
COE-561: Digital System Design and Synthesis
Assignment 1 Solution

 1

Q1)

The basic building block of the CLA adder is the partial full adder (PFA). The PFA and the
carry path circuitry can be viewed as working in parallel to generate the sum and the carry
respectively.

Partial Full Adder:

This block takes three bits as input (A , B , C) and generates three outputs:

Gi = Ai · Bi Called the generate function
Pi = BiAi ⊕ called the propagate function
Si = CiBiAi ⊕⊕ called the sum function

This is shown below. The output of the first two functions, Gi and Pi, will be used later to
generate the carry at each stage of the carry look ahead adder (CLA).

In order to construct a 4-bit CLA, four PFAs are needed to generate the signals that will be
used in the functions below.

S0 = CinBA ⊕⊕ 00
S1 = 111 CBA ⊕⊕
S2 = 222 CBA ⊕⊕
S3 = 333 CBA ⊕⊕

C1 = G0 + Cin P0
C2 = G1 + G0 P1 + Cin P1 P0
C3 = G2 + G1 P2 + G0 P1 P2 + P2 P1 P0 Cin
Cout =G3 + G2 P3 + G1 P3 P2 + G0 P3 P2 P1 + P3 P2 P1 P0 Cin

Overflow occurs when the number of bits is insufficient to accommodate the sum. In our
case, this occurs when the sum requires more than 4 bits.
The overflow is detected by the signal OV which is described by the following Boolean
function:

 OV = CoutC ⊕3

COE-561: Digital System Design and Synthesis
Assignment 1 Solution

 2

(i)

The code that describes this 4-bit CLA entity is shown below:

(ii)
The code for the concurrent architecture of the CLA entity is shown below:

Entity CLADDER4 is

 port (A,B: in bit_vector(3 downto 0);
 Cin: in bit;
 Sum: out bit_vector(3 downto 0);
 Cout, OV: out bit);
end;

Architecture concurrent of CLADDER4 is

 Signal C1, C2, C3, C4: bit;
 Signal P, G: bit_vector(3 downto 0);

begin
 Sum(0) <= A(0) xor B(0) xor Cin;
 Sum(1) <= A(1) xor B(1) xor C1;
 Sum(2) <= A(2) xor B(2) xor C2;
 Sum(3) <= A(3) xor B(3) xor C3;

 P(0) <= A(0) xor B(0);
 P(1) <= A(1) xor B(1);
 P(2) <= A(2) xor B(2);
 P(3) <= A(3) xor B(3);
 G(0) <= A(0) and B(0);
 G(1) <= A(1) and B(1);
 G(2) <= A(2) and B(2);
 G(3) <= A(3) and B(3);

 C1 <= G(0) or (Cin and P(0));
 C2 <= G(1) or (G(0) and P(1)) or (Cin and P(1) and P(0));
 C3 <= G(2) or (G(1) and P(2)) or (G(0) and P(1) and P(2))
 or (P(2) and P(1) and P(0) and Cin);
 C4 <= G(3) or (G(2) and P(3)) or(G(1) and P(3) and P(2))
 or (G(0) and P(3) and P(2) and P(1)) or (P(3) and P(2) and

P(1) and P(0) and Cin);
 OV <= C3 xor C4;
 Cout <= C4;
end concurrent;

COE-561: Digital System Design and Synthesis
Assignment 1 Solution

 3

Simulation results:

Normal Operation:

Addition of the two numbers -5 and 3 with the Cin set to 1 results in -1 ; A = 1011 , B =
0011 and Cin = 1 results in the following signals which are shown in the simulation
snapshot below:

C1 = 1 , C2 = 1 , C3 = 0 , Cout = 0
S0 = 1 , S1 = 1 , S2 = 1 , S3 = 1

COE-561: Digital System Design and Synthesis
Assignment 1 Solution

 4

Overflow bit:

Addition of the numbers A = 0111 and B = 0001 results in an overflow because the result
cannot be represented as a 4-bit two’s complement number. The simulation snapshot is
shown below:

COE-561: Digital System Design and Synthesis
Assignment 1 Solution

 5

(iii)
The code for an n-bit CLA is shown below:

(iv)
Following is the code for the Structural architecture of the n-bit CLA:

entity CLADDER is

 Generic(n :positive :=8);
 port(A, B: in bit_vector(n-1 downto 0);
 Cin: in bit;
 Sum : out bit_vector(n-1 downto 0);
 Cout, OV: out bit);

end entity CLADDER;

Architecture Structural of CLADDER is

 component CLADDER4
 port(A, B: in bit_vector(3 downto 0);
 Cin: in bit;
 Sum: out bit_vector(3 downto 0);
 Cout, OV: out bit);

 End Component;
 Signal local: bit_vector(0 to n/4);
 Signal dummy: bit_vector(1 to n/4);

begin

 local(0) <= Cin;
 g1: for i in 1 to n/4 generate
 g2: CLADDER4 port map(A((i*4)-1 downto (i-1)*4),
 B((i*4)-1 downto (i-1)*4), local(i-1), sum((i*4)-1

downto (i-1)*4),local(i),dummy(i));

 end generate;
 ov<= dummy(n/4);
 Cout <= local(n/4);

End Structural;

COE-561: Digital System Design and Synthesis
Assignment 1 Solution

 6

Simulation snapshot:

Overflow case:

COE-561: Digital System Design and Synthesis
Assignment 1 Solution

 7

Q2)i)

The design of the finite state machine that detects the sequence 11011 assuming
overlapping sequence detection is shown below:

(ii)

the code for the above sequence detector assuming a rising-edge triggered system is shown
below:

Reset
/0

got1
/0

got11
/0

got110
/0

got1101
/ 0

got11011
/0

0

1 1
1

00

1
0

0

0

1

1

Entity detector_11011 is
 Port(x, clk, rst: in bit;
 z: out bit);
End detector_11011;

Architecture behave of detector_11011 is
 Type state is(reset, got1, got11, got110, got1101,
 got11011);
 signal current: state :=reset;
begin
 Process(clk, rst)
 begin
 if(rst = '1') then
 current <= reset;
 end if;

COE-561: Digital System Design and Synthesis
Assignment 1 Solution

 8

if(clk = '1' and clk'event and rst ='0') then
 case current is
 WHEN reset =>
 if(x='1') then current <= got1;
 else
 current <= reset;
 end if;

 WHEN got1 =>
 if(x='1') then current <= got11;
 else
 current <= reset;
 end if;

 WHEN got11 =>
 if(x ='0') then current <= got110;
 end if;

 WHEN got110 =>
 if(x='1') then current <= got1101;
 else
 current <= reset;
 end if;

 WHEN got1101 =>
 if(x='1') then current <= got11011;
 else
 current <= reset;
 end if;

 WHEN got11011 =>
 if(x='1') then current <= got11;
 else
 current <= got110;
 end if;

 end case;
 end if;

 end process;

 z<='1' when current = got11011 else '0';

end behave;

COE-561: Digital System Design and Synthesis
Assignment 1 Solution

 9

(iii)
The code for the test bench and a snapshot of the simulation output are shown below:

Entity detector_test is
End detector_test;

Architecture test of detector_test is

 Component detector_11011 is
 port(x, clk, rst: in bit;
 z: out bit);
 End Component;

 signal xin, clock, rstin, zout: bit;

begin
 a1: detector_11011 port map(xin,clock,rstin,zout);
 clock <= not clock after 50 ns;

 xin<='0',
 '1' after 200 ns, -- x will remain at 0 for 2 clock

 --cycles (200 ns) then it gets '1'
 '0' after 400 ns,
 '1' after 500 ns,
 '0' after 600 ns,
 '1' after 700 ns,
 '0' after 1000 ns,
 '1' after 1100 ns,
 '0' after 1300 ns,
 '1' after 1400 ns,
 '0' after 1600 ns,
 '1' after 1800 ns,
 '0' after 1900 ns,
 '1' after 2000 ns,
 '0' after 2300 ns,
 '1' after 2400 ns,
 '0' after 2700 ns;

end test;

COE-561: Digital System Design and Synthesis
Assignment 1 Solution

 10

