COMPUTER ENGINEERING DEPARTMENT

COE 561

Digital System Design and Synthesis

Final Exam

(Open Book Exam)
First Semester (111)
Time: 7:00-10:00 PM

Student Name : _KEY
Student ID. : \qquad

Question	Max Points	Score
Q1	$\mathbf{2 0}$	
Q2	$\mathbf{2 2}$	
Q3	$\mathbf{2 1}$	
Q4	$\mathbf{1 2}$	
Q5	$\mathbf{2 5}$	
Total	$\mathbf{1 0 0}$	

(Q1) Consider a technology library containing the following cells:

(i) Consider the circuit given below with inputs $\{a, b, c, d, e, f, g, h\}$ and output $\{Z\}$. Using the dynamic programming approach and Structural Matching, map the circuit using the given library into the minimum area cost solution.

(ii) Can you obtain a better mapping than the one obtained in (i). If the answer is yes, show the better solution and explain how it is obtained.
(iii) Assuming Boolean Matching, determine the number of ROBDD's that need to be stored in the cell library for the following cell. Justify your answer.

$$
Y=a b c d+a^{\prime} b^{\prime} c d+e f+e^{\prime} g
$$

(i)

vertex	gate	cost
E1	$\mathrm{Nand}_{2}(b, c)$	2
62	$\operatorname{Nand}_{2}(d, e)$	2
63	$1 N \vee(\cdot f)$	1
64	$1 \sim \vee(g)$	1
	,NV(ん)	1
5		1
66	$1 N \mathrm{C}$ (a)	$2+2+2=6$
67	$\operatorname{Nand}_{2}\left(3_{1}, 6_{2}\right)$	
68	Nand $2(G 3,64)$	$2+1+1=4$

Page 4 of 19

Ore minimal area solution is:

(ii) Yes, a better solution with a cost of 12 is as follows:

This solution is obtained by adding a cascade of inverters at the output of G7.
(iii)

$$
\begin{aligned}
& C_{1}=\left\{\begin{array}{cc}
B & (e),(f),(g)
\end{array}\right\} \\
& c_{2}=\{(a, b),(c, d)\}
\end{aligned}
$$

This, number of ROBDD's needed
is $2!=2$
(Q2) Consider the incompletely-specified FSM that has 5 states, one input (X) and one outputs (Z), represented by the following state table:

(i) Determine the incompatible states and the compatible states along with their implied pairs.
(ii) Compute the maximal compatible classes along with their implied state pairs.
(iii) Compute the prime compatibility classes along with their implied state pairs.
(iv) Reduce the state table into the minimum number of states and show the reduced state table.
(i) Compatibility Table:

$$
\begin{aligned}
& \text { Thus, the incompatible states are: } \\
& \left(S_{1}, s_{3}\right),\left(s_{1}, S_{4}\right),\left(s_{2}, s_{4}\right)
\end{aligned}
$$

The compatible stake with their implied pairs are:

$$
\begin{aligned}
& \left(S_{0}, S_{1}\right) \Leftarrow\left(S_{3}, S_{4}\right) \\
& \left(S_{0}, S_{2}\right) \Leftarrow\left(S_{0}, S_{1}\right) \\
& \left(S_{0}, S_{3}\right) \Leftarrow\left(S_{2}, S_{3}\right) \text { and }\left(S_{0}, S_{2}\right) \\
& \left(S_{0}, S_{4}\right) \Leftarrow\left(S_{2}, S_{3}\right) \text { and }\left(S_{0}, S_{1}\right) \\
& \left(S_{1}, S_{2}\right) \Leftarrow\left(S_{3}, S_{4}\right) \text { and }\left(S_{0}, S_{1}\right) \\
& \left(S_{2}, S_{3}\right) \Leftarrow\left(S_{1}, S_{2}\right) \\
& \left(S_{3}, S_{4}\right) \Leftarrow\left(S_{1}, S_{2}\right)
\end{aligned}
$$

(ii) Maximal Compatible Classes:

