COMPUTER ENGINEERING DEPARTMENT

COE 561

Digital System Design and Synthesis

Major Exam I

(Open Book Exam)

First Semester (081)

Time: 1:00-3:30 PM

Student Name : ______

Student ID. : _____

Question	Max Points	Score
Q1	10	
Q2	15	
Q3	25	
Q4	30	
Q5	20	
Total	100	

[10 Points]

(Q1) Consider the OBDD given below with the variable ordering $\{a, b, c, d\}$. Apply the **Reduce** function to obtain the **ROBDD**. Show the details of applying the algorithm step by step.

Page 3 of 13

(Q2) Consider the function $F(A, B, C) = \overline{B} + BC + \overline{A}C + B\overline{C}$.

- (i) Represent the function using **positional cube notation**.
- (ii) Using positional cube notation, compute the sharp operation F # C.
- (iii) Using recursive paradigm and positional cube notation, determine if the function F is tautology or not. You need to choose the right variable for expansion to minimize computations.

Page 5 of 13

(Q3) Consider the two Boolean functions F_1 and F_2 given below:

$$F_1(A, B, C, D) = ABCD + \overline{ABCD}$$
$$F_2(A, B, C, D) = A \oplus B \oplus C \oplus D$$

- (i) Compute the expansion of F_1 and F_2 using the **Orthonormal Basis** { \emptyset_1 =A'B', \emptyset_2 =A'B, \emptyset_3 =AB', \emptyset_4 =AB}.
- (ii) Compute the function F_1 . F_2 .
- (iii) Draw the ITE DAG for the function $F_1 \oplus F_2$ using the variable order {A, B, C, D}. Use the given functions as is and do not start with the minimized result of $F_1 \oplus F_2$. Show all the details of your solution using ITE procedure.

Page 7 of 13

Page 8 of 13

[30 Points]

- (Q4) Consider the function $F(A, B, C, D) = \overline{ACD} + \overline{BCD} + \overline{ABC} + A\overline{BC} + A\overline{BD}$
 - (i) Compute the **complement** of the function using the recursive complementation procedure outlined in section 7.3.4.
 - (ii) Compute all the **prime implicants** of the function using the method outlined in section 7.3.4.

Page 10 of 13

Page 11 of 13

(Q5) Consider the following given matrix representing a covering problem:

 $\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$

Find a **minimum cover** using **EXACT_COVER** procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed: C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 .

Page 13 of 13