COMPUTER ENGINEERING DEPARTMENT

COE 561

Digital System Design and Synthesis

Major Exam I

(Open Book Exam)
First Semester (111)
Time: 2:00-4:30 PM

Student Name : \qquad
Student ID. : \qquad

Question	Max Points	Score
Q1	$\mathbf{1 0}$	
Q2	$\mathbf{1 0}$	
Q3	$\mathbf{1 0}$	
Q4	$\mathbf{2 0}$	
Q5	$\mathbf{3 0}$	
Q6	$\mathbf{2 0}$	
Total	$\mathbf{1 0 0}$	

(Q1)
(i) Represent the cover $F(A, B, C)=\bar{A} \bar{B} \bar{C}+A \bar{B} C$, using positional cubical notation.
(ii) Compute the complement of the cover F using sharp operation.
(i)

A
B C
$\bar{A} \hat{B C} 10 \quad 1010$
$A \bar{B} C 01$
1001
(ii) We first compute 111111 \# 10 10 10 This produces the followro:

011111
110111
$11 \quad 1101$
Next, we compute the result \#01 1001

1. 01 1111 \# or lo or
$\Rightarrow 010111$
011110
2. $110111 \# 011001$
$\Rightarrow 100111 \Rightarrow 110111$ as other 110111 cubes are covered b.
110110 this cube
3. $111101 \Rightarrow$ of 10 al

$$
\Rightarrow \begin{array}{lll}
10 & 11 & 01 \\
11 & 01 & 01
\end{array}
$$

Next, we perform a union of the results and we eliminate cubes covered by other cubes based on single cube containment and we get the following:

011110
110111
$10 \quad 1101$
This, te complement of $F=a \bar{c}+b+\bar{a} c$
[10 Points]
(Q2) Consider the function $F=A B C D E$ and the set of implementations given below.
Assume that the area and delay of a gate are directly related to the number of its inputs. Compute the area and delay cost for each implementation and determine the Pareto optimal points.

	Area	Delay
	8	6

The pareto ogitienal paints ore based in
the 4 an and 5 implementations with
cost $(5,5)$ and $(7,5)$.
[10 Points]
(Q3) Consider the following function:

$$
F(A, B, C, D)=A D+B C+A \bar{C}+\bar{B} \bar{D}+\bar{C} D+\bar{B} C D+B \bar{C} \bar{D}
$$

Using recursive paradigm, determine if the function F is Tautology or not. You need to choose the right variable for expansion to minimize computations.

Since the cover is positive unate with respect to A, id is sufficient to show that F_{A} is tautology since $F_{A} \geqslant F_{A}$,

$$
\text { Thus, } F_{\bar{A}}=B C+\bar{B} \bar{D}+\overline{C D}+\bar{B} C D+B \bar{C} \bar{D}
$$

$$
=\bar{B}[\bar{D}+\overline{C D}+C D]
$$

$$
+B[C+\overline{C D}+\bar{C} \bar{D}]
$$

$$
\begin{aligned}
& =\bar{B}\left[\bar{D}[1]+D\left[\frac{C+C}{1}\right]\right. \\
& +B\left[\bar{C}\left[\frac{D+D}{1}\right]+C[1]\right]
\end{aligned}
$$

Thus, $F_{A}=1 \Rightarrow F_{A}$ is Eutolggy,
[20 Points]
(Q4) Consider the two Boolean functions F_{1} and F_{2} given below:

$$
\begin{aligned}
& F_{1}(A, B)=A \oplus B \\
& F_{2}(C, D)=C \oplus D
\end{aligned}
$$

Draw the ITE DAG for the function $F_{1} \cdot F_{2}$ using the variable order $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$. Show all the details of your solution using ITE procedure including the resulting unique table and computed table.

$$
\begin{aligned}
& F_{1} \cdot F_{2}=\operatorname{ITE}(A \oplus B, C \oplus D, 0) \\
& -x=A \\
& t=I T E(\bar{B}, \quad \angle \Theta D, 0) \\
& -x=B \\
& \epsilon=\operatorname{ITE}(0, C \oplus D, 0)=0 \text { (trivial case) } \\
& \Rightarrow \quad t=1 \\
& e=\operatorname{ITE}(1, C \oplus D, 0) \\
& -x=c \\
& t=\operatorname{ITE}(1, \bar{D}, 0)=\bar{D} \text { (trivial disc) } \\
& \text { we assign od }=3 \Rightarrow t=3 \\
& e=\operatorname{ITE}(1, D, 0)=D \text { (trivial case) } \\
& \text { we assign } 1 d=4 \Rightarrow e=4
\end{aligned}
$$

since $t \neq e$, we add the entry $(c, 3,4)$ in the unique table with $i d=5$.
we add an entry in the computed table with $\{(1, c i t), 0), 5\}$.
sinai $t \neq e$, we add the entry $(B, 1,5)$ in the unique ta ble with $1 d=6$.
we add an entry in the computed ta bile with

$$
\begin{aligned}
& \{(\bar{B}, C \oplus D, 0), 6\} \text {. } \\
& E=I T E(B, C \oplus D, 0) \\
& -x=B \\
& t=I T E(1, C \Theta D, 0)=5 \text { from computed table } \\
& e=\operatorname{TTE}(0, C \Theta) D, 0 \text {) }=0 \text { (trivial cade) } \\
& \Rightarrow e=1
\end{aligned}
$$

since $t \neq e$, we add the entry $(B, 5,1)$ in He unlive table with $i d=7$.
we add an entry in the computed table with $\{(B, C(1), 0), 7\}$.
since $t \neq e$, we add the entry $(A, 5,7)$ in the unique table with id $=8$.
we add an entry on the computed table with $\left.\left\{\left(A_{0} \rho\right), C(H) D, 0\right), 8\right\}$.

