COE 561, Term 091 Digital System Design and Synthesis

HW#1 Solution

Due date: Sunday, Nov. 1

Q.1. Consider the following OBDD with the variable ordering {a, b, c, d}. Reduce it based on **Reduce** function to obtain the ROBDD. Show the details of your work.

Q.2. Consider the function f=(a+bc)(d+b'c'):

- (i) Draw the **ROBDD** for the function using the variable order {a, b, c, d}.
- (ii) Draw the **ROBDD** for the function using the variable order {a, d, b, c}.
- **Q.3.** Consider the two functions f=(a+bc)(d+b'c') and g=(a+d)(b+c):
 - (i) Compute the function $f \oplus g$ based on orthonormal basis expansion.
 - (ii) Draw the ITE DAG for the function f.g. Show the details of the ITE algorithm step by step. Use the variable order {a, b, c, d}
- Q.4. Consider the following given matrix representing a covering problem:

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Find a **minimum cover** using **EXACT_COVER** procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed: C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 .

Q\.

First, we set id(v) = 1 for all leaf vertices with value 0 and id(v) = 2 for all leaf vertices with value 1. We initialize ROBOD with two leaf vertices for 0 and 1. Then, we process vertices at level 4, i.e. nodes with index = d. $V = \{6, 7\}$. None of the vertices is removed since $id(low(v)) \neq$ id(high(v)). We assign keys to all vertices eV. Key(6) = (1, 2), Key(7) = (1, 2). eldkey = (0,0). We next sort the vertices in V according to their keys. Thus, $V = \{6, 7\}$. $v = \{6\}$: since Key(6) \neq oldkey, nextid = 3, d(6) = 3, oldkey = (1, 2). We add $v = \{6\}$ to the ROBOD.

-1- -

¥ = {7}: since Key(7) = old Key, id(7) = 3 Next, we process vertices at level 3 with index = c. None of the vertices is removed since id (10w(v)) = $\nabla = \xi_{4,5}$ id (high (v)) . we assign keys to all vertices & V. Key (u) = (1,3), Key(5) = (1,3). oldkey = (0,0). We sort the vertices according to their keys. V= 24,53. V= Eug: since Key (u) + old Key, nexted = 4, id (4) = 4, old Key = (1,3). We add v= Eug to the ROBDD. V= {5}: SINCE Key(5) = old Key, id (5) = 4. Next, we process vertices at level 2 with index = b. since rd(low(3)) = rd(high(3)) = 4, rd(3) = 4 and V = {2,33. vertex 3 is removed from V. Key(2) = (4,2), old Key=(0,0). since Key(2) = old Key, nexted = 5, id(2) = 5, old Key = (4,2). We add V= 223 to the ROBDD. Finally, we process vertices at level I with index =a. Since id(low(1)) + id(high(1)), the vertex is not removed. V = 21g. Key(1) = (4,5), oldkey(0,0), Since Key(1) = old Key, nexted = 6, id (1) = 6, we add v= Elg to the ROBDD.

-2-

Thus, the formed ROBDD is :

Q2 0

(i) ROBOD with variable order Ea, b, c, d3

-3-

(11) ITE diagram for the function fig f.g = ITE (f, g, 0) = ITE ((a+bc)(d+bc), (a+d)(b+c), 0) - X = a t = ITE (d+bc, b+c, 0) - x=b t = TTE(d, 1, 0) = d (trivial case) we assign c'd=3 => t=3 e = ITE(d+ E, c, 0) - x = c t = ITE (d, 1,0) = d => t=3 e = TTE (1,0,0) = 0 =) e=1 since t te, an entry will be added in the table for (c, 3,1) with rd = 4 ⇒ e = 4 since Ete, an entry will be added in the table for (b, 3, 4) with id = 5t=5 e = TTE (be(d+bc)) d(b+c))- x=b E = ITE (cd , d, o) $-\chi = c$ $b = ITE(d, d, 0) = d \implies t = 3$ e = FTE (0,0,0) =0 => e=1 since t = e, and the entry (c, 3, 1) is already in the table then t=4.

-5-

م	= ITE	(o, cd, o) :	= o (trivia	(case)
. Si	\Rightarrow e=1 nce $t \neq e$	for (b, 4,	will be dd	ded m
snce table	= 6 E = = e, for (a	an entry will , 5,6) with rque table pro	be added $n = 7$.	
12	val	right child		
3	d	2	1	
4	С	3	1	
5	Ь	3	4	
6	· b	ч	1	
7	ط	5	6	
			· . ~	

The corresponding ITE DAG is:

-6-

Q4. The matrix to be covered;

Q 4 '	
	C1 (2 C3 C4 C5 C6 C7 C8
	r3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	rs 1 0 0 0 0 1 1 0
	r6 1 0 0 0 0 0 1
	10
	The matrix can't be reduced as there are
	The matrix can't of no essential columns, no row dominance
	dominance.
	Call exact-cover
	Thus, we delect of and $b = (1, 0, 0, 0, 0, 0, 0)$ and $b = (1, 0, 0, 0, 0, 0, 0, 0)$
	and the matrix :
	C2 C3 C4 C5 C6 C7 C8
	rio (1 p + o 1 1)
	r2 1 0 1 0 1 0 1
	1 1 columns and no row
	There are no essentiates c2, c3, c6
	There are no essential columns dominance. However, CB dominates C2, C3, C6 and C7. Thus, C2, C3, C6 and C7 are removed.
	and C7. Thus, ceres
	The reduced matrix is
	Cy C5 C8
	no III
	r2 (o l
	ru I I O

-7-

.

The matrix passed with the call is; c3 cy c5 c6 c7 c8 62 0 1 0 1 0 1 1 11 r2 1 0 1 6 1 0 1 0 0 6 1 Ø 1 r3 1 1 0 0 0 0 14 0 15 0 0 t σ 1 0 0 o 0 0 6 0 56 0 Since CB is essential, it is selected and rows r1, r2 and r6 are removed and we get the following reduced matrix: C2 C3 (4 C5 C6 C7 1 1 0 0 0 0 x 3 11 σ 0 0 rч 0 ° ° ° 1 1 Since c2 dommates C3, cy dommates C5 and rs cs dominates C7, C3, C5 and C7 are removed and we get the following reduced matrix; C2 C4 C6 0 0 r3 | 1 σ O 54 1 Now the three columns are essentral and 6 rs 0 get selected with X = (0, 1, 0, 1, 0, 1, 0, 1)since current estimate = 4 > 161, the solution returned is (1,0,0,1,1,0,0,0) .