COMPUTER ENGINEERING DEPARTMENT

COE 561
Digital System Design and Synthesis

Final Exam

(Open Book Exam)
First Semester (101)
Time: 7:00-10:00 PM

Student Name : KEY
Student ID. \qquad

Question	Max Points	Score
Q1	$\mathbf{2 0}$	
Q2	$\mathbf{2 0}$	
Q3	$\mathbf{2 3}$	
Q4	$\mathbf{1 2}$	
Q5	$\mathbf{2 5}$	
Total	$\mathbf{1 0 0}$	

(Q1) Consider a technology library containing the following cells:

Cell	Area Cost	Gate
$\operatorname{INV}(\mathrm{x} 1)=\mathrm{x} 1$,	1	
NAND2(x1, x2) $=(\mathrm{x} 1 \mathrm{x} 2)$,	2	
NAND3(x1, x2, x3) $=(\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 3)^{\prime}$	3	
$\operatorname{NOR2}(\mathrm{x} 1, \mathrm{x} 2)=(\mathrm{x} 1+\mathrm{x} 2)$,	2	
$\operatorname{NOR3}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)=(\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3)$,	3	
$\operatorname{AOI21}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)=((\mathrm{x} 1 \mathrm{x} 2)+\mathrm{x} 3)$,	3	
AOI22(x1, x2, x3, x4) $=((\mathrm{x} 1 \mathrm{x} 2)+(\mathrm{x} 3 \mathrm{x} 4))^{\prime}$	4	
OAI21(x1, x2, x3) $=((\mathrm{x} 1+\mathrm{x} 2) \mathrm{x} 3)^{\prime}$	3	
OAI22(x1, x2, x $3, \mathrm{x} 4)=((\mathrm{x} 1+\mathrm{x} 2)(\mathrm{x} 3+\mathrm{x} 4))^{\prime}$	4	

(i) Consider the circuit given below with inputs $\{a, b, c, d, e, f, g, h, i, j, k\}$ and output $\{Z\}$. Using the dynamic programming approach and Structural Matching, map the circuit using the given library into the minimum area cost solution.

(ii) Can you obtain a better mapping than the one obtained in (i). If the answer is yes, show the better solution and explain how it is obtained.
(iii) Assuming Boolean Matching, determine the number of ROBDD's that need to be stored in the cell library for the following cell. Justify your answer.

$$
Y=a b^{\prime} c d^{\prime}+a^{\prime} b c+d e f
$$

(i)

Cl 12

$$
\operatorname{Nand}_{2}(a 11,69) \quad 11+6+2=19
$$

Nand 3 ($67,68,69) \quad 6+5+6+3=20$
z

$$
\begin{array}{ll}
\operatorname{INV}(612) & 19+1=20 \\
\operatorname{AOF} 21(610,65,66) & 13+2+2+3=20
\end{array}
$$

Thus, there are two minimal solvtitus with the same cost of 20 as follows:

(ii) Yes, a better mapping can be obtained by inserting a pair of inverters at mo. outputs of gates $67, G q$ and Gy before mapping resulting in the following mapping with an area cost of 44 .

- iii)

$$
\begin{aligned}
c 1 & =\left\{(a) \cdot(b) \mu(c)\left(d^{b}\right)\right\} \\
c 2 & =\{(e, f)\}
\end{aligned}
$$

Thus, he number of KoBO's needed to be stored in the cell library is $3!=5$
(Q2) Consider the incompletely-specified FSM that has 5 states, one input (X) and two outputs (Z1Z0), represented by the following state table:

Present State	Next State		Output Z1Z0
	X=0	$\mathbf{X = 1}$	
So	So	-	10
S1	S2	S1	01
S2	S3	-	-
S3	-	S1	01
S4	So	Sa	

(i) Determine the incompatible states and the compatible states along with their implied pairs.
(ii) Compute the maximal compatible classes along with their implied state pairs.
(iii) Compute the prime compatibility classes along with their implied state pairs.
(iv) Reduce the state table into the minimum number of states and show the reduced state table.
(i)

