KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

COE 561: Digital System Design and Synthesis Term 061 Lecture Breakdown

	Date	Topics	Ref.
1	U 10/9	Syllabus, Introduction.	Chapter 1
2	T 12/9	Introduction: Microelectronics Design Problems, Microelectronics Design Styles.	Chapter 1
3	U 17/9	Dealing with design complexity, Design domains and levels of abstractions, Digital system design, Design vs. synthesis, Digital system design cycle, Synthesis process.	Chapter 1
4	T 19/9	High-level synthesis, Design and evaluation space, Combinational design space example, Architecture design space example, Pareto Optimality.	Chapter 1
5	U 24/9	Logic Synthesis Background : Boolean Algebra, Boolean Functions, Shannon's Theorem.	2.5
6	T26/9	Unate functions, Boolean difference, Consensus, Smoothing, Orthonormal Basis Expansion.	2.5
7	U 1/10	Orthonormal Basis Expansion Representation of Boolean functions, Binary Decision Diagrams. Reduced Binary Decision Diagrams	2.5
8	T3/10	Reduced Binary Decision Diagrams, ITE DAGs , Satisfiability ,	2.5
9	U 8/10	Minimum Covering Problem, Branch & Bound Algorithm. Covering reduction strategies, Exact Cover.	2.5
10	T 10/10	Two-level minimization definitions, PLA minimization, Positional cube notation , Operations on logic covers: cofactor, Sharp.	Chapter 7
11	U 29/10	Disjoint Sharp, Consensus, Computation of all prime implicants, Tautology	Chapter 7
12	T 31/10	Tautology, Containment, Complementation. Exact two-level minimization , ESPRSSSO-EXACT.	Chapter 7
13	U 5/11	Heuristic minimization, Heuristic minimization operators: Expand, Reduce, Irredundant, Reshape.	Chapter 7
14	T 7/11	Expand heuristics. Solution of Major Exam I.	Chapter 7
15	U 12/11	Expand heuristics	Chapter 7
16	T 14/11	Reduce, Irredundant, Essentials. Espresso Algorithm. Testability of Two Level circuits.	Chapter 7
17	U 19/11	No class.	
18	T 21/11	Logic Network, Network optimization, Area Estimation. Mutlilevel transformations :	Chapter 8

		Elimination, Decomposition, Factoring, Extraction, Simplification, Substitution. Elimination algorithm	
19	U 26/11	Algebraic model , Algebraic division algorithm, Substitution algorithm, Extraction, Kernels, Kernels computation.	Chapter 8
20	T 28/11	Kernel Set Computation, Recursive Kernel Computation, Matrix Representation of Kernels, Single-Cube Extraction, Multiple-cube extraction, Decomposition. Factorization Algorithm: quick & Good Factoring.	Chapter 8
	S 2/12	Fast Extraction Algorithm: Double-cube divisors and single-cube divisors, Boolean Methods, Controllability & Observability don't care conditions.	Chapter 8
21	U 3/12	Satisfiability don't care conditions, Controllability don't care computation, Observability don't care conditions computation. Transformations with don't cares.	Chapter 8
22	T 5/12	Optimization and perturbations, synthesis and testability, Synthesis for testability , timing issues in multilevel logic optimization, delay modeling , topological critical path. False path problem, Algorithms for delay minimization, Transformations for delay reduction, More refined delay models, Speedup algorithm.	Chapter 8
23	U10/12	Library Binding : Rule-based library binding, Algorithms for library binding, Partitioning, Decomposition, Matching, Covering, Tree-based matching.	Chapter 10
24	T 12/12	Tree-based covering, Minimum Delay Cover : constant and load-dependent delays, Boolean matching : Signatures and Filters.	Chapter 10
25	U 17/12	Sequential Logic Synthesis: Modeling Synchronous circuits, State minimization for completely-specified FSMs, State Assignment. State encoding for two-level models. Symbolic minimization, Input encoding problem.	Chapter 7 & 9
26	T 19/12	Dichotomy theory, Exact & Heuristic input encoding. Output and mixed encoding , Covering and Disjunctive relation.	Chapter 7 & 9
27	U 7/1	Output and mixed encoding, State encoding for two-level implementation, Synchronous logic network, Retiming .	Chapter 7 & 9
28	T 9/1	Architectural-level synthesis, Data-flow graphs, Sequencing graphs, Behavioral optimization of sequencing graphs. Synthesis in the temporal domain: Scheduling, Synthesis in the Spatial domain: Binding, Approached to Architectural	Chapter 3 & 4

		Optimization	
	S 13/1 (Makeup)	Scheduling Models, Minimum latency unconstrained scheduling, ASAP & ALAP scheduling, Latency Constrained Scheduling, Scheduling Under detailed timing constraints: minimum and maximum timing constraints. Scheduling under Resource Constraints, ILP Formulation .	Chapter 5
29	U 14/1	ILP Formulation . List scheduling for minimum latency under resource constraints. List Scheduling Algorithm for Minimum Resource Usage. Scheduling graphs with alternative paths.	Chapter 5
30	T 16/1		