COMPUTER ENGINEERING DEPARTMENT

COE 561

Digital System Design and Synthesis

MAJOR EXAM II

(Open Book Exam)

First Semester (091)

Time: 3:30-6:00 PM

Student Name : _KEY_____

Student ID. :_____

Question	Max Points	Score
Q1	30	
Q2	15	
Q3	15	
Q4	20	
Q5	20	
Total	100	

(Q1) Consider the function F(A, B, C, D) with ON-SET= $\Sigma m(5, 6, 7, 13)$ and OFF-SET= $\Sigma m(1, 8, 12)$. Note that you do not need to use the positional-cube notation in your solution.

- (i) Expand the minterm ABC'D using ESPRESSO heuristics.
- (ii) A cover of the function is given by F = C + BD. Reduce the cube C using Theorem 7.4.1.
- (iii) Use Corollary 7.4.1 to check if the implicant C is an essential prime implicant.

(11) Reduce the cube C

$$Q = QO + \overline{ACO} + \overline{BC} + AC + ABO$$

 $DC-BH$
 $= \overline{BO} [\overline{AC} + C + AC] + \overline{BO} [C + AC + A]$
 $+ \overline{BO} [\overline{AC} + AC] + \overline{BO} [C + AC + A]$
 $+ \overline{BO} [\overline{AC}] + \overline{BO} [A + C] + \overline{BO} [A\overline{C} + AC]$
 $\overline{Q} = \overline{BO} [A\overline{C}] + \overline{BO} [A\overline{C}] + \overline{BO} [A\overline{C} + AC]$
 $\overline{Q}_{c} = \overline{BOA}$, $SC(\overline{Q}_{c}) = \overline{ABD}$
 $C \cap SC(\overline{Q}_{c}) = \overline{ABCO}$
 $True, the cube C is reduced to \overline{ABCO} .
(11) Check if C is an essential prime implicant
 $Q = C$
 $G = \{BD, \overline{ACD}, \overline{BC}, AC, A\overline{BD}\}$
 $H = Constantsus (G + AC, A)$
 $I = \{BD, \overline{AD}, \overline{AD}, \overline{ABD}\}$
 $\{H \cup OC\}_{Q} = \{BO, \overline{AD}, \overline{AD}, \overline{AD}, \overline{ACD}, \overline{BC}, AC, A\overline{BD}\}$
 $= \{BO, \overline{AD}, \overline{AD}, \overline{ABD}, \overline{AD}, \overline{AD}, \overline{AD}\}$
 $= \{D, \overline{D}, \overline{D}, \overline{AD}, \overline{AD}, \overline{AD}, \overline{AD}\}$
 $= \{BO, \overline{AD}, \overline{AD}, \overline{AD}, \overline{AD}\}$
 $= MC Prime implicant C is not an essential prime implicant.$$

(Q2) Consider the logic network defined by the following expression:

$$x = a c e + a c f + b c e + b c f + d e + d f$$

Using the recursive procedure **KERNELS**, compute all the kernels and co-kernels of x. Show all the steps of the algorithm. Assume the following lexicographic order: {a, b, c, d, e, f}.

 $\dot{c} = 1$ (a): cubes (x,a) = {ace, acf } = 2 C = acThe Kernel etf will be returned C=2 (b); cubes (x,b) = { bce, bcf} 32 C = bcThe Kernel eff will be returned i=3 (c); cubes (x,c) = { ace, acf, bee, bef? C = C Kernel found : ac + af + be + bf Recursive call on the Kernel with c= 4 Edg - No Kernel will be found for literald - c' = 5!cubes containing e: {ae, be} >2 C=e The Kernel at is generated -c=61cubes containing f: Eaf, bf3 c = fThe Kernel atto is generated

$$\frac{C^{2}-4(d)}{C} = \left\{ de, df \right\} = 2$$

$$C = d$$

$$\frac{C}{M} \quad \text{Kernel eff rs generated}$$

$$\frac{\mathcal{E}=6 (f)}{cvbes} (x, f) = 2 acf, bcf, df?$$

$$\frac{c=f}{rke kernel ac + bc+d is generated}{recursive call with c'=7 does not produce any kernel.}$$

$$\frac{rkvs}{rkvs}, he list of kernels and co-kernels of x are;$$

$$\frac{kernel}{c + f} = \frac{cc}{bc, d}$$

$$\frac{a+b}{ce, cf}$$

$$\frac{ac+bc+d}{e, f} = e, f$$

[15 Points]

(Q3) Consider the logic network defined by the following expression:

x = a b e'f' + a b' e + a b'f + a' d e'f' + a' d' e + a' d'f + c e'f'

Compute the weight of the double cube divisors $d_1 = a b + a'd$ and $d_2 = e + f$. Extract the double cube divisor with the highest weight and show the resulting network after extraction and the number of literals saved.

Double Cube Divisor	Base
dl = ab + ad	zf
$\overline{d} = a\overline{b} + \overline{a}\overline{d}$	e,f
$d_2 = etf$	ab, ad
weight(d1) = 3 + 4 - 3 - 4 +	2+1+1 =9
weight $(d_2) = 2 + 2 - 2 - 2 - 2$	+2+2+3=7
Since of has a higher we	ght, it will be
extracted.	extraction of
the resulting delite	
[1] = ab + ad	
X = EIJeF + EIJe + E	1]f + cef
original number of literal	14 1 + rais
Number of literals saved	= 9 literals

[20 Points]

(Q4) Consider the logic network defined by the following expressions with inputs $\{a, b, c, d, e\}$ and output $\{y\}$:

$$x = a b + a' d$$
$$w = x' d' + b c'$$
$$y = (w \oplus e) a' b$$

- (i) Simplify the function *w* based on the utilization of don't care conditions.
- (ii) Based on perturbation analysis starting with the original network, determine if it is possible to change the implementation of x to x = a.

(i) we need to compute
$$SDC_X$$
 and ODC_W
to $SIDC_X = x \oplus (ab + \overline{a}d)$
 $= x (a\overline{b} + \overline{a}\overline{d}) + \overline{x} (ab + \overline{a}d)$
 $= x (a\overline{b} + \overline{x}\overline{d}) + \overline{x} (ab + \overline{a}d)$
 $= x a\overline{b} + \overline{x} \overline{a}\overline{d} + \overline{x} ab + \overline{x}\overline{a}d$
 $ODC_W = \overline{y_w} \oplus \overline{y_w} = \overline{e\overline{a}b} \oplus \overline{e\overline{a}b}$
 $= \overline{ab}(e\overline{\oplus}\overline{e}) = \overline{ab} = a+\overline{b}$

(11)
$$\delta = (ab + \overline{a}d) \oplus a$$

= $(a\overline{b} + \overline{a}\overline{d})a + (ab + \overline{a}\overline{d})\overline{a}$
= $a\overline{b} + \overline{a}\overline{d}$

$$ODC_{x} = d + bc + a + b$$

since
$$\delta \leq ODEx$$
, then it is possible
to change the implementation of x to
 $\chi = d$

(Q5) Consider the logic network below with inputs $\{a, b, c, d, e, f, g\}$ and output $\{X\}$:

Assume that the delay of a gate is related to the number of its inputs i.e. the delay of a 2-input AND gate is 2. Also, assume that the input data-ready times are zero for all inputs.

- (i) Compute the data ready times and slacks for all vertices in the network.
- (ii) Determine the topological critical path.
- (iii) Suggest an implementation of the function *X* using only 2-input gates to reduce the delay of the circuit to the minimum possible and determine the maximum propagation delay in the optimized circuit. Has the area been affected?

(i)	Data ready him	e Required time	Slack
•	ta =0	$\overline{t}a = o$	5a = 0
	to =0	<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	56:20
	tc =0	$\overline{t}c = 2$	$S_{c} = 2 - 0 = 2$
	<i>td</i> = 0	$\overline{t} \partial = 4$	52 = 4 - 0 = 4
	ta 20	Ee = 4	se = 4-0=4
	bc =0	$\hat{k}_{\text{F}} = 6$	st = e-o=e
	60 20	$\overline{b} = 6$	$S_{9} = 6 - 0 = 6$
	4 2	En = 2	Sh = 2 - 2 = 0
	$\frac{c_{n-1}}{c_{n-1}}$	$\overline{t_i} = 4$	Si = 4-4=0
	$\frac{c_l}{b_l} = 6$	$\overline{\xi_1} = 6$	sj = 6 - 6 = °
	$\frac{g}{4r=6}$	Ex = 6	5K = 6-6=0
	$\frac{0}{10}$	$\overline{t}_1 = 8$	SL = 8-8=0
	tx = 2	En = 8	$S_m = 8 - 2 = 6$
	$t_{x} = 10$	Ix = 10	Sx = 10-10 =0
	•		

Page 10 of 10

(iii) To optimiste the delay of the network,
we need to improve the delay of nodes
in the critical path.
$$J = id + ie \implies l = i(d+e)$$
$$X = l \cdot m = c \cdot [(d+e) \cdot m]$$
The resulting network:

The maximum propagation delay in the optimized circuit is 6. Number of literals in the original circuit = 14 literals Number of literals in optimized circuit = 12 literals Thus, the area has also been reduced.