COE 561, Term 081
 Digital System Design and Synthesis

HW\# 1

Due date: Tuesday, Nov. 11

Q.1. Consider the following OBDD with the variable ordering $\{a, b, c, d\}$. Reduce it based on Reduce function to obtain the ROBDD. Show the details of your work.

Q.2. Consider the functions $f 1=a b+a c+b c, f 2=a(b \oplus c)+b c$ and $f 3=a(a \oplus b)^{\prime}+c(a \oplus b)$:
(i) Draw the ROBDD for the functions $\mathbf{f 1}, \mathbf{f} \mathbf{2}$ and $\mathbf{f} 3$ using the variable order $\{a, b, c\}$.
(ii) What do you conclude from the results obtained in (i).
Q.3. Consider the two functions $\mathrm{f}=\mathrm{a} \oplus \mathrm{b} \oplus \mathrm{c}$ and $\mathrm{g}=\mathrm{ab}+\mathrm{ac}+\mathrm{bc}$.
(i) Compute the function $\mathrm{f} \oplus \mathrm{g}$.
(ii) Draw the ITE DAG for the function $\mathfrak{f} \oplus \mathrm{g}$. Show the details of the ITE algorithm step by step. Use the variable ordering $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
Q.4. Consider the following given matrix representing a covering problem:

$$
A=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

Find a minimum cover using EXACT_COVER procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed: $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$.
Q.5. Consider the function $F(A, B, C)=A B+\bar{A} C+\bar{B} \bar{C}$.
(i) Represent the function using positional cube notation.
(ii) Using positional cube notation, compute the cofactor F_{A}.
(iii) Using positional cube notation, compute the consensus between the two cubes $\bar{A} C$ and $\bar{B} \bar{C}$.
(iv)Using positional cube notation, based on the sharp operation, compute the complement of the function F.
(v) Using positional cube notation, determine if the cube $B C$ is covered by the function $F=A B+\bar{A} C+\bar{B} \bar{C}$.
Q.6. Consider the function $F(A, B, C, D)=\bar{A} \bar{C}+A \bar{B}+\bar{A} \bar{B} C+\bar{A} C \bar{D}$:
(i) Compute the complement of the function using the recursive complementation procedure outlined in section 7.3.4.
(ii) Compute all the prime implicants of the function using the method outlined in section 7.3.4.

Note that you do not need to use the positional cube notation in your solution of this question.

