COMPUTER ENGINEERING DEPARTMENT

COE 561

Digital System Design and Synthesis

MAJOR EXAM II

(Open Book Exam)

First Semester (111)

Time: 8:00-10:30 PM

Student Name : _KEY_____

Student ID. :_____

Question	Max Points	Score
Q1	15	
Q2	20	
Q3	15	
Q4	14	
Q5	18	
Q6	18	
Total	100	

(Q1) Consider the function F(A, B, C, D) with ON-SET= $\Sigma m(0, 5, 7, 8, 12)$ and OFF-SET= $\Sigma m(2, 10, 11, 13, 14, 15)$. Note that you do not need to use the positional-cube notation in your solution.

- (i) Expand the minterm A'B'C'D' using ESPRESSO heuristics.
- (ii) A cover of the function is given by F = A'B + C'D'. Reduce the cube A'B using Theorem 7.4.1.
- (iii) Use Corollary 7.4.1 to check if the implicant A'B is an essential prime implicant.

(11) Reduce the cube
$$\overline{AB}$$

 $Q = \overline{CD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$
 $+ \overline{ABCD}$

(Q2) Consider the following cover of a function F(A,B,C,D)

$$F = \overline{A}\overline{C} + \overline{A}B + B\overline{C} + BD + ACD$$

With $F^{DC} = \sum m(6, 12)$

- (i) Determine the relatively essential set of cubes, E^{r} .
- (ii) Determine the totally redundant, R^t, and partially redundant, R^p, sets of cubes.
- (iii) Find a subset of R^p that, together with E^r, covers the function by solving a covering problem.

(ii) Totally redundant set
$$\mathbb{R}^{d}$$
:
- check AB
 $[\pi \overline{c}, A cD, \overline{A} B c\overline{D}, A B \overline{c} \overline{D}] \overline{A} B$
 $= \{\overline{c}, \circ, \langle \overline{O}, \circ]$ Not tautology \Rightarrow Part. Red.
- check BC
 $[\overline{A}\overline{c}, A cD, \overline{A} B c\overline{D}, A B \overline{c} \overline{D}] B \overline{c}$
 $= \{\overline{A}, \circ, \circ, A\overline{D}\}$ Not tautology \Rightarrow Part. Red.
- check BD
 $[\overline{A}\overline{c}, A cD, \overline{A} B c\overline{D}, A B \overline{c} \overline{D}] B D$
 $= \{\overline{A}\overline{c}, A cD, \overline{A} B c\overline{D}, A B \overline{c} \overline{D}\} B D$
 $= \{\overline{A}\overline{c}, A cD, \overline{A} B c\overline{D}, A B \overline{c} \overline{D}\} B D$
 $= \{\overline{A}\overline{c}, A cD, \overline{A} B c\overline{D}, A B \overline{c} \overline{D}\} B D$
 $= \{\overline{A}\overline{c}, A cD, \overline{A} B c\overline{D}, A B \overline{c} \overline{D}\} B D$
(iii) First, we find coverage relations:
 $-\overline{AB}$:
 $[\overline{A}\overline{c}, A cD, \overline{A} B c\overline{D}, A B \overline{c} \overline{D}, B \overline{c}, B D]$
 $= [\overline{c} c, \circ, c\overline{D}, \circ, \overline{c}, c\overline{D}]$
 $= [\overline{c} c, \circ, c\overline{D}, \circ, \overline{c}, c\overline{D}]$
 $= C coverage coverage coverage relations:$
 $= 0 = 1 : \{\overline{c}, \circ, \circ, \circ, \overline{c}, c\overline{D}\} \Rightarrow add row (1, \circ, 1)$
 $+ D = 0 : [\overline{c}, \circ, c, \circ, c\overline{c}, c\overline{D}] \Rightarrow No rows added$
 $= 0 \overline{c}$:
 $[\overline{A}\overline{c}, A cD, \overline{A} B c\overline{D}, A B c\overline{D}, \overline{A} B, B D] B \overline{c}$
 $= [\overline{A}, \circ, \circ, A\overline{D}, \overline{A}, D]$
 $= C coverage co$

- BD:

$$[AZ, ACD, \overline{ABCD}, AB\overline{CD}, \overline{AB}, B\overline{C}]BD$$

= $[AZ, AC, 0, 0, \overline{A}, \overline{C}]$
- Expand on C:
* $C = 1: \{0, A, 0, 0, \overline{A}, 0\} \Rightarrow Added row (1, 0, 1)$
* $C = 0: \{\overline{A}, 0, 0, 0, \overline{A}, 1\} \Rightarrow Added row (0, 1, 1)$

(Q3) Consider the logic network defined by the following expression:

$$x = a c e + a c' e' + a d + b c e + b c' e' + b d$$

Using the recursive procedure **KERNELS**, compute all the kernels and co-kernels of *x*. Show all the steps of the algorithm. Assume the following lexicographic order: $\{a, b, c, c', d, e, e'\}$.