The compatible states with their implied pairs:

$$
\begin{aligned}
& (50,51) \Leftarrow(50,52) \\
& (50,52) \Leftarrow(50,53) \\
& (50,53) \\
& (50,54) \\
& (51,53) \\
& (52,53) \\
& (52,54) \Leftarrow(50,53)
\end{aligned}
$$

(ii) Maximal Compatible Classes:

From the incompatible state pairs we have:

$$
\begin{aligned}
& \left(\overline{s_{1}}+\overline{s_{2}}\right)\left(\overline{s_{1}}+\overline{s_{4}}\right)\left(\overline{s_{3}}+\overline{s_{4}}\right) \\
& =\left(\overline{s_{1}}+\overline{s_{2}} \overline{s_{4}}\right)\left(\overline{s_{3}}+\overline{s_{4}}\right) \\
& =\bar{s}_{1} \overline{s_{3}}+\overline{s_{1}} \overline{s_{4}}+\overline{s_{2}} \overline{s_{3}} \overline{s_{4}}+\overline{s_{2}} \overline{s_{4}} \\
& =\bar{s}_{1} \overline{s_{3}}+\overline{s_{1}} \overline{s_{4}}+\overline{s_{2}} \overline{s_{4}}
\end{aligned}
$$

Thus, the maximal compatible classes along with their mplred pairs are:

$$
\begin{aligned}
& \left(\mathrm{So}_{0}, \mathrm{~S}_{2}, \mathrm{~S}_{4}\right) \Leftarrow\left(\mathrm{So}_{0}, \mathrm{~S}_{3}\right) \\
& \left(\mathrm{So}, \mathrm{~S}_{2}, \mathrm{~S}_{3}\right) \\
& \left(\mathrm{SO}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{3}\right) \Leftarrow\left(\mathrm{So}, \mathrm{~S}_{2}\right)
\end{aligned}
$$

Page 8 of 19
(iii) Prime Compatibility Classes:

In addition to the maximal compatible classes, we have the following pome Classes:
(So, Sy_{4})
(51,53)
(iv) The following, minimum cover can be used which satisfies the closure.

$$
\left\{\left(s_{0}, s_{2}, s_{4}\right),\left(s_{0}, s_{1}, s_{3}\right)\right\}
$$

Thus, the state machine can be reduced to tues states as follows:

(Q3) Consider the given FSM which has 6 states, one input and one output, represented by the following state table:

(i) Assuming the following constraints: S3 covers S2, S4 covers S2 and that the code of S 0 is covered by all other state codes, the state table can be reduced into the table given below. Using implicant merging and covering relations show step by step how you can obtain the reduced state stable given below:

Input	Present State	Next State	Output
-	So, S1, S2	S2	0
0	S3, S4	S1	0
1	So, S5	S4	0
0	S2	S3	1
0	S5	S5	0

(ii) Compute all the seed dichotomies and construct their conflict graph. Find a minimum cover for the seed dichotomies. Based on the found cover, derive an encoding satisfying the given constraints with minimal bit length.

$$
\begin{align*}
& P 1 \text { and } P_{3} \text { can be merged using implicant } \tag{i}\\
& \text { merging into the following row: } \\
& \begin{array}{lllll}
1 & 0 & \text { So,si } & S_{2} & 0
\end{array} \\
& \text { pu and pr can be merged using implicant } \\
& \text { merging into the following row: }
\end{align*}
$$

Page 10 of 19

Since in $P E$, 52 si, and si covers S_{2}, we can add s_{2} to ri resulting in:
$r_{3} 0 \quad 50,51,52 \quad 52 \quad 0$

Since in p^{2}, 1 so bu 0 , and st covers si, we can add So to re resulting) in:

$$
r_{4} \quad 1 \quad \text { so, } \mathrm{S}_{1}, \mathrm{~S}_{2}
$$

$S 20$

Next, 13 and ry con be merged smog implicant merging into the following row:
$r 5$ - $\mathrm{So}_{\mathrm{y}}, \mathrm{Si}, \mathrm{S}_{2}$ SO
$P 7$ and P_{9} can be merged into the following row:

