COE 561, Term 081

Digital System Design and Synthesis

HW# 1

Due date: Tuesday, Nov. 11

Q.1. Consider the following OBDD with the variable ordering {a, b, c, d}. Reduce it based on **Reduce** function to obtain the ROBDD. Show the details of your work.

- **Q.2.** Consider the functions f1=ab+ac+bc, $f2=a(b\oplus c)+bc$ and $f3=a(a\oplus b)'+c(a\oplus b)$:
 - (i) Draw the **ROBDD** for the functions f1, f2 and f3 using the variable order $\{a, b, c\}$.
 - (ii) What do you conclude from the results obtained in (i).
- **Q.3.** Consider the two functions $f=a\oplus b\oplus c$ and g=ab+ac+bc.
 - (i) Compute the function $f \oplus g$.
 - (ii) Draw the ITE DAG for the function $f \oplus g$. Show the details of the ITE algorithm step by step. Use the variable ordering $\{a, b, c\}$
- **Q.4.** Consider the following given matrix representing a covering problem:

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Find a **minimum cover** using **EXACT_COVER** procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed: C_1 , C_2 , C_3 , C_4 , C_5 , C_6 .

- **Q.5.** Consider the function $F(A, B, C) = AB + \overline{A}C + \overline{B}\overline{C}$.
 - (i) Represent the function using positional cube notation.
 - (ii) Using positional cube notation, compute the cofactor F_A .
 - (iii) Using positional cube notation, compute the **consensus** between the two cubes \overline{AC} and \overline{BC} .
 - (iv) Using positional cube notation, based on the sharp operation, compute the complement of the function F.
 - (v) Using positional cube notation, determine if the cube *BC* is **covered** by the function $F = AB + \overline{A}C + \overline{B}\overline{C}$.
- **Q.6.** Consider the function $F(A, B, C, D) = \overline{AC} + A\overline{B} + \overline{AB}C + \overline{ACD}$:
 - (i) Compute the **complement** of the function using the recursive complementation procedure outlined in section 7.3.4.
 - (ii) Compute all the **prime implicants** of the function using the method outlined in section 7.3.4.

Note that you do not need to use the positional cube notation in your solution of this question.