From the incompatible state pars, we have:

$$
\begin{aligned}
& \left(\overline{s_{1}}+\overline{s_{3}}\right)\left(\overline{s_{1}}+\overline{s_{4}}\right)\left(\overline{s_{2}}+\overline{s_{4}}\right) \\
= & \left(\overline{s_{1}}+\overline{s_{3}} \overline{s_{4}}\right)\left(\overline{s_{2}}+\overline{s_{4}}\right) \\
= & \overline{s_{1}} \overline{s_{2}}+\overline{s_{1}} \overline{s_{4}}+\overline{s_{2}} \overline{s_{3}} \overline{s_{1}}+\overline{s_{3}} \overline{s_{4}} \\
= & \overline{s_{1}} \overline{s_{2}}+\overline{s_{1}} \overline{s_{4}}+\overline{s_{3}} \overline{s_{4}}
\end{aligned}
$$

Thus, the maximal compatible classes along with their implied state pairs are.
$\left(\mathrm{S}_{0}, \mathrm{~S}_{3}, \mathrm{~S}_{4}\right) \Leftarrow\left(\mathrm{S}_{0}, \mathrm{~S}_{2}\right),\left(\mathrm{S}_{2}, \mathrm{~S}_{3}\right),\left(\mathrm{S}_{12}, \mathrm{~S}_{1}\right),\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$
(So, 52,53$) \Leftarrow(50,51),(51,52)$
(So, $\left.\mathrm{S}_{1}, \mathrm{~S}_{2}\right) \Leftarrow\left(\mathrm{S}_{3}, \mathrm{~S}_{4}\right)$
(iii) Prime Compatibility Classes

In addition to the maximal compatible classes, we have the following prime classes:

$$
\begin{aligned}
& \left(s_{0}, s_{3}\right) \Leftarrow\left(s_{2}, s_{3}\right),\left(s_{0}, s_{2}\right) \\
& \left(s_{0}, s_{4}\right) \Leftarrow\left(s_{2}, s_{3}\right),\left(s_{0}, s_{1}\right) \\
& \left(s_{3}, s_{4}\right) \Leftarrow\left(s_{1}, s_{2}\right) \\
& \left(s_{0}, s_{2}\right) \Leftarrow\left(s_{2}, s_{1}\right) \\
& \left(s_{2}, s_{3}\right) \Leftarrow\left(s_{1}, s_{2}\right) \\
& \left(s_{0}\right) \\
& \left(s_{1}\right) \\
& \left(s_{2}\right) \\
& \left(s_{3}\right) \\
& \left(s_{4}\right)
\end{aligned}
$$

(iv) The following minimum cover can be used which satisfies the closure:

$$
\left\{\left(s_{0}, s_{1}, s_{2}\right),\left(s_{3}, s_{4}\right)\right\}
$$

Thus, the state machine can be reduced to two states as follows:

Pis.	Next State, z $x=0$	$x=1$
$S_{0,1,2}$	$S_{3,4,0}$	$S_{0,1,2,}$
$S_{3,4}$	$S_{0,1,2,1}$	$S_{0,1,2,}$

(Q3) Consider the given FSM which has 4 states, one input and one output, represented by the following state table:

Product	Input	Present State	Next State	Output
P1	0	S1	S2	0
P2	1	S 1	S2	0
P3	0	S2	S2	0
P4	1	S2	S3	0
P5	0	S3	S4	0
P6	1	S3	S3	0
P7	0	S4	S 4	0
P8	1	S4	S1	1

(i) Assuming the following constraints: S3 covers S2, and that the code of S4 is covered by all other state codes, the state table can be reduced into the table given below. Using implicant merging and covering relations show step by step how you can obtain the reduced state stable given below:

Input	Present State	Next State	Output
-	S1, S2	S2	0
1	S2, S3	S3	0
1	S4	S1	1

(ii) Compute all the seed dichotomies and construct their compatibility graph. Find a minimum cover for the seed dichotomies. Based on the found cover, derive an encoding satisfying the given constraints with minimal bit length.
(i)

$$
\begin{aligned}
& P_{1} \text { and } P_{3} \text { can be merged using implicant } \\
& \text { merging into the following row: } \\
& \begin{array}{lllll}
r_{1} & 0 & s_{1}, s_{2} & s_{2} & 0
\end{array} \\
& \text { P4 and PS can be merged using implant } \\
& \text { merging into the following risk: } \\
& \begin{array}{lllll}
& 1 & 5 & s_{2} & s_{3}
\end{array}
\end{aligned}
$$

