Nov. 2, 2006

COMPUTER ENGINEERING DEPARTMENT

COE 561

Digital System Design and Synthesis

MAJOR EXAM I

(Open Book Exam)

First Semester (061)

Time: 3:30-5:30 PM

Student Name : ______

Student ID. : _____

Question	Max Points	Score
Q1	10	
Q2	16	
Q3	26	
Q4	28	
Q5	20	
Total	100	

[10 Points]

(Q1) Consider the following OBDD with the variable ordering $\{a, b, c, d\}$. Reduce it based on **Reduce** function to obtain the **ROBDD**. Show the details of applying the algorithm step by step.

Page 3 of 13

(Q2) Consider the function $F(A, B, C) = \overline{AB} + AC + AB$.

- (i) Represent the function using **positional cube notation**.
- (ii) Using positional cube notation, compute the cofactor F_A .
- (iii) Using positional cube notation, compute the **consensus** between the two cubes \overline{AB} and AC.
- (iv) Using positional cube notation, compute the sharp operation AC # AB.
- (v) Using positional cube notation, determine if the cube $\overline{B}C$ is **covered** by the function $F = \overline{AB} + AC + AB$.

Page 5 of 13

(Q3) Consider the two Boolean functions F_1 and F_2 given below:

$$F_1(A, B, C, D) = ABC + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABD}$$
$$F_2(A, B, C, D) = ABC + \overline{AD} + \overline{BC}$$

- (i) Compute the expansion of F_1 and F_2 using the **Orthonormal Basis** { \emptyset_1 =A'B', \emptyset_2 =A'B, \emptyset_3 =AB', \emptyset_4 =AB}.
- (ii) Compute the **complement** of function F_1 , *i.e.*, $\overline{F_1}$.
- (iii) Compute the function $F_1 \oplus F_2$.

(iv) Draw the **ROBDD** for the function F_1 using the variable order {A, B, C, D}.

(v) Draw the ITE DAG for the function $F_1 \cdot \overline{F_2}$ using the variable order {A, B, C, D}. Use the given functions as is and do not start with the minimized result of $F_1 \cdot \overline{F_2}$. Show all the details of your solution using ITE procedure.

Page 7 of 13

Page 8 of 13

- (Q4) Consider the function $F(A, B, C, D) = \overline{ABD} + \overline{BCD} + \overline{ACD} + \overline{BCD} + BCD + AB\overline{C} + AC\overline{D}$
 - (i) Compute the **complement** of the function using the recursive complementation procedure outlined in section 7.3.4.
 - (ii) Compute all the **prime implicants** of the function using the method outlined in section 7.3.4.

Page 10 of 13

Page 11 of 13

(Q5) Consider the following given matrix representing a covering problem:

 $\begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$ 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 $1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0$

Find a **minimum cover** using **EXACT_COVER** procedure. Show all the details of the algorithm. Assume the following order in branching selection when needed: C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 .

Page 13 of 13