# COMPUTER ENGINEERING DEPARTMENT 

## COE 561

## Digital System Design and Synthesis

## MAJOR EXAM II <br> (Open Book Exam)

First Semester (091)
Time: 3:30-6:00 PM

Student Name : _KEY
Student ID. : $\qquad$

| Question | Max Points | Score |
| :---: | :---: | :---: |
| Q1 | 30 |  |
| Q2 | $\mathbf{1 5}$ |  |
| Q3 | $\mathbf{1 5}$ |  |
| Q4 | $\mathbf{2 0}$ |  |
| Q5 | $\mathbf{2 0}$ |  |
| Total | $\mathbf{1 0 0}$ |  |

[30 Points]
(Q1) Consider the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ with $\mathbf{O N}-\mathbf{S E T}=\Sigma \mathbf{m}(5,6,7,13)$ and $\mathbf{O F F}$ $\mathbf{S E T}=\Sigma \mathbf{m}(\mathbf{1}, \mathbf{8}, \mathbf{1 2})$. Note that you do not need to use the positional-cube notation in your solution.
(i) Expand the minterm $\mathbf{A B C}$ 'D using ESPRESSO heuristics.
(ii) A cover of the function is given by $\mathrm{F}=\mathrm{C}+\mathrm{BD}$. Reduce the cube C using Theorem 7.4.1.
(iii) Use Corollary 7.4.1 to check if the implicant $\mathbf{C}$ is an essential prime implicant.
(i) Expand the minterm $A B \bar{C} D$

Free set $=\{1,3,6,7\}$
Column 7 canst be raised as it has distance from the offset.
Examining the off-set, we can see that coll 6 is all oils in the offset. Thus, col. 6 can always be raised. thus, free set $=\{1,3\}$. The overexpanded cube $=D$
Thus, we need to check the cubes $\bar{A} B \bar{C} D$ and $\bar{A} B C D$ for being feasibly covered.
$S C(A B C D, \bar{A} B \overline{C D})=B \overline{C D}$ feasible
$\operatorname{SC}(A B C D, \bar{A} B C D)=B D$ feasible
Thus, the mmterm is expanded to $B D$ as it covers the other feasibly covered cube.
Thus, free set $=\{3\}$. This col. cant be raised as it has distance l from the offset.

Thees, the expanded cube is BD.
(ii) Reduce the cube $C$

$$
\begin{aligned}
Q= & B D+\underbrace{\bar{A} \bar{D}+\bar{B} C+A C+A \overline{B D}}_{D C-s C} \\
= & \bar{B} \bar{D}[\bar{A} \bar{C}+C+A C]+\overline{B D}[C+A C+A] \\
& +B \bar{D}[\bar{A} \bar{C}+A C]+B D[1] \\
= & \bar{B} \bar{D}[\bar{A}+C]+\overline{B D}[A+C]+B \bar{D}[\bar{A} \bar{C}+A C] \\
& +B D[1] \\
\bar{Q}= & \bar{B} \bar{D}[A \bar{C}]+\bar{B} D[\overline{A C}]+B \bar{B}[A \bar{C}+\overline{A C}] \\
\bar{Q} & =B \bar{D} \bar{A}, \operatorname{SC}\left(\overline{Q_{C}}\right]=\bar{A} \overline{B D}
\end{aligned}
$$

$$
c \cap \sec \left(\hat{Q}_{c}\right)=\bar{A} B C \bar{D}
$$

Thus, the cube $C$ is reduced to $\bar{A} B C \bar{D}$.
(iii) Check if $C$ is an essential prime implicant

$$
\begin{aligned}
\alpha & =C \\
G & =\{B D, \bar{A} \bar{C} \bar{D}, \overline{B C}, A C, A \bar{B} D\} \\
G \neq \alpha & =\{B \bar{C}, \bar{A} \bar{C} \bar{D}, A \bar{B} \bar{C},\} \\
H & =\text { Consensus }(G \neq \alpha, \alpha) \\
& =\{B D, \bar{A} \bar{D}, A \bar{B} D\} \\
\{H \cup D C\} & =\{B D, \bar{A} \bar{D}, \overline{A B D}, \bar{A} \bar{C} \bar{D}, \bar{B} C, A C, A \bar{B} D\}_{C} \\
& =\{B D, \bar{A} \bar{D}, A \bar{B} D, \bar{B}, A, A \bar{B} D\} \\
& =\{B D, \bar{A} \bar{D}, \bar{B}, A\} \\
& =\{D, \bar{D}, \bar{B}, A\} \Rightarrow \text { Tautology }
\end{aligned}
$$