Unique Table:

18	var	H	2
5	C	3	4
6	B	1	5
7	B	5	1
8	A	6	7

Computed Table:

f	g	h	$r d$
1	$c \oplus d$	0	5
\bar{B}	$c+d$	0	5
$B C \oplus d$	0	7	
$A(B C \oplus d$	0	8	

$$
i d=7
$$

[30 Points]
(Q5) Consider the function $F(A, B, C, D)=B D+A \bar{C} \bar{D}+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{D}+A \bar{B} \bar{D}$
(i) Compute the complement of the function using the recursive complementation procedure outlined in section 7.3.4.
(ii) Compute all the prime implicants of the function using the method outlined in section 7.3.4.

$$
\text { (i) } \begin{aligned}
F= & \bar{A}[B D+\overline{B C}+\bar{B} \bar{D}] \\
& +A[B D+\overline{C D}+\bar{B} \bar{D}] \\
= & \bar{A}[\bar{B}[C+\bar{D}]+B[D]] \\
& +A[\bar{D}[\bar{C}+\bar{B}]+0[B]] \\
= & \bar{A}[\bar{B}[\bar{C}[\bar{D}]+C[1]]+B[0]] \\
& +A[\bar{D}[\bar{C}[1]+C[\bar{B}]]+D[B]] \\
\Rightarrow \bar{F}= & \bar{A}[\bar{B}[\bar{C}[D]+C[0]]+B[\bar{D}]] \\
& +A[\bar{D}[\bar{C}[0]+C[B]]+D[\bar{B}]] \\
= & \bar{A} \bar{B} \overline{C D}+\bar{A} B \bar{D}+A B C \bar{D}+A \bar{B} D
\end{aligned}
$$

(ii) From part (i), we have

$$
\begin{aligned}
F= & \bar{A}[\bar{B}[C+\bar{B}]+B[D]] \\
& +A[\bar{D}[\bar{C}+\bar{B}]+D[B]]
\end{aligned}
$$

Prime implicants of $\quad F_{A}=\operatorname{scc}\{\bar{B} C, \bar{B} \bar{D}, B D$,

$$
\begin{gathered}
C D\} \\
=\{\overline{B C}, \bar{B} \bar{D}, B D, C D\}
\end{gathered}
$$

Prime implicants of $F_{A}=\sec \{\bar{B} \bar{D}, \bar{C} \bar{D}, B D$,

$$
\begin{gathered}
\bar{B} \bar{C}\} \\
=\{\bar{B} \bar{D}, \bar{C} \bar{D}, B D, B \bar{C}\}
\end{gathered}
$$

Prime implicunts of $F=\sec \{\bar{A} \bar{B} C, \bar{A} \bar{B} \bar{D}, \bar{A} B D, \overline{A C D}$,

$$
\begin{aligned}
& A \overline{B D}, A \bar{C} \bar{D}, A B D, A B \bar{C}, \\
& \bar{B} \subset \bar{D}, \bar{B} \bar{D}, \bar{B} \bar{D}, B D, \\
& B \overline{C D}, B \subset D] \\
& =\left\{\begin{array}{l}
\bar{A} \bar{B} C, \overline{A C D}, A \bar{C} \bar{D}, A B \bar{A}, \\
\bar{B} \bar{D}, B D\}
\end{array}\right. \\
& \bar{B} \bar{D}, B D\}
\end{aligned}
$$

(Q6) Consider the following given matrix representing a covering problem:

Find a minimum cover using EXACT_COVER procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed: $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$, $\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$.
Their are no essential colvinus.

$$
\text { ci commutes } c 8 \Rightarrow \text { cz is removed }
$$

$$
\text { co dominates } r 3 \Rightarrow \text { rs is removed. }
$$

17 dominates $r 5 \Rightarrow 17$ is removed. This, we select $c 1$ and call exact cured
with $x=(1,0,0,0,0,0,0,0)$ and $h=(1,1,1,1,1,1,1,1)$
aid the matrix:

$$
\begin{array}{ccccccc}
& c 2 & c 3 & c+1 & c_{5} & 6 & c 7 \\
n & 1 & 0 & 1 & 0 & 1 & 0 \\
r_{2} & 0 & 1 & 0 & 1 & 0 & 1
\end{array}
$$

$$
\begin{aligned}
& c_{2} \text { dominates } C_{4}+C 5 \Rightarrow c_{5} \Rightarrow c 7 \text { annie iembect } \\
& C 3 \text { dominates } c_{5} \& C 7 \Rightarrow 1 \text { cit }
\end{aligned}
$$

selected

Since the matrix has no rows then the returned solution is $x=(1,1,1,0,0,0,0,0)$ and $b=(1,1,1,0,0,0,0,0)$.

Next, exact-cover is called with cl mot selected with $x=(0,0,0,0,0,0,0,0)$ and $b=(1,1,1,0,0,0,0,0)$, and the matrix:

	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}
r_{1}	1	0	1	0	1	0
r_{2}	c_{5}	1	0	1	0	1
r_{3}	1	1	0	0	0	0
r_{4}	0	0	1	1	0	0
r_{5}	0	0	0	0	1	1

There are no essential columns, no row dominance and no column dominance. wive compute the lower bisund as follows:

Since the clique number is 3, the lower bound is 3 .

Since the current estimate $=1 b 1$, return b. Since the returned solution is not $<1 b 1$, return $b=(1,1,1,0,0,0,0,0)$.