P2 and P12 can be merged into the following row'

$$
r 7
$$

So, S5 SH 0

PB and Plo can be removed since so is covered by all states sire its code will be all o's and since the output is o. This results m the given reduced table.
(ii) Seed Drchotomies

$$
X \text { sla: }(s 0, s 1,52),(s 3)
$$

s1b: $\left(s_{3}\right),\left(s_{0}, s_{1}, s_{2}\right)$
X s2a: $(50,51,52),(54)$
s2b: (su), (so, s1, s2)
X s3a: $\left(S_{0}, 5_{1}, 5_{2}\right),\left(S_{5}\right)$

$$
\text { s3b: }(55),(50,51,52)
$$

sua: $(53,54),(50)$
XSub: $(50),(53,54)$
s5a: $(53,54),(51)$
55b: (51), (53,54)

$$
\begin{aligned}
\text { s6a: } & (53,54),(52) \\
\text { s7a: } & (53,54),(55) \\
X \text { s8a: } & (50,55),(51) \\
X \text { s9a: } & (50,55),(52) \\
X \text { s10a: } & (50,55),(53)
\end{aligned}
$$

$$
x 56 b:(52),(53,54)
$$

$$
57 b:(55),(53,54)
$$

S8b:(s1), (so, s5)

$$
59 b:(52),(50,55)
$$

$$
\text { slob: }(53),(50,55)
$$

$$
\text { Sllb: }(S+1),(\text { so }, S 5)
$$

conflect Eraph

Gased on the conflict graph, a minimum cover can be frund as follows since these nodes can be covered using two colors :

$$
\begin{aligned}
& \text { rl: sin }\left(S_{3}\right),\left(s_{0}, s_{1}, s_{2}\right) \\
& \text { s2h }(54),(S o, s 1,52) \\
& 53 b(55) \text {, (so, } 51,52 \text {) } \\
& \text { sua }(53,54),(50) \\
& \text { S5a (S3, S4), (S1) } \\
& \text { S6a (53,54), (52) } \\
& \Rightarrow(53,54,55),(50,51,52)
\end{aligned}
$$

$$
\begin{aligned}
& \text { P2: } 57 a(53,54),(55) \\
& 52 b(51),(50,55) \\
& 59 b(52),(50,55) \\
& \text { siob }(53),(50,55) \\
& 511 b(54),(50,55) \\
& \Rightarrow(51,52,53,54),(50,55)
\end{aligned}
$$

thus, we obtam the following encoding satisfiying the green constraints:
$\left.\begin{array}{cccc}s_{0} & 0 & 0 & 0 \\ s_{1} & 0 & 1 & 1 \\ s_{2} & 0 & 1 & 0 \\ s_{3} & 1 & 1 & 0 \\ s_{4} & 1 & 1 & 1 \\ s_{5} & 1 & 0 & 0\end{array}\right\}$

Additional colvmn to differentiate between We codes of $s_{2} \& S_{1}$ and S32su.
(Q4) Consider the sequential circuit given below having 5 inputs $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$ and one output $\{Z\}$. Assume that the delay of a gate is related to the number of inputs i.e. the delay of a 2-input AND gate is 2 unit delays and the delay of a 2-input OR gate is 2 unit delays.

(i) Determine the critical path of this circuit and the maximum propagation delay.
(ii) Using only the Retiming transformation, reduce the critical path of this circuit with the minimum number of flip-flops possible. Determine the maximum propagation delay after retiming.
(i) The maximum propagation delay is Q and there are $\&$ cortical bathe as follows: $\{A, G 1, G 3, G 4, G 6\},\left\{A, G 1, G 3, G_{5}, G 7\right\}$
$\left\{B, G_{1}, G 3, G 4, G 6\right\},\{B, G 1, G 3, G 5, G 7\}$
$\left\{B, G_{2}, G 3, G 4, G 6\right\},\left\{B, G 2, G_{3}, G_{5}, G 7\right\}$
$\left.\left\{C, G_{2}, G 3, G 4, G 6\right\}, G C, G 2, G_{3}, G_{5}, G 7\right\}$
(11) we can apply the flowing retiming transform. to reduce the critical path:

