COMPUTER ENGINEERING DEPARTMENT

COE 561

Digital System Design and Synthesis

MAJOR EXAM I
(Open Book Exam)
First Semester (061)
Time: 3:30-5:30 PM

Student Name : \qquad
Student ID. : \qquad

Question	Max Points	Score
Q1	10	
Q2	16	
Q3	26	
Q4	28	
Q5	20	
Total	$\mathbf{1 0 0}$	

(Q1) Consider the following OBDD with the variable ordering $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$. Reduce it based on Reduce function to obtain the ROBDD. Show the details of applying the algorithm step by step.

Page 3 of 13
(Q2) Consider the function $F(A, B, C)=\bar{A} \bar{B}+A C+A B$.
(i) Represent the function using positional cube notation.
(ii) Using positional cube notation, compute the cofactor F_{A}.
(iii) Using positional cube notation, compute the consensus between the two cubes $\bar{A} \bar{B}$ and $A C$.
(iv)Using positional cube notation, compute the sharp operation $A C$ \# $A B$.
(v) Using positional cube notation, determine if the cube $\bar{B} C$ is covered by the function $F=\bar{A} \bar{B}+A C+A B$.

Page 5 of 13

[26 Points]

(Q3) Consider the two Boolean functions F_{1} and F_{2} given below:

$$
\begin{aligned}
& F_{1}(A, B, C, D)=A B C+\bar{A} \bar{B} C+A \bar{B} \bar{C}+A \bar{B} \bar{D} \\
& F_{2}(A, B, C, D)=A B C+A \bar{D}+\bar{B} \bar{C}
\end{aligned}
$$

(i) Compute the expansion of F_{1} and F_{2} using the Orthonormal Basis $\left\{\varnothing_{1}=A^{\prime} B^{\prime}\right.$, $\left.\varnothing_{2}=A^{\prime} \mathrm{B}, \varnothing_{3}=A B^{\prime}, \varnothing_{4}=A B\right\}$.
(ii) Compute the complement of function F_{1}, i.e., $\overline{F_{1}}$.
(iii) Compute the function $F_{1} \oplus F_{2}$.
(iv) Draw the ROBDD for the function F_{1} using the variable order $\{\mathrm{A}, \mathrm{B}, \mathrm{C}$, D $\}$.
(v) Draw the ITE DAG for the function $F_{1} \cdot \overline{F_{2}}$ using the variable order $\{\mathrm{A}$, $\mathrm{B}, \mathrm{C}, \mathrm{D}\}$. Use the given functions as is and do not start with the minimized result of $F_{1} \cdot \overline{F_{2}}$. Show all the details of your solution using ITE procedure.

Page 7 of 13

Page 8 of 13

[28 Points]

(Q4) Consider the function $F(A, B, C, D)=\bar{A} \bar{B} \bar{D}+\bar{B} \bar{C} \bar{D}+\bar{A} \bar{C} D+B \bar{C} \bar{D}+B C D+A B \bar{C}+A C \bar{D}$
(i) Compute the complement of the function using the recursive complementation procedure outlined in section 7.3.4.
(ii) Compute all the prime implicants of the function using the method outlined in section 7.3.4.

Page 10 of 13

Page 11 of 13
(Q5) Consider the following given matrix representing a covering problem:

$$
\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Find a minimum cover using EXACT_COVER procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed: $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$, $\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$.

Page 13 of 13

