KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 561: Digital System Design and Synthesis Term 111 Lecture Breakdown

Lec	Date	Topics	Ref.
#			
1	S 10/9	Syllabus, Introduction : Microelectronics Design Problems, Microelectronics Design Styles.	Chapter 1
2	M 12/9	Dealing with design complexity, Design domains and levels of abstractions, Digital system design, Design vs. synthesis. Digital system design cycle, Synthesis process, High-level synthesis.	Chapter 1
3	S 17/9	Design and evaluation space, Combinational design space example, Architecture design space example, Pareto Optimality. Logic Synthesis Background: Boolean Algebra, Boolean Functions, Shannon's Theorem.	Chapter 1 & 2.5
4	M 19/9	Unate functions. Boolean difference, Consensus, Smoothing, Orthonormal Basis Expansion. Representation of Boolean functions, Binary Decision Diagrams.	2.5
	S 24/9	National Day - Holiday	
5	M 26/9	Reduced Binary Decision Diagrams, ITE DAGs. Applications of ITE DAGs. Satisfiability, Satisfiability Formulation as Zero-One Linear Programming (ZOLP) Problem, Minimum Covering Problem.	2.5
6	S 1/10	Minimum-Vertex Cover Example, Minimum-Edge Cover Example, Covering Problem Formulated as Satisfiability Problem. Branch & Bound Algorithm . Covering reduction strategies. Branch and Bound Exact Covering Algorithm, Bounding function.	2.5
7	M 3/10	Two-level minimization: Programmable Logic Arrays. Minimal or irredundant cover, Minimal cover w.r.t. 1-implicant containment. Prime implicant, Prime cover, Essential prime implicant. Positional cube notation, Operations on logic covers: intersection, supercube, distance, cofactor, Sharp.	Chapter 7
8	S 8/10	Disjoint Sharp, Consensus, Computation of all prime implicants. Tautology, Containment. Complementation.	Chapter 7
9	M 10/10	Exact two-level minimization, ESPRSSSO-EXACT. Heuristic minimization, Heuristic	Chapter 7

		minimization operators: Expand, Reduce,	
		Irredundant, Reshape. Expand heuristics.	
10	S 15/10	Expand heuristics, Reduce.	Chapter 7
11	M 17/10	Irredundant, Essentials. Espresso Algorithm. Testability of Two Level circuits.	Chapter 7
	W 19/10	Last Day for Dropping with W	
	Th. 20/10	Major Exam I	
12	S 22/10	Logic Network, Network optimization, Area Estimation. Mutlilevel transformations : Elimination, Decomposition, Factoring.	Chapter 8
13	M 24/10	Extraction, Simplification, Substitution. Elimination algorithm. Algebraic model. Algebraic division algorithm. Substitution algorithm, Extraction, Kernels, Kernels computation.	Chapter 8
14	S 29/10	Kernel Set Computation , Recursive Kernel Computation, Matrix Representation of Kernels. Single-Cube Extraction, Multiple-cube extraction. Value of a Kernel.	Chapter 8
15	M 31/10	No Class.	
	1-11/11	Id Al-Adha Vacation	
16	S 12/11	Decomposition. Factorization Algorithm: quick & Good Factoring. Fast Extraction Algorithm: Double-cube divisors and single-cube divisors. Boolean Methods, Controllability & Observability don't care conditions. Satisfiability don't care conditions, Controllability don't care computation.	Chapter 8
17	M 14/11	Observability don't care conditions computation. Multi-Way Stems Theorem. Observability Don't Care Algorithm, Transformations with don't cares. Optimization and perturbations. Synthesis and testability.	Chapter 8
18	S 19/11	Synthesis and testability, Synthesis for testability . Timing issues in multilevel logic optimization, delay modeling , topological critical path.	Chapter 8
19	M 21/11	False path problem. Algorithms for delay minimization, Transformations for delay reduction. More refined delay models, Speedup algorithm.	Chapter 8
	W 23/11	Last Day for Dropping all Courses with W	
	Th. 24/11	1 st Paper Presentation	
20-21	Th. 1/12	Library Binding: Library Models, Major Approaches, Rule-based library binding. Algorithms for library binding, Partitioning, Decomposition, Matching, Covering. Tree-based matching. Tree-based covering. Minimum Area Cover, Minimum Delay Cover: constant delay, load-dependent delay.	Chapter 10

22- 23	Th. 8/12	Boolean matching:Signatures and Filters.Sequential LogicSynthesis:Modeling	Chapter 10 & 9
		Synchronous circuits, State minimization for completely and incompletely-specified FSMs.	
	M 12/12	Major Exam II	
24	S 17/12	State minimization for incompletely-specified FSMs. State Assignment. State encoding for two-level models. Symbolic minimization, Input	Chapter 7 & 9
25	M 19/12	encoding problem. Dichotomy theory, Exact & Heuristic input encoding. Output and mixed encoding, Covering relation.	Chapter 7 & 9
26- 27	Th. 22/12	Output and mixed encoding, Covering and Disjunctive relation. State encoding for two-level implementation. Limitation of Symbolic Minimization and Constrained Encoding, Synchronous logic network, Retiming.	Chapter 7 & 9
	S 24/12	Dropping all Courses with WP/WF	
28- 29	Th. 29/12	Architectural-level synthesis, Data-flow graphs, Sequencing graphs, Behavioral optimization of sequencing graphs. Synthesis in the temporal domain: Scheduling, Synthesis in the Spatial domain: Binding. Scheduling Models, Minimum latency unconstrained scheduling, ASAP & ALAP scheduling, Latency Constrained Scheduling, Scheduling under Resource Constraints. ILP Formulation, List Scheduling Algorithm for Minimum Latency, List Scheduling Algorithm for Minimum Resource Usage.	Chapter 3 & 4 & 5
	Th. 5/1	2 nd Paper Presentation	
30	Th. 5/1	Algorithmic Solution to the Optimum Binding Problem, ILP Formulation of Binding, Register Binding Problem. Left-Edge Algorithm.	Chapter 6