$$
\begin{aligned}
& \text { - retire cr by }+1 \\
& \text { - retire } 67 \text { by }+1 \\
& \text { - retire } 68 \text { by }+1
\end{aligned}
$$

$$
\text { - retime the stem on fanout of } G 6 \text { by }+1
$$

$$
\text { - retire the stem on fanout of } 67 \text { by }+1
$$

- retire fy by +1
- retume ers by +1
- retire the stem on the fanout of Cs_{3} by +1 This results in the following circuit after retiring:

The maximum propagation delay in the resulting circuit is 4. The number of flip-flops has increased from 3 to 5.
(Q5) Consider the network given below with inputs $\{a, b, c, d, e, f\}$ and output $\{y\}$:

$$
\begin{array}{llll}
{[1]=\mathrm{a}+\mathrm{b} ;} & {[2]=[1] * \mathrm{c} ;} & {[3]=\mathrm{d}+\mathrm{e} ;} & {[4]=[2]+\mathrm{f} ;} \\
{[5]=[1] *[3] ;} & \mathrm{y}=[4]+[5] ; & &
\end{array}
$$

(i) Draw the sequencing graph for the above network.
(ii) Assuming that the delay of both the Adder and the Multiplier fit within one clock cycle, show the ASAP and ALAP scheduling of the sequencing graph assuming a latency of 5 clock cycles. Compute the mobility of each operation.
(iii) Using List Scheduling for minimum resource usage algorithm LIST_R, schedule the sequencing graph under the latency constraint of $\mathbf{5}$ clock cycles minimizing the number of resources required. Show the details of the algorithm step by step and the resulting scheduled sequencing graph.
(iv) Consider the scheduled sequencing graph below assuming that the input values will be available to the circuit for only one clock cycle.

a. Show the life-time of all variables.
b. Determine the minimum number of registers that are required to store all the variables. Show the mapping of variables to registers. Select a mapping that minimizes the number of multiplexers and interconnect area as much as possible.
c. Draw the data-path implementing the scheduled sequencing graph based on the variable-register mapping that you obtained in (b).

Page 16 of 19
(i) Sequencing Graph:

(ii)

operation	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
mobility	1	1	2	1	2

(iii) List scheduling for minimum resources under a latency of 5 clock cycles:

$$
\begin{aligned}
& \lambda=5, a=[1,1] \\
& l=1 \\
& U_{1,1}=\{ \} \\
& U_{1,2}=\{1,3\}
\end{aligned}
$$

operations with zero slack $=\{ \}$
Since we have one adder available; we con schedule either [1] or [3]. Let us schedule [1], os it has lower slack.
$l=2$
$U_{2,1}=\{2\}$ and we schedule it.
$U 2,2=\{3\}$ and we schedule ft.
$l=3$
$U_{3,1}=\{5\}$ and we schedule it.
$U 3,2=\{4\}$ and we schedule it
$l=4$

$$
U_{4,1}=\{ \}
$$

$U_{u, 2}=\{y\}$ and we schedule it.

Thus, we can see that it is possible to have a schedule with latency of 4 and using one adder and one invitipler.
Note that if we scheduled [3] in $l=1$ we will endup with a schedule of latencig of 5 cycles.

Page 18 of 19

The resulting scheduled graph is as follows:

(iv) a. Life time of variables:

b. Based on the lifetime of all variables, it is obvious that 4 registers are needed to store all the variables.

First, we will assign operation [3] to one adder, while operations $[1],[4]$ and y to the other adder.

Page 19 of 19

Wee will assign variables to registers as follows:

$$
\begin{aligned}
& R_{1}: t_{1}, t_{3} \\
& R_{2}: t_{2}, t_{4}, t_{5} \\
& R_{3}: c \\
& R_{4}: f
\end{aligned}
$$

c: Dato Path

