COE 561, Term 061

Digital System Design and Synthesis

HW# 1

Due date: Sunday, Oct. 29

Q.1. Consider the following circuit shown below:

Find the set of all test vectors that detect the fault h stuck-at-1.

Q.2. Consider the following OBDD with the variable ordering {a, b, c, d}. Reduce it based on **Reduce** function to obtain the ROBDD. Show the details of your work.

- **Q.3.** Consider the function $f=a_3b_3' + (a_3'\oplus b_3)a_2b_2' + (a_3'\oplus b_3)(a_2'\oplus b_2)a_1b_1'$
 - (i) Implement the function f using 2x1 Multiplexers. Minimize the number of multiplexers used.
 - (ii) Implement the function f using 4x1 Multiplexers. Minimize the number of multiplexers used.
 - (iii) Draw the **ROBDD** for the function f using the variable order {a₁, b₁, a₂, b₂, a₃, b₃}. Is this the best ordering used? If not suggest a better ordering and show its ROBDD.

- **Q.4.** Consider the two functions $f=a\oplus b\oplus c$ and g=ac+a'b'+bc'.
 - (i) Compute the following functions: $f \cdot g$, f + g, and $f \oplus g$.
 - (ii) Draw the ITE DAG for the function f ⊕g. Show the details of the ITE algorithm step by step.
- **Q.5.** Consider the following given matrix representing a covering problem:

$$A = \begin{bmatrix} 1001100 \\ 1010010 \\ 1100000 \\ 0011100 \\ 0101000 \\ 1001101 \\ 1000011 \\ 1101110 \\ 1011100 \\ 0000001 \end{bmatrix}$$

Find a minimum cover using **EXACT_COVER** procedure. Show the details of the algorithm.