COE-561: Digital System Design and Synthesis
 Assignment 1 Solution

Q1)

The basic building block of the CLA adder is the partial full adder (PFA). The PFA and the carry path circuitry can be viewed as working in parallel to generate the sum and the carry respectively.

Partial Full Adder:

This block takes three bits as input (A , B , C) and generates three outputs:
$\mathrm{G}_{i}=\mathrm{A}_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}}$ Called the generate function
$\mathrm{P}_{i}=A i \oplus B i$ called the propagate function
$\mathrm{S}_{\mathrm{i}}=A i \oplus B i \oplus C i$ called the sum function

This is shown below. The output of the first two functions, Gi and Pi, will be used later to generate the carry at each stage of the carry look ahead adder (CLA).

In order to construct a 4-bit CLA, four PFAs are needed to generate the signals that will be used in the functions below.

$$
\begin{aligned}
& \mathrm{S}_{9}=A 0 \oplus B 0 \oplus C i n \\
& \mathrm{~S}_{1}=A 1 \oplus B 1 \oplus C 1 \\
& \mathrm{~S}_{2}=A 2 \oplus B 2 \oplus C 2 \\
& \mathrm{~S}_{3}=A 3 \oplus B 3 \oplus C 3 \\
& \mathrm{C}_{1}=\mathrm{G}_{0}+\mathrm{C}_{\text {in }} \mathrm{P}_{0} \\
& \mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{G}_{0} \mathrm{P}_{1}+\mathrm{C}_{\text {in }} \mathrm{P}_{1} \mathrm{P}_{0} \\
& \mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{G}_{1} \mathrm{P}_{2}+\mathrm{G}_{0} \mathrm{P}_{1} \mathrm{P}_{2}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{\text {in }} \\
& \mathrm{C}_{\text {out }}=\mathrm{G}_{3}+\mathrm{G}_{2} \mathrm{P}_{3}+\mathrm{G}_{1} \mathrm{P}_{3} \mathrm{P}_{2}+\mathrm{G}_{0} \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{\text {in }}
\end{aligned}
$$

Overflow occurs when the number of bits is insufficient to accommodate the sum. In our case, this occurs when the sum requires more than 4 bits.
The overflow is detected by the signal OV which is described by the following Boolean function:
$\mathrm{OV}=\mathrm{C} 3 \oplus$ Cout

COE-561: Digital System Design and Synthesis Assignment 1 Solution

(i)

The code that describes this 4-bit CLA entity is shown below:

Entity CLADDER4 is

port (A, B: in bit_vector(3 downto 0);
Cin: in bit;
Sum: out bit_vector(3 downto 0);
Cout, OV: out bit);
end;

(ii)

The code for the concurrent architecture of the CLA entity is shown below:

```
Architecture concurrent of CLADDER4 is
    Signal C1, C2, C3, C4: bit;
    Signal P, G: bit_vector(3 downto 0);
begin
    Sum(0) <= A(0) xor B(0) xor Cin;
    Sum(1) <= A(1) xor B(1) xor C1;
    Sum(2) <= A(2) xor B(2) xor C2;
    Sum(3) <= A(3) xor B(3) xor C3;
    P(0) <= A(0) xor B(0);
    P(1) <= A(1) xor B(1);
    P(2) <= A(2) xor B(2);
    P(3) <= A(3) xor B(3);
    G(0) <= A(0) and B(0);
    G(1) <= A(1) and B(1);
    G(2) <= A(2) and B(2);
    G(3) <= A(3) and B(3);
    C1 <= G(0) or (Cin and P(0));
    C2 <= G(1) or (G(0) and P(1)) or (Cin and P(1) and P(0));
    C3 <= G(2) or (G(1) and P(2)) or (G(0) and P(1) and P(2))
        or (P(2) and P(1) and P(0) and Cin);
    C4 <= G(3) or (G(2) and P(3)) or(G(1) and P(3) and P(2))
        or (G(0) and P(3) and P(2) and P(1)) or (P(3) and P(2) and
        P(1) and P(0) and Cin);
    OV <= C3 xor C4;
    Cout <= C4;
end concurrent;
```


COE-561: Digital System Design and Synthesis Assignment 1 Solution

Simulation results:

Normal Operation:

Addition of the two numbers -5 and 3 with the Cin set to 1 results in -1 ; $\mathrm{A}=1011$, $\mathrm{B}=$ 0011 and Cin $=1$ results in the following signals which are shown in the simulation snapshot below:
$\mathrm{C}_{1}=1, \mathrm{C}_{2}=1, \mathrm{C}_{3}=0, \mathrm{C}_{\text {out }}=0$
$\mathrm{S}_{0}=1, \mathrm{~S}_{1}=1, \mathrm{~S}_{2}=1, \mathrm{~S}_{3}=1$