Page 10 of 19

Next, r and $r 3$ can be merged using implicant merging into the following row:
r_{4} - $\mathrm{S}_{1}, \mathrm{~s}_{2} \quad \mathrm{~S}_{2} 0$

P5 and P. 7 can be removed since si is covered by all states ire its code will be all o's and since the output is 0 . This results in the given reduced table composed of r_{4}, r_{2} and P_{8}.
(ii) Seed Dichotomies

$$
\begin{aligned}
& \text { Sta: }(51,52),(53) \times(51 b:(53),(51,52) \times \\
& \text { S2a: }(51,52),(54) \sim(52 b:(54),(51,52) \times \\
& 53 a:(52,53),(51) \sim(52,53),(54) \sim(53) \\
& 54 a:(52)
\end{aligned}
$$

Seed dichotomy Compatibility Graph

Based on the compatibility graph, a minimum cover of 3 prime dichotomies is needed as follows.

$$
\begin{array}{ll}
p 1: S 1 b:\left(S_{3}\right), & \left(s_{1}, s_{2}\right) \\
p 2: & \left(S_{1}, S_{2}, s_{3}\right),\left(S_{4}\right) \\
p 3: & \left(S_{2}, s_{3}\right),\left(S_{1}, 5_{4}\right)
\end{array}
$$

Thus, a minimum of 3 bits are nested as follows:

	P_{1}	P_{2}	P_{3}
s_{1}	0	1	0
s_{3}	0	1	1
s_{4}	1	1	1
0	0	0	

Note that for PI we have to assign sM to o to satisfy the covering constraints.

Note that all the encoding and covering constraints are satisfied by the derived encoding,
(Q4) Consider the sequential circuit given below having 3 inputs $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ and one output $\{Z\}$. Assume that the delay of all given gates is 2 unit delays.

(i) Determine the critical path of this circuit and the maximum propagation delay.
(ii) Using only the Retiming transformation, reduce the critical path of this circuit with the minimum number of flip-flops possible. Determine the maximum propagation delay after retiming.
(1) The maximum propagation delay is 8
There are 8 coition paths from either A or B through either gates Gl or G_{2}, throvigh G_{3}, then through either gates 64 or 65 , through 67 .
(ii) We can apply the following retiming transformations to reduce the critical path:
\rightarrow retime 67 by +1

- retire 64 by +1
- retire 65 by +1
- retime 5_{5} by +1
- retire G8 by +1
- retire sub by +1
- retire 53 by +1
this results in the following circuit after retiring:

The maximum propagator n delay in the resulting circuit is 4 . The number of flip-filops has increased from 2 to 3.
(Q5) Consider the network given below with inputs \{il, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11\} and outputs \{o1,o2,o3\}. Assume that the delay of both the Adder and the Multiplier fit within one clock cycle and that the input values will be available to the circuit for only one clock cycle. Also assume that both addition and subtraction operations will be performed by the Adder.

$$
\begin{array}{llll}
\mathrm{a}=\mathrm{i} 1+\mathrm{i} 2 ; & \mathrm{b}=\mathrm{a}-\mathrm{i} 3 ; & \mathrm{c}=\mathrm{i} 4+\mathrm{i} 5 ; & \mathrm{d}=\mathrm{i} 7 * \mathrm{i} 8 ; \\
\mathrm{f}=\mathrm{d}+\mathrm{e} ; \mathrm{i} 9+\mathrm{i} 10 \\
\mathrm{~g}=\mathrm{i} 11 * 7 ; & \mathrm{o} 1=\mathrm{b} * 3 ; & \mathrm{o} 2=\mathrm{c}+\mathrm{i} 6 ; & \mathrm{o} 3=\mathrm{g} * \mathrm{f}
\end{array}
$$