Thus, the tmplrcant $C$ is not an essential pome implrcant.
(Q2) Consider the logic network defined by the following expression:

$$
x=a c e+a c f+b c e+b c f+d e+d f
$$

Using the recursive procedure KERNELS, compute all the kernels and co-kernels of $x$. Show all the steps of the algorithm. Assume the following lexicographic order: $\{\mathrm{a}$, b, c, d, e, f\}.

$$
\begin{aligned}
& i=1(a): \\
& \text { cubes }(x, a)=\{\text { ace, } a c f\} \geqslant 2 \\
& c=a c
\end{aligned}
$$

The kernel eff will be returned
$c=2(b):$

$$
\begin{aligned}
& \text { cubes }(x, b)=\{\text { bce, b cf }\} \geqslant 2 \\
& c=b c
\end{aligned}
$$

The kernel eff will be returned

$$
\begin{aligned}
& i=3(c): \\
& \operatorname{cubcs}(x, c)=\{a c e, a c f, b c e, b c f\} \\
& c=c
\end{aligned}
$$

Kernel found: $a e+a f+b e+b f$
Recursive call on the Kernel with $\hat{c}=4\{d\}$

- No kernel will be found for literal

$$
-c=5:
$$

cubes containing $e:\{a c, b e\} \geqslant 2$

$$
c=e
$$

The kernel $a+b$ is generated

$$
-c=6 i
$$

cubes containing $f:\{a f, b f\}$

$$
c=f
$$

The kernel $a+b$ is generated

$$
\begin{aligned}
& \frac{c i=u(d)!}{\operatorname{cubes}(x, d)}=\{\text { de, } d f\} \geqslant 2 \\
& \quad c=d
\end{aligned}
$$

the Kernel eff rs generated

$$
\begin{aligned}
& \frac{i=5(e):}{c \text { ubs }(x, e)}=\{\text { ace, be, de }\} \\
& c=e
\end{aligned}
$$

The Kernel $a c+b c+d$ is generated recursive call with is 6 does not produce any Kernel
$\hat{c}=6(f):$

$$
\text { cubes }(x, f)=\{a c f, b c f, d f\}
$$

$$
c=f
$$

The Kernel actbetd is generated recursive call with $c^{\prime}=7$ does not produce any Kernel.
Thus, the 1rst of Kemels and co-kernels of $x$ are:

| Kernel | co-Kernel |
| :--- | :--- |
| $\frac{a c+f}{a c+a f+b c+b f}$ | $c$ |
| $a+b$ | $c e, f f$ |
| $a c+b c+d$ <br> ace $+a c f+b c e+b c f t$ | $e, f$ |

[15 Points]
(Q3) Consider the logic network defined by the following expression:

$$
x=a b e^{\prime} f^{\prime}+a b^{\prime} e+a b^{\prime} f+a^{\prime} d e^{\prime} f^{\prime}+a^{\prime} d^{\prime} e+a^{\prime} d^{\prime} f+c e^{\prime} f^{\prime}
$$

Compute the weight of the double cube divisors $d_{1}=a b+a^{\prime} d$ and $d_{2}=e+f$. Extract the double cube divisor with the highest weight and show the resulting network after extraction and the number of literals saved.

