COE 561, Term 091 Digital System Design and Synthesis

HW# 1

Due date: Sunday, Nov. 1

Q.1. Consider the following OBDD with the variable ordering {a, b, c, d}. Reduce it based on **Reduce** function to obtain the ROBDD. Show the details of your work.

Q.2. Consider the function f=(a+bc)(d+b'c'):

- (i) Draw the **ROBDD** for the function using the variable order {a, b, c, d}.
- (ii) Draw the **ROBDD** for the function using the variable order {a, d, b, c}.
- **Q.3.** Consider the two functions f=(a+bc)(d+b'c') and g=(a+d)(b+c):
 - (i) Compute the function $f \oplus g$ based on orthonormal basis expansion.
 - (ii) Draw the ITE DAG for the function f.g. Show the details of the ITE algorithm step by step. Use the variable order {a, b, c, d}
- Q.4. Consider the following given matrix representing a covering problem:

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Find a **minimum cover** using **EXACT_COVER** procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed: C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 .