COE 561, Term 091

Digital System Design and Synthesis

HW\# 1 Solution

Due date: Sunday, Nov. 1

Q.1. Consider the following OBDD with the variable ordering $\{a, b, c, d\}$. Reduce it based on Reduce function to obtain the ROBDD. Show the details of your work.

Q.2. Consider the function $\mathrm{f}=(\mathrm{a}+\mathrm{bc})\left(\mathrm{d}+\mathrm{b}^{\prime} \mathrm{c}^{\prime}\right)$:
(i) Draw the ROBDD for the function using the variable order $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(ii) Draw the ROBDD for the function using the variable order $\{\mathrm{a}, \mathrm{d}, \mathrm{b}, \mathrm{c}\}$.
Q.3. Consider the two functions $\mathrm{f}=(\mathrm{a}+\mathrm{bc})\left(\mathrm{d}+\mathrm{b}^{\prime} \mathrm{c}^{\prime}\right)$ and $\mathrm{g}=(\mathrm{a}+\mathrm{d})(\mathrm{b}+\mathrm{c})$:
(i) Compute the function $\mathrm{f} \oplus \mathrm{g}$ based on orthonormal basis expansion.
(ii) Draw the ITE DAG for the function f.g. Show the details of the ITE algorithm step by step. Use the variable order $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
Q.4. Consider the following given matrix representing a covering problem:

$$
A=\left[\begin{array}{llllllll}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Find a minimum cover using EXACT_COVER procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed: $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$.

HW\#I

QI.

Frost, we set id $(v)=1$ for all leaf vertices with value 0 and $i d(v)=2$ for all leaf vertices with value 1 .
We initialize ROBDD with two leaf vertices for 0 and 1 .
Then, we process vertices at level 4, ire nodes with index $=d$.

$$
V=\{6,7\}
$$

None of the vertrecs is removed sue id $(\operatorname{low}(v)) \neq$ id (high (v)).
we assign keys to all vertices $\in V$.

$$
\begin{aligned}
& \text { We assign keys } \\
& \text { Key }(6)=(1,2),
\end{aligned} \quad \text { key }(7)=(1,2) \text {. }
$$

old Key $=(0,0)$.
we next sort the vertices in V according to their keys. Thus, $V=\{6,7\}$.
$v=\{6\}$: sue Key $(6) \neq$ old Key, nextid $=3$, $\operatorname{cd}(6)=3, \quad$ oldkey $=(1,2)$. we add $V=\{\sigma\}$ to the ROBDD.

$$
r=\{7\}: \text { since key }(7)=\text { old key, id }(7)=3
$$

Next, we process vertices at level 3 with index $=c$.

$$
V=\{4,5\}
$$

None of the vertices is removed since id $(\operatorname{low}(v)) \neq$ id (high (v)).
we assign keys to all vertices ϵV.

$$
\operatorname{Key}(u)=(1,3), \quad \operatorname{key}(5)=(1,3) \text {. }
$$

$$
\text { oldxey }=(0,0) \text {. }
$$

We sort the vertices according to the rr keys.

$$
V=\{4,5\}
$$

$v=\{4\}$: since key $(u) \neq$ old key, nextrd $=4$, id $(u)=4$, old key $=(1,3)$. We add $v=\{u\}$ to the ROBDD.
$v=\{5\}$: sue Key $(5)=$ oldKey, id $(5)=4$.
Next, we process vertices at level 2 with index $=b$.

$$
V=\{2,3\} .
$$

since $\operatorname{rd}(\operatorname{low}(3))=\operatorname{id}(h \operatorname{rgh}(3))=4, \quad \operatorname{rd}(3)=4$ and vertex 3 is removed from V.

$$
\text { Key }(2)=(4,2), \text { old Key }=(0,0) \text {. }
$$

since Key $(2) \neq$ old key, nextrd $=5, \quad \operatorname{rd}(2)=5$, old key $=(4,2)$. We add $v=\{2\}$ to the ROBDD.
Finally, we process vertices at level 1 with index $=a$.

$$
V=\{1\}
$$

Since $i d(\operatorname{low}(1)) \neq \operatorname{id}(h \operatorname{gh}(1))$, the vertex is not removed. Key $(1)=(4,5), \quad \operatorname{old} \operatorname{Key}(0,0)$.
since Key $(1) \neq$ old key, nextrd $=6, \quad i d(1)=6$. We add $v=\{1\}$ to the ROBDD.

Thus, the formed ROBDD is:

$$
\text { Q2. } \quad f=(a+b c)(d+\bar{b} \bar{c})
$$

(i) ROBDD with varrable order $\{a, b, c, d\}$

(ii) ROBDD with variable order $\{a, d, b, c\}$

Q3.

$$
f=(a+b c)(d+\bar{b} \bar{c}) \quad g=(a+d)(b+c)
$$

(1) $f \oplus g$ based on orthonormal basts expansron

$$
\begin{aligned}
& f=\bar{a} \bar{b}(0)+\bar{a} b(c d)+a \bar{b}(d+\bar{c}) \\
& +a b(d) \\
& g=\bar{a} \bar{b}(c d)+\bar{a} b(d)+a \bar{b}(c) \\
& +a b(1) \\
& f \oplus g=\bar{a} b(c d) \\
& +\bar{a} b<c d \cdot \bar{d}+(\bar{c}+\bar{d}) d) \\
& +a \bar{b}((d+\bar{c}) \bar{c}+\overline{d c} \cdot c) \\
& +a b \text { (J) } \\
& =\bar{a} \bar{b}(c d)+\bar{a} b(\bar{c} d)+a \bar{b}(\bar{c})+a b(\bar{d})
\end{aligned}
$$

(ii) ITE diagram for the function fig

$$
\begin{aligned}
f \cdot g & =\operatorname{ITE}(f, g, 0) \\
& =\operatorname{ITE}((a+b c)(d+\bar{b} \bar{c}),(a+d)(b+c), 0)
\end{aligned}
$$

$$
\begin{aligned}
-x= & a \\
t & =\operatorname{ITE}(d+\bar{b} \bar{c}, b+c, 0) \\
- & x=b \\
& t=\operatorname{ITE}(d, 1,0)=d \text { (trivial case) }
\end{aligned}
$$

we assign $i^{\prime} d=3 \Rightarrow t=3$

$$
\begin{aligned}
e & =\operatorname{ITE}(d+\bar{c}, c, 0) \\
-x & =c \\
t & =\operatorname{ITE}(d, 1,0)=d \Rightarrow t=3 \\
e & =\operatorname{ITE}(1,0,0)=0 \Rightarrow e=1
\end{aligned}
$$

since $t \neq e$, an entry will be added in the table for $(c, 3,1)$ with $10=4$

$$
\Rightarrow \quad e=4
$$

since $t \neq e$, an entry will be added in the table for $(b, 3,4)$ with id $=5$

$$
\begin{aligned}
\Rightarrow & t=5 \\
e & =\operatorname{ITE}(b c(d+b c), d(b+c), 0) \\
t & =b \\
- & =\operatorname{ITE}(c d, d, 0) \\
t & =c \\
e & =\operatorname{ITE}(d, d, 0)=d \Rightarrow t=3
\end{aligned}
$$

since $t \neq e$, and the entry $(c, 3,1)$ is already m the table then $t=4$.

$$
\begin{aligned}
& e=\operatorname{ITE}(0, c d, 0)=0 \quad \text { (trivial case) } \\
& \Rightarrow e=1
\end{aligned}
$$

since $t \neq e$, an entry will be added m the table for $(b, 4,1)$ with $r d=6$

$$
\Rightarrow e=6
$$

since $t \neq c$, an entry will be added in the table for $(a, 5,6)$ with id $=7$.
Thus, the unique table produced is:

id	var	right child	left child
3	d	2	1
4	c	3	1
5	b	3	4
6	b	4	1
7	d	5	6

The corresponding ITE $D A G$ is :