COE-561: Digital System Design and Synthesis Assignment 1 Solution

Overflow bit:

Addition of the numbers $\mathrm{A}=0111$ and $\mathrm{B}=0001$ results in an overflow because the result cannot be represented as a 4-bit two's complement number. The simulation snapshot is shown below:

COE-561: Digital System Design and Synthesis
 Assignment 1 Solution

(iii)

The code for an n-bit CLA is shown below:

```
entity CLADDER is
    Generic(n :positive :=8);
    port(A, B: in bit_vector(n-1 downto 0);
    Cin: in bit;
    Sum : out bit_vector(n-1 downto 0);
    Cout, OV: out bit);
```

end entity CLADDER;

(iv)

Following is the code for the Structural architecture of the n-bit CLA:

```
Architecture Structural of CLADDER is
    component CLADDER4
        port(A, B: in bit_vector(3 downto 0);
                Cin: in bit;
                Sum: out bit_vector(3 downto 0);
                Cout, OV: out bit);
    End Component;
    Signal local: bit_vector(0 to n/4);
    Signal dummy: bit_vector(1 to n/4);
begin
    local(0) <= Cin;
    g1: for i in 1 to n/4 generate
        g2: CLADDER4 port map(A((i*4)-1 downto (i-1)*4),
        B((i*4)-1 downto (i-1)*4), local(i-1), sum((i*4)-1
        downto (i-1)*4),local(i),dummy(i));
    end generate;
    ov<= dummy(n/4);
    Cout <= local(n/4);
End Structural;
```

COE-561: Digital System Design and Synthesis
Assignment 1 Solution

Simulation snapshot:

Overflow case:

COE-561: Digital System Design and Synthesis
 Assignment 1 Solution

Q2)i)
The design of the finite state machine that detects the sequence 11011 assuming overlapping sequence detection is shown below:

(ii)
the code for the above sequence detector assuming a rising-edge triggered system is shown below:

```
Entity detector_11011 is
    Port(x, clk, rst: in bit;
        z: out bit);
End detector_11011;
Architecture behave of detector_11011 is
    Type state is(reset, got1, got11, got110, got1101,
                        got11011);
    signal current: state :=reset;
begin
    Process(clk, rst)
    begin
        if(rst = '1') then
                current <= reset;
            end if;
```


COE-561: Digital System Design and Synthesis Assignment 1 Solution

```
if(clk = '1' and clk'event and rst ='0') then
    case current is
    WHEN reset =>
    if(x='1') then current <= got1;
    else
    current <= reset;
    end if;
    WHEN got1 =>
        if(x='1') then current <= got11;
        else
        current <= reset;
        end if;
    WHEN got11 =>
        if(x ='0') then current <= got110;
        end if;
    WHEN got110 =>
        if(x='1') then current <= got1101;
        else
        current <= reset;
        end if;
            WHEN got1101 =>
        if(x='1') then current <= got11011;
        else
        current <= reset;
        end if;
            WHEN got11011 =>
            if(x='1') then current <= got11;
            else
            current <= got110;
            end if;
        end case;
        end if;
```

 end process;
 z<='1' when current = got11011 else '0';
 end behave;

COE-561: Digital System Design and Synthesis
 Assignment 1 Solution

(iii)

The code for the test bench and a snapshot of the simulation output are shown below:

```
Entity detector_test is
End detector_test;
Architecture test of detector_test is
    Component detector_11011 is
        port(x, clk, rst: in bit;
        z: out bit);
    End Component;
    signal xin, clock, rstin, zout: bit;
begin
    a1: detector_11011 port map(xin,clock,rstin,zout);
    clock <= not clock after 50 ns;
    xin<='0',
    '1' after 200 ns, -- x will remain at 0 for 2 clock
        --cycles (200 ns) then it gets '1'
    '0' after 400 ns,
    '1' after 500 ns,
    '0' after 600 ns,
    '1' after 700 ns,
    '0' after 1000 ns,
    '1' after 1100 ns,
    '0' after 1300 ns,
    '1' after 1400 ns,
    '0' after 1600 ns,
    '1' after 1800 ns,
    '0' after 1900 ns,
    '1' after 2000 ns,
    '0' after 2300 ns,
    '1' after 2400 ns,
    '0' after 2700 ns;
end test;
```

COE-561: Digital System Design and Synthesis
Assignment 1 Solution

