COMPUTER ENGINEERING DEPARTMENT

COE 561

Digital System Design and Synthesis

Major Exam I

(Open Book Exam)

First Semester (111)

Time: 2:00-4:30 PM

Student Name : ______

Student ID. :_____

Question	Max Points	Score
Q1	10	
Q2	10	
Q3	10	
Q4	20	
Q5	30	
Q6	20	
Total	100	

(Q1)

- (i) Represent the cover $F(A, B, C) = \overline{ABC} + A\overline{BC}$, using positional cubical notation.
- (ii) Compute the complement of the cover *F* using sharp operation.

(i) A B C

$$\overline{ABC}$$
 10 10 10
 \overline{ABC} 01 10 01
(ii) We first compute 11 11 11 # 10 10 10
 \overline{TKIS} produces the following;
01 11 11
11 01 11
11 01 11
11 01 11
11 01 11
11 01 11
11 01 10
1. 01 01 11 # 01 10 01
 \Rightarrow 10 01 11 \Rightarrow 11 01 11 as other
11 01 11 \Rightarrow 11 01 11 as other
11 01 11 \Rightarrow 11 01 11 as other
11 01 11 \Rightarrow 11 01 11 as other
11 01 11 \Rightarrow 11 01 11 as other
11 01 10 $Hris$ cubes are covered by
11 01 10 $Hris$ cubes
3. 11 11 01 $\#$ 01 10 01
 \Rightarrow 10 11 01 $\#$ 01 10 01

Next, we perform a union of the results and we eliminate cubes covered by other cubes based on single cube containment and we get the following: of 11 10 11 of 11 10 11 of Thus, the complement of F= act + b + ac (Q2) Consider the function F = ABCDE and the set of implementations given below.

Assume that the area and delay of a gate are directly related to the number of its inputs. Compute the **area** and **delay** cost for each implementation and determine the **Pareto optimal points**.

Implementation	Area	Delay	
	8	Ŕ	
	¥.	6	
	7	7	
	6	6	
	7	5	

The pareto optimal points are based on the 4th and 5th implementations with cost (5,5) and (7,5).

[10 Points]

(Q3) Consider the following function: $F(A, B, C, D) = AD + BC + A\overline{C} + \overline{B}\overline{D} + \overline{C}D + \overline{B}CD + B\overline{C}\overline{D}.$

Using recursive paradigm, determine if the function F is **Tautology** or not. You need to choose the right variable for expansion to minimize computations.

Since the cover is positive unade with respect to A, it is sufficient to show that F_A is tautology since $F_A \supseteq F_A$, Thus, $F_A = BC + BD + CD + BCD + BCD$ = B[D + CD + CD]+ B[C + CD + CD]= B[D[1] + D[C=+C]]+ B[C [D+D] + C[1]]+ B[C [D+D] + C[1]] (Q4) Consider the two Boolean functions F_1 and F_2 given below:

$$F_1(A,B) = A \oplus B$$
$$F_2(C,D) = C \oplus D$$

Draw the **ITE DAG** for the function $F_1 \cdot F_2$ using the variable order {A, B, C, D}. Show all the details of your solution using ITE procedure including the resulting <u>unique table</u> and <u>computed table</u>.

$$F_{1} \cdot F_{2} = ITE(A \oplus B, C \oplus D, v)$$

$$- x = A$$

$$t = ITE(B, C \oplus D, v) = o (trivial case)$$

$$\Rightarrow t = I$$

$$e = ITE(0, C \oplus D, v) = o (trivial case)$$

$$\Rightarrow t = I$$

$$e = TTE(I, C \oplus D, v)$$

$$- x = c$$

$$t = TTE(I, D, v) = D (trivial case)$$

$$we assign id = 3 \Rightarrow t = 3$$

$$e = TTE(I, D, v) = D (trivial case)$$

$$we assign id = 4 \Rightarrow e = 4$$

$$since t \neq e, we add the entry$$

$$(c, 3, 4) in the unique table with$$

$$id = 5;$$

$$we add an entry in the computed$$

$$table with {(I, C \oplus D, v), 5};$$

Since
$$E \neq e$$
, we add the entry $(B, 1, 5)$ in
the unique to ble with $Id = 6$;
we add an entry M the computed to ble with
 $\{[B, C \oplus D, 0], 6\}$;
 $e = ITE(B, C \oplus D, 0)$
 $-x = B$
 $E = ITE(1, C \oplus D, 0) = 5$ from computed toble
 $e = ITE(0, C \oplus D, 0) = 0$ (trivial case)
 $\Rightarrow e = 1$
Since $f \neq e$, we add the entry $(B, 5, 1)$ in
the unique toble with $Id = 7$.
we add an entry in the computed toble with
 $\{(B, C \oplus D, 0), 7\}$.
Since $E \neq e$, we add the entry $(A, 5, 7)$ in the
unique toble with $Id = 8$.
Use add an entry in the computed toble with
 $\{(B, C \oplus D, 0), 7\}$.

unique Table : H Var С B ß Α

Com	outed	lab	E ;	
f	9	h	rd.	
1	લ્સ્ટ્રિત	0	5	
<u>8</u>	cud	0	5	
ß	cæd	ن	7	-
AÐB	cæd	0	8	8

- (Q5) Consider the function $F(A, B, C, D) = BD + A\overline{C}\overline{D} + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{D} + A\overline{B}\overline{D}$
 - (i) Compute the **complement** of the function using the recursive complementation procedure outlined in section 7.3.4.
 - (ii) Compute all the **prime implicants** of the function using the method outlined in section 7.3.4.