Q4. The matrix to be covered:

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}
r_{1}	0	0	1	0	1	0	1	1
r_{2}	0	1	0	1	0	1	0	1
r_{3}	1	1	1	0	0	0	0	0
r_{4}	0	0	0	1	1	0	0	0
r_{5}	1	0	0	0	0	1	1	0
r_{6}	1	0	0	0	0	0	0	1

The matrix cant be reduced as there are no essential columns, no row dominance and no column dominance.

Thus, we select $c l$ and call exact-cover with $x=(1,0,0,0,0,0,0,0)$ and $b=(1,1,1,1,1,1,1,1)$ and the matrix:

c	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}
r_{1}	0	1	0	1	0	1	1
r_{2}	1	0	1	0	1	0	1
r_{4}	0	0	1	1	0	0	0

There are no essential columns and no row dominance. However, $c 8$ dominates $c 2, c 3, c 6$ and C_{7}. Thus, $C 2, C 3, C 6$ and $C 7$ are removed. The reduced matrix is

	c_{4}	c_{5}	c_{8}
n	0	1	1
$r 2$	1	0	1
$r u$	1	1	0

Since the matrix cart be reduced further, cu is selected for branching, $x 4=1$, rows $r 2$ and ru are removed.
Exact-cover is called with $x=(1,0,0,1,0,0,0,0)$, $b=(1,1,1,1,1,1,1,1)$ and the matrix:

	$c 5$	$c 8$
r_{1}	1	1

since C_{5} dommates C_{8}, C_{8} is removed and C_{5} is selected as it becomes essential and the solution returned is $x=(1,0,0,1,1,0,0,0)$.

Since $|x|<|b|, b=(1,0,0,1,1,0,0,0)$.
Next, exact - cover is called with xu not selected tier $x 4=0$. Thus, $x=(1,0,0,0,0,0,0,0)$, $b=(1,0,0,1,1,0,0,0)$ and the matrix is:

	c_{5}	c_{8}
r_{2}	1	1
r_{3}	0	1

Both C_{5} and C_{8} are essential and selected, So, $x=(1,0,0,0,1,0,0,1)$. Since the current estimate $=3=|b|$, the solution returned will be $b=(1,0,0,1,1,0,0,0)$.
Next, the exact-cover algorithm rs called with ci not selected ter $x=(0,0,0,0,0,0,0,0)$, $b=(1,0,0,1,1,0,0,0)$.

The matrix passed with the call is:

	c_{2}	c_{3}	c_{4}	c_{5}	$c 6$	c_{7}	c_{8}
r_{1}	0	1	0	1	0	1	1
r_{2}	1	0	1	0	1	0	1
r_{3}	1	1	0	0	0	0	0
r_{4}	0	0	1	1	0	0	0
r_{5}	0	0	0	0	1	1	0
r_{6}	0	0	0	0	0	0	1

Since $c 8$ is essentral, it is selected and rows r_{1}, r_{2} and r_{6} are removed and we get the following reduced matrix:

	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
r_{3}	1	1	0	0	0	0
r_{4}	0	0	1	1	0	0
r_{5}	0	0	0	0	1	1

Since C_{2} dommates C_{3}, C_{4} dommates C_{5} and $C 6$ dominates $C 7, \angle 3, C 5$ and $C 7$ are removed and we get the following reduced matrix:

	c_{2}	c_{4}	c_{6}
r_{3}	1	0	0
r_{4}	0	1	0
r_{5}	0	0	1

Now the three columns are essentral and get selected with $x=(0,1,0,1,0,1,0,1)$ see current estimate $=4>|b|$, the solution returned is $(1,0,0,1,1,0,0,0)$.