(i) Using List Scheduling algorithm LIST_L, schedule the sequencing graph into the minimum number of cycles under the resource constraints of one Adder and one Multiplier. Show the details of the algorithm step by step and the resulting scheduled sequencing graph.
(ii) Using List Scheduling for minimum resource usage algorithm LIST_R, schedule the sequencing graph under the latency constraint of $\mathbf{5}$ clock cycles minimizing the number of resources required. Show the details of the algorithm step by step and the resulting scheduled sequencing graph.
(iii) Consider the scheduled sequencing graph below:

a. Show the life-time of all variables.
b. Determine the minimum number of registers that are required to store all the variables. Show the mapping of variables to registers. Select a mapping that minimizes the number of multiplexers and interconnect area as much as possible.
c. Draw the data-path implementing the scheduled sequencing graph based on the variable-register mapping that you obtained in (b).

Page 15 of 19
(i) List-L:

$$
l=1
$$

$U_{1, \text { alk }}=\{a, c, e\}$. we need to schedule either a or e since they have longer path to $\sin x$. Let's schedule a.
Ul,mul $=\{d, 0\}$. We schedule d since it has longer path to $\sin k$.

$$
l=2:
$$

U_{2}, add $=\{b, c, e\}$, we schedvk e since it has longer path to $\sin x$.

$$
U_{2}, m u l=\{0\}
$$

$\underline{l}=3:$
$U_{3, a d d}=\{b, c, f\}$. Any of them can be scheduled as they have the same path to sink. Let's schedule b.

$$
U_{3, m v 1}=\{ \}
$$

$$
l=1:
$$

U_{4}, add $=\{c, f\}$, Any can be scheduled. Let's
Schedule C.

$$
U_{u}, m u l=\{01\}
$$

$$
l=5:
$$

$U_{5, \text { add }}=\{02, f\}$. Schedule f since it has longer path $t=\sin x$.

$$
U_{s, m u l}=\{3
$$

$$
l=6 ;
$$

$$
U_{6, \text { add }}=\{02\}
$$

$$
\left.U_{6}, m i l=\{0\}\right\}
$$

Page 16 of 19

Thus, the minimum required schedule is 6 clock cycles ass follows:

(ii) List-R:

$$
\lambda=5, \quad a=[1,1]
$$

we need to cumprite the ALAP schedule with $\lambda=5$ as follows.

Page 17 of 19
$Q=1:$
$U_{1, a d}=\{a, c, e\}$. None of the operators has 0 slack, we schedule one operation with the lowest slack. schedule a.
$U_{1, m u l}=\{d, g\}$, None of the operators has o slack, we schedule she operation with the loves slacll. wee schedule d,

$$
l=2:
$$

$U_{2}, a d x=\{b, c, e\}$. None of the operations has o slack, we schedule e since it has lower slack

$$
\begin{aligned}
& U 2, m u 1=\{0\} \\
& l=3:
\end{aligned}
$$

$U_{3, a d}=\{b, c, f\}$. None of the operators has o slack. Any can be scheduled as they have the same stack. Let's schedule b.

$$
\begin{aligned}
& v_{3, m u l}=\{3 \\
& l=4:
\end{aligned}
$$

$V_{4, a d d}=\{c, f\}$. Both of Hem have a slack of o and need to be scheduled. Thus, $a=[2,1]$.

$$
\begin{aligned}
& U_{4}, \text { mul }=\{01\} \\
& \underline{l=5} \\
& U_{5}, \text { add }=\{02\} \\
& U_{5}, \mathrm{mul}=\{03\}
\end{aligned}
$$

Page 18 of 19

Thus, with 5 clock cycles, we need a minimum of 2 adders and, multiplier as shown below:

(iii) a. Life tome of variables

b, Based on the lifetime of all variables, it is obvious that we need 8 registers to store all variables.
we will assign variables to registers as follows to minmite area:

$$
\begin{array}{lll}
R 1:(a, b, c) & R 2:(e, f) & R 3:(d, g) \\
R 4:(i 3,01) & R 5: i 4 & R 6: i 5 \\
R 7: i 6 & R 8: i l
\end{array}
$$

C. Data Path:

