KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 561: Digital System Design and Synthesis Term 101 Lecture Breakdown

Lec.#	Date	Topics	Ref.
1	U 26/9	Syllabus, Introduction : Microelectronics Design Problems, Microelectronics Design Styles.	Chapter 1
2	T 28/9	Microelectronics Design Styles, Dealing with design complexity, Design domains and levels of abstractions, Digital system design, Design vs. synthesis.	Chapter 1
3	U 3/10	Digital system design cycle, Synthesis process, High-level synthesis, Design and evaluation space, Combinational design space example, Architecture design space example, Pareto Optimality. Logic Synthesis Background: Boolean Algebra, Boolean Functions, Shannon's Theorem.	Chapter 1 & 2.5
4	T 5/10	Unate functions. Boolean difference, Consensus, Smoothing, Orthonormal Basis Expansion. Representation of Boolean functions, Binary Decision Diagrams.	2.5
5	U 10/10	Reduced Binary Decision Diagrams, ITE DAGs.	2.5
6	T 12/10	Applications of ITE DAGs. Satisfiability , Satisfiability Formulation as Zero-One Linear Programming (ZOLP) Problem, Minimum Covering Problem, Minimum-Vertex Cover Example, Minimum-Edge Cover Example, Covering Problem Formulated as Satisfiability Problem. Branch & Bound Algorithm . Covering reduction strategies. Branch and Bound Exact Covering Algorithm, Bounding function.	2.5
7	U 17/10	Two-level minimization : Programmable Logic Arrays. Minimal or irredundant cover, Minimal cover w.r.t. 1-implicant containment. Prime implicant, Prime cover, Essential prime implicant. Positional cube notation , Operations on logic covers: intersection, supercube, distance, cofactor, Sharp. Disjoint Sharp, Consensus, Computation of all prime implicants.	Chapter 7
8	T 19/10	Tautology, Containment. Complementation. Exact two-level minimization, ESPRSSSO-EXACT. Heuristic minimization, Heuristic minimization operators: Expand, Reduce, Irredundant, Reshape.	Chapter 7
9	U 24/10	Expand heuristics.	Chapter 7
10	T 26/10	Expand heuristics, Reduce, Irredundant.	Chapter 7

	Th 28/10	Major Exam I	
11	U 31/10	Irredundant, Essentials. Espresso Algorithm.	Chapter 7
10		Testability of Two Level circuits.	Chapter 9
12	T 2/11	Experimentation Multilevel transformations:	Chapter 8
		Elimination, Decomposition, Factoring. Extraction,	
		Simplification, Substitution. Elimination algorithm.	
		Algebraic model. Algebraic division algorithm.	
	W 3/11	Last day dropping with W	
13	U 7/11	Substitution algorithm, Extraction, Kernels, Kernels	Chapter 8
		computation. Kernel Set Computation, Recursive	
		Kernel Computation.	
14	T 9/11	Recursive Kernel Computation Matrix	Chapter 8
		Representation of Kernels Single-Cube Extraction	
		Multiple-cube extraction.	
	11-26/11	Eid Al-Adha Vacation	
15	U 28/11	Value of a Kernel. Decomposition. Factorization	Chapter 8
		Algorithm: quick & Good Factoring. Fast	
		Extraction Algorithm: Double-cube divisors and	
		single-cube divisors.	Charter 9
16	T 30/11	Algorithm: Double-cube divisors and single-cube	Chapter 8
		divisors.	
17	U 5/12	Boolean Methods, Controllability & Observability	Chapter 8
		don't care conditions. Satisfiability don't care	
		conditions, Controllability don't care computation.	
		Observability don't care conditions computation.	
10	T 7/10	Multi-Way Stems I neorem.	Chapter 8
18	T 7/12	Transformations with don't cares Ontimization and	Chapter 8
		perturbations. Synthesis and testability.	
	Th. 9/12	1 st Paper Presentation	
19	U 12/12	Synthesis and testability, Synthesis for testability.	Chapter 8
-		Timing issues in multilevel logic optimization,	
		delay modeling, topological critical path. False	
		path problem.	
	U 12/12	Last day dropping an courses with w	CI (10, 10)
20	T 14/12	Algorithms for delay minimization, Transformations for delay reduction More refined	Chapter 8 & 10
		delay models. Speedup algorithm. Library	
		Binding : Library Models, Major Approaches, Rule-	
		based library binding.	
21	U 19/12	Algorithms for library binding, Partitioning,	Chapter 10
		Decomposition, Matching, Covering. Tree-based	
		matching. Tree-based covering. Minimum Area	
	T 01/10	Minimum Delay Cover: load dependent delays	Chapter 10
22	1 21/12	winning Delay Cover. Idau-dependent delays,	Chapter 10

		Boolean matching: Signatures and Filters.	
	Th 23/12	Major Exam II	
23	U 26/12	Sequential Logic Synthesis : Modeling Synchronous circuits, State minimization for completely and incompletely-specified FSMs.	Chapter 9
24	T 28/12	No Class.	
25	U 2/1	State minimization for incompletely-specified FSMs. State Assignment . State encoding for two- level models. Symbolic minimization, Input encoding problem.	Chapter 7 & 9
26	T 4/1	Dichotomy theory, Exact & Heuristic input encoding. Output and mixed encoding , Covering and Disjunctive relation. State encoding for two- level implementation.	Chapter 7 & 9
27	U 9/1	Limitation of Symbolic Minimization and Constrained Encoding, Synchronous logic network, Retiming .	Chapter 9
	U 9/1	Dropping all courses with WP/WF	
28	T 11/1	Architectural-level synthesis, Data-flow graphs, Sequencing graphs, Behavioral optimization of sequencing graphs. Synthesis in the temporal domain: Scheduling, Synthesis in the Spatial domain: Binding. Scheduling Models, Minimum latency unconstrained scheduling, ASAP & ALAP scheduling, Latency Constrained Scheduling, Scheduling under Resource Constraints.	Chapter 3 & 4
	Th. 13/1	2 nd Paper Presentation	
29	U 16/1	ILP Formulation, List Scheduling Algorithm for Minimum Latency, List Scheduling Algorithm for Minimum Resource Usage.	Chapter 5
30	T 18/1	Algorithmic Solution to the Optimum Binding Problem, ILP Formulation of Binding, Register Binding Problem. Left-Edge Algorithm.	Chapter 6