- <u>i=1(a)</u>; (ubes(x,a) = {acc, ace, ad } Z 2, C=a The Kernel ce + ce + d will be found Recursive call with i=2; Since the number of cubes containing each Variable is < 2, no Kernels will be found.

$$-\frac{c=4(\overline{c})}{(ubrs(n,\overline{c}))} = \{a\overline{c}\overline{e}, b\overline{c}\overline{e}\} \neq 2, C = \overline{c}\overline{e} \}$$
The Hernel a+b will be found

-
$$\underline{c} = 5$$
 (d);
(ubes (x,d) = {ad, bd} > 2, C = d
The Kernel ath will be found
- $\underline{c} = 6$ (e);
(ubes (x,e) = {ace, bce} > 2, C = ce
Since the cube contains literal $C < 6$, no
Kernels will be found.
- $\underline{c} = 7$ (E);
(ubes (x,E) = {ace, bce} > 2, C = ce
Since the cube contains literal $C < 6$, no
Kernels will be found.
- $\underline{c} = 7$ (E);
(ubes (x,E) = {ace, bce} > 2, C = ce
Since the cube contains literal $C < 7$, no
Kernels will be found.
Thus, the list of Kernels and co-Kernels of
X are:
Kernel Co-Kernel

a+b ce, ze, d			
	a	+ b	ce, Zē, d

[14 Points]

(Q4) Consider the logic network defined by the following expression:

x = a b c + a b d + a b' c' d' + a' b c' d' + a' b' c + a' b' d + c e + c f + d e + d f

Compute the weight of the double cube divisors $d_1 = a b + a' b'$ and $d_2 = c + d$. Extract the double cube divisor with the highest weight and show the resulting network after extraction and the number of literals saved.

Double Cube Divisor	Base
$d_1 = ab + \overline{a}\overline{b}$	c,d
$\overline{d}_1 = a\overline{b} + \overline{a}b$	53
d2 = c+d	ab, e, f, ab
weight $(d_1) = 3 \times 4 - 3$	-4 + 1 + 1 + 2 = 9
weight $(d_2) = 4 \neq 2 - 4$	-2 + 2 + 1 + 1 + 2 + 2 = 10
Since d2 has higher	weight, it will be
extracted .	Clar extraction of d2 is:
The resulting network	
[1] = c + d	
X = ab[1] + ab	$\begin{bmatrix} I \end{bmatrix} \neq a D \begin{bmatrix} I \end{bmatrix}$
+ ab [1] + [1	Je + LIJI 18 liderals

Original number of literals = 28 literals Number of literals saved = 10 literals

[18 Points]

(Q5) Consider the logic network defined by the following expressions with inputs $\{a, b, c\}$ and output $\{z\}$:

$$x = a b' + a'b$$
$$y = a'c'x' + bx$$
$$z = y + ab'$$

- (i) Compute the SDC set for nodes *x* and *y*.
- (ii) Use the SDC computed in (i) to simplify *z*.
- (iii) Compute the CDC and ODC of Y based on the simplified network in (ii) and simplify its function.

(i)
$$SD(x = x \oplus (a\overline{b} + \overline{a}b) = xab + x\overline{a}b + \overline{x}\overline{a}b$$

$$SDX_{y} = y \oplus (\overline{acx} + bx) = y \overline{b}x + y \overline{ax}$$

+ $y \overline{cx} + \overline{y} \overline{acx}$
+ $\overline{y} \overline{bx}$

(111)
$$(DCy = SDCx = Xab + Xa$$

[18 Points]

(Q6) Consider the logic network below with inputs $\{a, b, c, d, e, f\}$ and output $\{X\}$:

Assume that the delay of a gate is related to the number of its inputs i.e. the delay of a 2-input AND gate is 2. Also, assume that the input data-ready times are zero for all inputs except input *a*, which has a data-ready time of 2.

- (i) Compute the data ready times and slacks for all vertices in the network.
- (ii) Determine the topological critical path.
- (iii) Suggest an implementation of the function *X* to reduce the delay of the circuit to the minimum possible and determine the maximum propagation delay in the optimized circuit. Has the area been affected?

Data Ready -	Time Required Time	Slack
ta = 2	$\overline{t}_a = \min(4-2,4-2)=2$	Sa = 2 - 2 = 0
66=00	$E_b = min(4-2,4-2)=2$	Sb = 2 - 0 = 2
tc=0	$\overline{L}_{c} = mm(4-2,4-2) = 2$	$Sc = 2 - \omega = 2$
td=0	$\overline{t}_{d} = min(4-2,4-2) = 2$	Sd = 2 - 0 = 2
te = 0	$\overline{fe} = 8$	Se = e - 0 = 8
if = 0	$\overline{l}_{f} = 8$	Sf = 8 - 0 = 8
$t_{3} = 4$	$\overline{f_0} = 4$	50 = 4-4=0
$\frac{1}{4}$	$\overline{t_h} = 4$	Sh = 4 - 1 = 0
$\frac{1}{F(z)}$	$\widehat{E_i} = 4$	$S_i = 4 - 2 = 2$
$t_i = 2$	$\overline{t_j} = 4$	5j = 4-2 = 2
$\frac{1}{t_{K}} = 8$	$\overline{f_{K}} = 8$	$S\mu = 8 - 8 = 0$
$f \times = 11$	$\overline{t}_{x} = 11$	Sx = 11- 11=0

Page 13 of 13

Gllows!