| Double cube Divisor | Base |
| :--- | :---: |
| $d_{1}=a b+\overline{a d}$ | cf |
| $\overline{d_{1}}=a b+\bar{a} \bar{d}$ | $e, f$ |
| $d_{2}=e+f$ | $a \bar{b}, \bar{a} \bar{d}$ |
| weight $(d 1)=3+4-3-4+2+i+1=9$ |  |
| weight $\left(d_{2}\right)=2+2-2-2+2+2+3=7$ |  |

See di has a higher weight, it will be extracted.
The resulting network after extraction of di is:

$$
\begin{aligned}
& x 1]=a b+\bar{a} d \\
& x=[1] \overline{e f}+\overline{[1] e}+\overline{[1]} f+c \bar{e} \bar{f}
\end{aligned}
$$

14 lIterals
orrgral number of literals $=23$
Number of literals saved $=8$ lIterals
(Q4) Consider the logic network defined by the following expressions with inputs $\{a, b, c, d$, $e\}$ and output $\{y\}$ :

$$
\begin{aligned}
& x=a b+a^{\prime} d \\
& w=x^{\prime} d^{\prime}+b c^{\prime} \\
& y=(w \oplus e) a^{\prime} b
\end{aligned}
$$

(i) Simplify the function $w$ based on the utilization of don't care conditions.
(ii) Based on perturbation analysis starting with the original network, determine if it is possible to change the implementation of $x$ to $x=a$.
(i) we need to compute $\operatorname{sDC}_{x}$ and $O D C w$ to simplify us.

$$
\begin{aligned}
\operatorname{sDC}_{x} & =x \Theta(a b+\bar{a} d) \\
& =x(a \bar{b}+\bar{a} \bar{d})+\bar{x}(a b+\bar{a} d) \\
& =\alpha \overline{a b}+x \bar{a} \bar{d}+\overline{x a b+\bar{x} d} \\
O D C_{w} & =\overline{y_{\bar{w}}\left(\bar{y}{ }_{w}\right.}=\overline{e \bar{a} b \Theta \bar{e} \bar{a} b} \\
& =\overline{\bar{a} b(e(\bar{e})}=\overline{\bar{a} b}=a+\bar{b}
\end{aligned}
$$




$$
\begin{aligned}
w & =\bar{x}+\bar{c} \\
\text { or } w & =\bar{d}+\bar{c}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\delta & =(a b+\bar{a} d) \Theta a \\
& =(a \bar{b}+\bar{a} \bar{d}) a+(a b+\bar{a} d) \bar{a} \\
& =a \bar{b}+\bar{a} d
\end{aligned}
$$

$$
O D C_{x}=d+b \bar{c}+a+\bar{b}
$$

since $f \leq O D C x$, then it is possible to change the implementation of $x$ to

$$
x=d
$$

(Q5) Consider the logic network below with inputs $\{a, b, c, d, e, f, g\}$ and output $\{X\}$ :


Assume that the delay of a gate is related to the number of its inputs i.e. the delay of a 2-input AND gate is 2 . Also, assume that the input data-ready times are zero for all inputs.
(i) Compute the data ready times and slacks for all vertices in the network.
(ii) Determine the topological critical path.
(iii) Suggest an implementation of the function $X$ using only 2-input gates to reduce the delay of the circuit to the minimum possible and determine the maximum propagation delay in the optimized circuit. Has the area been affected?

(ii) The topological critical paths are:

$$
\begin{aligned}
& \{a, h, i, j, l, \times\} \\
& \{a, h, i, k, l, \times\} \\
& \{b, h, i, j, l, \times\} \\
& \{b, h, i, k, l, \times\}
\end{aligned}
$$

(iii) To optomsze the delay of the network, we need to mprove the delay of nodes $m$ the critical path.

$$
\begin{aligned}
& l=i d+i e \Rightarrow l=i(d+e) \\
& x=l \cdot m=c \cdot[(d+e) \cdot m]
\end{aligned}
$$

The resulting network:


The maximum propagation delay $m$ the optimized circuit is 6 .
Number of 16 terals $m$ the original crreurt $=19$ literals
Number of literals $m$ optimized crreult $=12$ literals
thus, the area has also been reduced.

