
## COE 561, Term 111

## **Digital System Design and Synthesis**

## HW# 1

## Due date: Saturday, Oct. 15

**Q.1.** Consider the following OBDD with the variable ordering {a, b, c}. Reduce it based on **Reduce** function to obtain the ROBDD. Show the details of your work.



- **Q.2.** Consider the function f = a (b+c)(d+e):
  - (i) Draw the **ROBDD** for the function using the variable order  $\{a, b, c, d, e\}$ .
  - (ii) Draw the **ROBDD** for the function using the variable order {b, d, a, c, e}.
  - (iii) Comment on the difference between the two obtained ROBDDS and what heuristic do you suggest one should choose in selecting a variable order.
- **Q.3.** Consider the two functions  $f=a\oplus b\oplus c$  and  $g=b\oplus c'\oplus d$ :
  - (i) Compute the function f.g based on orthonormal basis expansion.
  - (ii) Draw the ITE DAG for the function f⊕g. Show the details of the ITE algorithm step by step. Use the variable order {a, b, c, d}
- **Q.4.** Consider the following given matrix representing a covering problem:

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Find a **minimum cover** using **EXACT\_COVER** procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed:  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$ ,  $C_5$ ,  $C_6$ .

- **Q.5.** Consider the function  $F(A, B, C, D) = \overline{AC} + CD + AB + BC + \overline{BD} + AD$ . Using recursive paradigm, determine if the function F is **tautology** or not. You need to choose the right variable for expansion to minimize computations.
- **Q.6.** Consider the function  $F(A, B, C, D) = \overline{BD} + ACD + B\overline{C} + BC\overline{D}$ 
  - (i) Compute the **complement** of the function using the recursive complementation procedure outlined in section 7.3.4. You need to choose the right variable for expansion to minimize computations.
  - (ii) Compute all the **prime implicants** of the function using the method outlined in section 7.3.4. You need to choose the right variable for expansion to minimize computations.