
$r 4$	1	0	1	0	0	1
15	0	0	0	0	1	0
16	0	0	0	1	1	0
17	1	1	1	0	0	0

C_{5} is essential and is selected and rows rb $t r s$ are covered and removed.
$r \nrightarrow$ dommates r_{1} and is removed.
$C \in$ is dommated by $c l$ and is removed Thus, the resulting matrix is:

	c_{1}	c_{2}	c_{3}	c_{4}
r_{1}	1	1	0	0
r_{2}	0	1	1	1
r_{3}	1	0	3	1
r_{4}	1	0	1	0
$x=$	$(0,0,0,0,1,0)$.			

Next, we select $c 1$ and call exact-cover with $x=(1,0,0,0,1,0)$ and $b=(1,1,1,1,1)$ and the matrix:

$$
c_{2} c_{3} c_{4}
$$

$r_{2} 111$

Since C_{2} dominates all other columns, the i) get removed and C_{2} becomes essential and is selected. Since matrix has no rows, then $x=(1,1,0,0,1,0)$ and $b=(1,1,0,0,1,0)$.

Next, exact-cover is called with C.I not selected with $x=(0,0,0,0,1,0)$ and $b=(1,1,0,0,1,0)$ and the matrix:

	c_{2}	c_{3}	c_{4}
r_{1}	1	0	0
r_{2}	1	1	1
r_{3}	0	0	1
r_{4}	0	1	0

All columns are essential and are selected

$$
\Rightarrow \quad x=(0,1,1,1,1,0)
$$

Since current estimate $=4 \geqslant|b|$, the Solution $(1,1,0,0,1,0)$ is returned.
Since the returned solviron is the same ins the best, it will finally be returned.
This, the exact minimum cover is $(1,1,0,0,1,0)$.

Q5. $\quad F=\bar{A} \bar{C}+C D+A B+B C+\bar{B} \bar{D}+A D$

Since all variables are binate, we can expand on any variable

$$
\begin{aligned}
F= & \bar{A}[\bar{c}+c \theta+B C+\bar{B} \bar{b}] \\
& +A[C D+B+B C+\bar{B} \bar{n}+D]
\end{aligned}
$$

we need to show that both $F_{\bar{A}}$ and F_{A} are tanto logy.

$$
F \bar{A}=\bar{C}+C D+B C+\bar{B} \bar{D}
$$

Since all variables are binate, we can expand on any variable; we expand on C.

$$
\begin{aligned}
& F_{\bar{A} \bar{C}}=1 \\
& F_{\bar{A} C}=D+B+\bar{B} \bar{D}
\end{aligned}
$$

We expand next in B

$$
\begin{aligned}
\Rightarrow & F_{\bar{\pi} \bar{B}}=0+\bar{r}=1 \\
& F_{\bar{A} C B}=1 \\
& \text { Thus, } F_{\bar{A} C}=1 \\
\Rightarrow & F_{\bar{A}}=1
\end{aligned}
$$

$$
F_{A}=C D+B+B C+\bar{B} \bar{D}+D
$$

since C is positive enate, it is sufficient to show that fAC is tautology.

$$
F_{A \bar{C}}=B+\bar{B} \bar{D}+D
$$

we next expand on B.

$$
\begin{aligned}
& F A \bar{C} B \\
& =1 \\
& F A \bar{B} \\
\Rightarrow & =\bar{b}+D=1 \\
& F A C=1 \\
\Rightarrow & F A=1
\end{aligned}
$$

$\Rightarrow F$ is tautology.

Q6. $\quad F=\bar{B} \bar{D}+A C D+B \bar{C}+B C \bar{D}$
(i)

$$
\begin{aligned}
F= & \bar{B}[\bar{D}+A C D] \\
& +B[A C D+\bar{C}+C \bar{D}] \\
= & \bar{B}[\bar{D}[1]+D[A C]] \\
& +B[\bar{C}[1]+C[A D A \bar{D}]] \\
= & \bar{B}[\bar{D}[1]+D[A C]] \\
& +B[\bar{C}[1]+C[\bar{B}[1]+0[A]]] \\
\Rightarrow \bar{F}= & \bar{B}[\bar{D}[0]+\sigma[\bar{A}+\bar{C}]] \\
& +B[\bar{C}[O]+C[\bar{D}[C]+D[\bar{A}]]] \\
= & \bar{B} \bar{A}+\bar{B} \bar{C} D+B C D \bar{A}
\end{aligned}
$$

(ii) Beased on expansion in (1) we have

$$
\begin{aligned}
F= & \bar{B}[\bar{B}[1]+D[A C]] \\
& +B[\bar{C}[1]+C[\bar{D}[1]+D[A]]]
\end{aligned}
$$

Prime mplicants of $f_{\bar{B}}=\sec \{\bar{D}, A \subset D, A C\}$

$$
=\{\bar{D}, A C\}
$$

prime rmplicants of $f_{B C}=\{1\}$
prome impliconts of $f B C=\operatorname{SCC}\{\bar{D}, D A, A\}$

$$
=\{\widetilde{D}, A\}
$$

\Rightarrow prime implicants of $f_{B}=\operatorname{Scc}\{\bar{C}, C \bar{D}, C A$,

$$
=\{\bar{c}, \bar{b}, A\}
$$

\Rightarrow prime impliconts of $f=\sec \{\bar{B} \bar{D}, \bar{B} A C, B \bar{C}$,

$$
\begin{aligned}
& B \bar{D}, B A, \bar{C} \bar{D}, \\
& \bar{i}, A \bar{D}, A C \bar{D}, A C\}
\end{aligned}
$$

$$
=\{B \bar{C}, A B, \bar{r}, A C\}
$$