(i)
$$F = \overline{A} [BD + \overline{B}c + \overline{B}\overline{D}]$$

+ A $[BD + \overline{c}\overline{D} + \overline{B}\overline{D}]$
= $\overline{A} [\overline{B} [c + \overline{D}] + B[D]]$
+ A $[\overline{D} [\overline{c} + \overline{B}] + D[R]]$
= $\overline{A} [\overline{B} [\overline{c} [\overline{D}] + c[\overline{c}]] + B[D]]$
+ A $[\overline{D} [\overline{c} [\overline{c}] + c[\overline{B}]] + D[R]]$
= $\overline{A} [\overline{B} [\overline{c} [\overline{c}] + c[\overline{B}]] + D[R]]$
= $\overline{A} [\overline{B} [\overline{c} [\overline{c}] + c[\overline{B}]] + D[\overline{R}]]$
= $\overline{A} \overline{B} \overline{c} D + \overline{A} \overline{B} \overline{D} + A \underline{B} \overline{c} \overline{D} + \overline{A} \overline{B} \overline{D}$

(11) From part (1), we have

$$F = \overline{A} [\overline{B}[c+\overline{D}] + B[D]] + A [\overline{D}[\overline{c}+\overline{B}] + D[B]] + D[B]] + A [\overline{D}[\overline{c}+\overline{B}] + D[B]]$$
Prime implicants of $F_{\overline{A}} = \operatorname{Scc} \{\overline{B}c, \overline{B}\overline{D}, BD, cD\}$

$$= \{\overline{B}c, \overline{B}\overline{D}, BD, cD\}$$
Prime implicants of $F_{\overline{A}} = \operatorname{Scc} \{\overline{B}\overline{D}, \overline{c}\overline{D}, BD, Bc\}$

$$= \{\overline{B}\overline{D}, \overline{c}\overline{D}, BD, B\overline{c}\}$$
Prime implicants of $F = \operatorname{Scc} \{\overline{A}\overline{B}c, \overline{A}\overline{B}\overline{D}, \overline{A}\overline{B}D, \overline{A}\overline{c}D, A\overline{B}D, \overline{A}\overline{c}D, BD, B\overline{c}\}$
Prime implicants of $F = \operatorname{Scc} \{\overline{A}\overline{B}c, \overline{A}\overline{B}\overline{D}, \overline{A}\overline{B}D, \overline{A}\overline{c}D, A\overline{B}D, \overline{A}\overline{c}D, BD, B\overline{c}\}$

$$= \{\overline{B}\overline{c}\overline{D}, \overline{B}\overline{D}, \overline{B}\overline{c}\overline{D}, BD, B\overline{c}\}$$

$$= \{ \overline{ABC}, \overline{ACD}, A\overline{CD}, A\overline{BC}, B\overline{D}, B\overline{D} \}$$

[20 Points]

-	Ē,	c	(,)	64	<i>c</i> .	C.	Ca	60	-
11	Γ0	1	0	1	0	1	0	$\begin{bmatrix} 0 \end{bmatrix}$	
f.2	0	0	1	0	1	0	1	0	
13	1	1	1	0	0	0	0	0	
रप	1	0	0	1	1	0	0	0	
¥5	1	0	0	0	0	1	1	1	
16	1	1	1	0	0	0	1	1	
\$7	1	0	0	0	1	1	1	1	

(Q6) Consider the following given matrix representing a covering problem:

Find a **minimum cover** using **EXACT_COVER** procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed: C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 .

The no essential culumns.
mere ence (2 =) c2 is removed.
cl asminars
rs dominates r3 => r6 is removed
17 is removed ,
17 dominates 15 - 1 call Exact- Civer
Thus, we select of and
and b=(10000000) and b=(1111111)
with $n = c c c c c c c c c c c c c c c c c c $
and the matrix :
62 62 64 65 66 67
7 1 0 1 0 1 0
×2 0 1 0 1 0 1
a cy i cr are removed
(2 dominates (4 205 =) cheve
1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
cz dominates the state and are
Thus, C2 and C3 become essential and
se le code l'

Since the matrix has no rows then the returned solution is x=(1,1,1,0,0,0,0,0) and b=(1,1,0,0,0,0,0). Next, exact-cover is called with a not selected with x = (0,0,0,0,0,0,0,0) and b= (1,1,1,0,0,0,0,0) and the matrix : (2 C3 C4 C5 C6 C7 101010 YI ololo 1 ¥2 o o c 0 13 ţ 1 t 0 0 1 54 0 0 11 S 15 0 0 0 There are no essential columns, no row dominance and no column dominance. we compute the lower bound as follows: Y 3 12 r is 14 Since the clique number is 3, the lower bound is 3.

Since the current estimate = |b|, return b. Since the returned solution is not < |b|, return b = (1,1,1,0,0,0,0,0).